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Abstract

Potential Energy Surface of Urea

Xiaojian Mao

Using MP2 methods with aug-cc-pVDZ basis set, the inversion and rotation

potential energy surface (PES) of urea molecule were plotted and fitted

into polynomials. Important conformations on the PES were located and

characterized. Their connecting paths were examined. Both inversion and

rotation energy barriers were calculated. It was showed there could exist

more than one internal rotation path for a floppy molecule. The topology

of the PES were characterized using graphical description and symmetry

analysis.
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Chapter 1

Introduction

Urea was the first organic compound prepared outside of a living organism in history.

It was synthesized from ammonium sulfate and lead cyanate by Wöhler in 1828 [1].

This is marked as the demise of the vital force theory and the beginning of modern

organic chemistry. Since then it has been the subject of interest in almost every branch

of fundamental and applied chemistry research field.

1.1 Urea as a protein denaturing agent

Although urea is structurally simple and has been investigated for such a long time,

many of its properties are still not understood and draw a great amout of interest in

many fields of chemistry. Among them, its well-known but as yet unexplained denat-

uration effects [2,3] in a variety of peptide and protein like structures have triggered a

great deal of research [4–11] in recent years. By adding to and removing from urea solu-

tion, proteins can switch their conformations between native structures and denatured

random coil states.

The manner in which urea affects protein is still unclear. Some believe it is related

to the hydrogen bonding ability of urea to the peptide backbone [5, 6, 8–11], others

1



1.2 Urea aqueous solution

believe it is related to the water structure change due to urea molecules [4, 7, 12]. In

former case, urea molecules will break the original hydrogen bondings of protein like

structures, and new hydrogen bondings will form between urea molecules and protein

molecules. In later case, urea will change the water “icelike” structure, therefore trigger

the change of activity of peptide groups.

Although it is still unclear which hypothesis is correct, urea molecule’s hydrogen

bonding ability and interaction with water molecules play very important roles in its

denaturation ability.

1.2 Urea aqueous solution

Urea aqueous solution has been an interesting topic for decades due to the curious

manner in which urea molecule affects aqueous solution. “Urea is considered a solute

class of its own, because of the possibly unique characteristics of its interactions with

water.” [13]

The role of urea in water structure is still an open question. Raman spectral method

[14] and ultrasonics study [15] have showed evidence of urea molecules as a water

structure breaker. Different models were proposed to interpreted the experimental

data [4, 16,17].

On the other hand, heat capacity and NMR data [12,18] suggested urea molecules

neither promote nor destruct the water structure. Infrared spectra method [6, 10],

neutron diffraction data [9] and molecular dynamics calculations [19] also support the

idea that urea molecules could fit into the water structure without any considerable

distortion. Urea molecule, while dissolving in water, might provide a similar range

of geometries and keep a similar number of hydrogen bondings (relative to the water

molecules it replaces in water structure), therefore, water’s structure is kept unchanged.

In order to fit into water structure, urea molecule has to have “correct” geometry

2



1.3 Structure of urea molecules

of structure. All these studies of how urea molecule affects water structure lead to

another important question: what is the geometry structure of urea molecule in aqueous

solution?

1.3 Structure of urea molecules

Because of urea molecule’s simplicity of structure, it is one of the first organic com-

pounds to be determined by X-ray crystallographic method [20–22], and later confirmed

and supplemented by neutron diffraction measurements [23–26]. The structure of urea

molecule in solid state is well-known today as a planar structure (Fig. 1.1). Its eight

atoms, including atoms from the two amide groups it contains, are in a same plane. The

planar structure is due to an extensive hydrogen bonding network existing in crystal

structure of urea: each urea molecule is hydrogen bonded to its six neighbors.

It was only in nineties that quantum mechanic calculations [27–29] showed urea

molecule in gas state should be nonplanar. Instead of all eight atoms lie in a same plane,

the two amino groups actually adopt a pyramidal structure (Fig. 1.2). The microwave

spectrum [30] and matrix isolation study data [31] were re-examed to support the

calculations. And this nonplanar structure was confirmed later by microwave spectra

data [32] and infrared spectra data [33].

A lot of effort has been put into the study of geometry of urea molecules in aqueous

solution [17, 18, 34–37]. Although the structure of urea molecule in solid and gas state

are generally accepted today, the geometry of urea molecules in aqueous solution is still

an open question [36]. The answer to this question is crucial to determine its action on

proteins through its influence on water structure.

3



1.3 Structure of urea molecules

Figure 1.1: Structure of urea in solid state, which shows an extensive hydrogen
bonding network - Figure adapted from figure 1, Vaughan, P. and Donohue, J., Acta
Crystallographica, 1957, 5, 530-535.

4



1.4 Goal of this research

Figure 1.2: Structure of urea in gas state: solid NH bonds come out of the
page and the NH dashed bonds go into the page - Figure adapted from figure 1,
Dixon, D. A. & Matsuzawa, N., Journal of Physical Chemistry, 1994, 98, 3967-3977.

1.4 Goal of this research

From above discussion it is clear that two properties of urea molecule are essential to

understand its protein denaturation effect: its hydrogen bonding ability and molecular

geometry structure. Actually, its hydrogen bonding ability is also closely related to

its geometry structure. Its planar structure in solid state is due to the existence of

extensive hydrogen bonding network, and quantum mechanics calculations did show

that urea molecules, while forming dimer through hydrogen bonding, tend to be more

planar than in monomers [37–39].

The structure of urea in an environment, such as water or a protein surface, is a very

fundamental question and has not been definitely resolved. Knowledge of the shapes

and energetics of urea molecules is essential for understanding this question.

It is amazing that a small geometry change in molecular structure could have large

influences on molecular properties. To understand the effects better, it is of importance

to investigate the flexibility of urea molecule and its topology of potential energy surface

(PES). Most energy minima and saddles have been reported in several studies [28, 29,

32, 38, 40, 41]. However, in these studies only single points in the PES have been

5



1.4 Goal of this research

investigated. The incentive for this study was to help understanding urea molecule’s

property by investigating the whole topology of urea molecule’s PES.

6



Chapter 2

Method and Model

2.1 Coupling of Inversion and Rotation

Urea molecule is considered as a typical floppy molecule due to its ability to switch

between planar and non-planar structure. A floppy molecule is a molecule which pos-

sesses more than one equilibrium configuration and the energy barrier between these

configurations are low enough for it to switch between them. There are mainly two

types of motions which could occur within a floppy molecule: internal inversion and

rotation, and they both exist within urea molecules.

Both experimental [32] and theoretical [27] results have shown that urea molecule

in gas state is a non-planar structure. The hybridisation of the two nitrogen atoms is

sp3 rather than sp2 in non-planar structures. The two amino groups are pyramidal and

these trigonal pyramid geometry could undergo nitrogen inversion to turn the hydrogen

atoms in and out (Fig. 2.1). This is the internal inversion motion of urea molecules.

Quantum mechanics calculations also showed that the rotational barrier around

CN bonds are low (around 11 kcal/mol) [40–42] enough for urea molecules to make the

internal rotation feasible.

The two nitrogen inversions and two CN bond rotations together make urea a

7



2.1 Coupling of Inversion and Rotation

complicated floppy molecule, although it is structurely simple. These two inversions

and two rotations are coupled together. Due to this coupling, a problem which has

never been noticed before arises when using the traditional way to calculate and plot

rotational barrier of urea.

In a traditional way, to calculate the relaxed C1-N3 rotational barrier of urea (Fig.

2.1), one will fix the dihedral angle O2C1N3H6 and leave all other degrees of freedom

relaxed to calculate the energy. By changing the fixed value of the dihedral angle

O2C1N3H6 from 0 to 360, a rotational energy barrier can be plotted.

Figure 2.1: Atom numbering for urea molecule - Plotted using Facio software

However, this traditional way to plot rotational barrier does not work for urea due

to the existing coupling between rotation and inversion within urea molecule.

First, since the coordinate of the other hydrogen atom in the same amino group

(H5) is not fixed, this atom still can undergo inversion motion to make urea molecule

reaches different energy minimum configurations. Inversion is interfering rotation dur-

ing calculation. This problem is arising from using conventional internal coordinates

(dihedral angle O2C1N3H6) since the dihedral angle is actually a variable involving

8



2.2 Inversion and Rotation Variables

in both rotation and inversion motions. In order to avoid this interfering, instead of

using conventional internal coordinates, new coordinates have to be designed to plot

the rotational barrier.

Second, there is also interfering from the rotation and inversion motions of the

other amino group (-N4H7H8). Since this group is left relaxed during calculations,

it can undergo inversion motion to reach different energy mimimum configurations.

Depending on different configuration it chooses, different rotation path will arise. The

traditional rotational barrier calculation will generate a multivalued plotting. This

multivalue problem is arising from the coupling between motions of two amino groups.

Any one-dimensional rotation barrier plotting of urea molecule can not avoid it. The

rotation paths of urea molecule has to be presented at least in a two-dimensional

plotting.

2.2 Inversion and Rotation Variables

For urea molecule (Fig. 2.1), the four heavy atoms (carbon, oxygen, and two nitrogen

atoms) stay in the same plane for most of time, and it is the positions of four hydrogen

atoms make the big difference of the molecular geometry. Actually, experimental data

shows that the skeleton vibrations of urea molecule are not coupled with the amino

groups deformation vibration [43]. Therefore, it is reasonable to only consider the

positions of hydrogen atoms while investigating the flexibility of urea molecules.

In conventional internal coordinate system, the positions of these four hydrogen

atoms are represented by four dihedral angles (Fig. 2.1):

τ5 = dihedral angle O2C1N3H5

τ6 = dihedral angle O2C1N3H6

τ7 = dihedral angle O2C1N3H7

9



2.2 Inversion and Rotation Variables

τ8 = dihedral angle O2C1N3H8

A dihedral angle is the angle between two planes. Dihedral angle O2C1N3H5 is

defined as the angle between two planes which are defined by O2, C1, N3 atoms and

C1, N3, H5 atoms respectively.

However, just as discussed in section 2.1, each of these dihedral angles actually

involves in both rotation and inversion motions. In order to seperate the coupling

between rotation and inversion, a set of new coordinates is used:

θ1 =
τ5 + τ6

2

θ2 =
τ7 + τ8

2

τ1 = τ5 − τ6

τ2 = τ7 − τ8

Rotation coordinates θ1 and θ2 represent the rotation motions of two amino groups.

When the amino groups rotate around CN bonds, these two variables will change from

0 to 360.

Inversion coordinates τ1 and τ2 are the differences between two dihedral angles in

a same amino group. When the amino groups undergo inversion motions, switching

between trigonal pyramid structures, the variables τ1 and τ2 will change their values

around 180. These variables represent how much the geometries of amino groups are

out-of-plane near the planar structures, and can be considered as inversion coordinates.

With these new inversion and rotation coordinates, the inversion and rotation po-

tential energy surface (PES) of urea can be calculated and plotted.

10



2.3 Plotting PES

2.3 Plotting PES

To plot inversion potential energy surface of urea, urea molecule’s energy were calcu-

lated (computational details descripted in chapter 2.4) with two inversion variables τ1

and τ2 changing from 100 to 260. At each point, the values of τ1 and τ2 were fixed,

but all other 16 degrees of freedom of urea molecule were left relaxed. Urea molecule’s

geometry was then optimized and energy was calculated. Each energy generated a

point in the PES, and a contour plot was done to represent the inversion PES of urea.

To plot rotation potential energy surface of urea, urea molecule’s energy were calcu-

lated with two rotation variables θ1 and θ2 changing from 0 to 360. At each point, the

values of θ1 and θ2 were fixed, but all other 16 degrees of freedom of urea molecule were

left relaxed. Urea molecule’s geometry was then optimized and energy was calculated.

Each energy generated a point in the PES, and a contour plot was done to represent

the rotation PES of urea.

2.4 Computational Details

All calculations were carried out using the GAMESS (The General Atomic and Molec-

ular Electronic Structure System) program [44] with the correlation-consistent aug-cc-

pVDZ basis set [45, 46] at second-order Möller-Plesset perturbation theory (MP2) [47]

level.

2.4.1 GAMESS

GAMESS (The General Atomic and Molecular Electronic Structure System) is a general

ab initio quantum chemistry package [44], maintained by the members of the Gordon

research group at Iowa State University.

GAMESS can perform all kinds of general computational chemistry calculations,

including Hartree-Fock, density functional theory (DFT), and Multi-configurational
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2.4 Computational Details

self-consistent field (MCSCF). Correlation corrections after these SCF calculations can

be estimated by configuration interaction (CI), second order Ml̈ler-Plesset perturbation

theory, and coupled cluster theory. Solvent effect can also be considered using quan-

tum mechanics/molecular mechanics through discrete effective fragment potentials or

continuum models.

2.4.2 Basis Set

Choosing basis set is crucial for urea structure optimization calculations. In history,

before nineties, urea structure was calculated as a planar structure due to using small

basis sets. The topology of PES of urea could change a lot if using inappropriate basis

set. The planar structure, which should be a rank-2 saddle, could be calculated as an

energy minimum using inappropriate basis set!

To find out the appropriate basis set to use, different basis sets were used to optimize

the structure of urea molecule and compared with experimental data (Table 2.1).

It can be seen from the data that both polarization functions and diffuse functions

are important to be included in basis set when running calculations for urea molecule.

Polarization functions are higher angular momentum functions and they generally

help to describe important charge polarization effects. Diffuse functions are functions

with small exponents and they are important whenever loosely bound electrons are

present. For urea molecule, the two lone pair electrons from nitrogen atoms is conju-

gated to π orbital of CO bonding. Apparently, polarization effect is important within

urea molecule, and an appropriate basis set should include both polarization functions

and diffuse functions.

2.4.3 Aug-cc-pVDZ Basis Set

A set of the most widely used basis sets are correlation-consistent basis sets devel-

oped by Dunning and coworkers. They are designed to converge systematically to the

12
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2.4 Computational Details

complete-basis-set limit. They include successively larger shells of polarization func-

tions, and have become the current state of the art for post-Hartree-Fock calculations.

Aug-cc-pVDZ basis set is the augmented version (with added diffuse functions) of the

correlation-consistent polarized valence-only double-zeta basis set.

2.4.4 Calculation Level

Electron correlations are neglected in Hartree-Fock calculations. In HF treatment,

electron-electron repulsion is handled by having each electron move in a smeared-out,

average electrostatic field due to all the other electrons. Therefore, in HF treatment the

probability that an electron will have a particular spatial coordinate at some moment

is independent of the coordinates of the other electrons at that moment. This is not

true in reality of course. A post-HF calculation should always be considered to correct

the electron correlation when possible.

The Möller-Plesset (MP) treatment [47] of electron correlation is based on per-

turbation theory. Second order MP method (MP2) is a standard level used today in

calculating small systems.
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Chapter 3

Two-dimensional Inversion

Potential Energy Surface

3.1 Inversion PES

Urea molecule’s energy were calculated (computational details described in section 2.4)

with two inversion variables τ1 and τ2 (described in section 2.3) changing from 100◦

to 260◦. At each point, the values of τ1 and τ2 were fixed, but all other 16 degrees

of freedom of urea molecule were left relaxed. Urea molecule’s structure was then

optimized and energy was calculated. Each energy generated a point in the PES.

Totally 1800 points were calculated and a contour plot was done to represent the

inversion PES of urea (Fig. 3.1).

3.1.1 Important conformations

Four most important conformations are labelled in Fig. 3.1 and listed in Fig. 3.2 - Fig.

3.5.

conformation A is the global energy minimum. Agreed with previous work [27] it

is a nonplanar structure with the C2 symmetry. Four heavy atoms lie in a same plane,

15



3.1 Inversion PES

Figure 3.1: Inversional potential energy surface of urea molecule - unit in cm−1.

16



3.1 Inversion PES

two -NH2 group points to opposite direction and in two sides of that plane respectively.

This is the conformation urea molecules adopt in gas state.

conformation B is the local energy minimum, with energy 1.06 kcal/mol higher than

global energy minimum and with Cs symmetry. The two -NH2 group points to same

direction and in the same side of four heavy atoms. The local energy minimum con-

formation connects with global energy minimum by inverting only one side of nitrogen

trigonal pyramid structure.

conformation C is a rank-2 saddle. One of its decreasing normal mode coordinates

leads to two global minima and another leads to two local minima. All eight atoms are

lying in a same plane in this conformation. The symmetry is C2v and its energy is 1.58

kcal/mol higher than global energy minimum. This is the conformation urea molecules

adopt in solid state.

conformation D is a rank-1 saddle which connects global and local energy minimum.

Its existence is in accord with Murrell-Laidler theorem [48], which predicts that there

must exist a rank-1 saddle if a rank-2 saddle (conformation C in this case) is found to

connect two minima (conformation A and B in this case). The only decreasing normal

mode coordinate of this conformation leads to global minimum conformation and local

minimum conformation respectively at its two ends. Its energy is 1.09 kcal/mol higher

than global energy minimum.

3.1.2 Hybridization of nitrogen atoms

The geometry change of urea molecule’s structure is closely related to hybridization of

nitrogen atoms. When both nitrogen atoms take sp2 hybridization, the urea molecule

is in planar structure. With more sp3 hybridization, the structure will be further from

a planar geometry.

While in sp3 hybridization, -NH2 group forms a trigonal pyramid and the sum of

three angles is not equal to 360. This difference between 360 and the sum is called

17



3.1 Inversion PES

Conformation A Conformation B Conformation C Conformation D

Symmetry C2 Cs C2v C1

Saddle Index global minimum local minimum rank-2 saddle rank-1 saddle

Energy /kcal/mol 0 1.06 1.58 1.09

r(C-O) /Å 1.230 1.231 1.233 1.231

r(C-N3) /Å 1.394 1.389 1.380 1.381

r(C-N4) /Å 1.394 1.389 1.380 1.395

θ(OCN3) 123.3 122.6 122.6 122.7

θ(OCN4) 123.3 122.6 122.6 122.7

τ(OCN3N4) 180.0 174.7 180.0 175.5

r(N3H5) /Å 1.014 1.012 1.008 1.009

r(N3H6) /Å 1.014 1.012 1.009 1.010

θ(CN3H5) 116.5 119.8 123.5 122.3

θ(CN3H6) 112.5 113.9 117.0 116.4

τ(OCN3H5) 148.3 -159.9 180.0 -172.0

τ(OCN3H6) 13.9 -16.6 0.0 -11.7

r(N4H7) /Å 1.014 1.012 1.008 1.013

r(N4H8) /Å 1.014 1.012 1.009 1.014

θ(OCN4H7) 116.5 119.8 123.5 118.3

θ(OCN4H8) 112.5 113.9 117.0 112.6

τ(OCN4H7) 148.3 159.9 180.0 153.3

τ(OCN4H8) 13.9 16.6 0.0 16.1

Table 3.1: Important conformations in inversion PES of urea molecule
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3.1 Inversion PES

Figure 3.2: A - global minimum, C2 Figure 3.3: B - local minimum, Cs

Figure 3.4: C - rank-2 saddle, C2v Figure 3.5: D - rank-1 saddle, C1

“out-of-plane” angle measurement. The out-of-plane angle is 31.5 for a perfect sp3

hybridization and 0 for sp2 hybridization. As an example, ammonia molecule’s out-of-

plane angle is 38.5.

out-of-plane angle 1 out-of-plane angle 2

Conformation A 17.0 17.0

Conformation B 10.6 10.6

Conformation C 0.0 0.0

Conformation D 3.0 14.6

Table 3.2: Out-of plane angle of different urea molecule conformations in its
inversion PES

The rank-1 saddle (conformation D) connects global and local energy minimum

(conformation A and B). From its out-of-plane angles (Table 3.2) we can tell this

connection is through inverting only one trigonal pyramid structure of -NH2 group:

one of the two nitrogen atoms in this conformation is very close to sp2 hybridization

(out-of-plane angle is 3.0), which makes the conformation half-side planar.
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3.1 Inversion PES

3.1.3 Inversion Barrier

Normal coordinate calculations using infrared and Raman spectra data for solid urea

give an estimated nitrogen inversion barrier of 1.29 kcal/mol [49].

As PES shown (Fig. 3.1), the lowest energy barrier for inversion is merely 1.09

kcal/mol, which takes the path through conformation B and D. One might compare

this barrier to a typical inversion energy barrier of ammonia molecule, which is about 2.5

kcal/mol. Even the higher inversion barrier, which takes the path through conformation

C, is only 1.58 kcal/mol. All these make urea molecule’s inversion PES a fairly flat one,

and the urea molecule can easily switch itself between planar and nonplanar structures.

There exist three paths connecting the two global energy minima as the PES shown

(Fig. 3.1). Since all these three energy barriers are very low, the three paths are all

important and have to be included while one carries out dynamic calculations. This

feature makes urea molecule a very interesting dynamic system as an inversion model.

3.1.4 Population Map

Population map were generated from the inversion PES data. First, at each data point

a probability Zo was calculated:

Zo = exp[−E(τ ′1, τ
′
2)/kBT ]

where

τ ′1 = τ5 − τ6 and τ ′2 = τ7 − τ8.

The probability function then integrated numerically using Simpson’rule [50] over

the surface range of [120, 240]× [120, 240] to produce the normalization factor Zn:

Zn =

∫ 240

120

∫ 240

120
exp[−E(τ ′1, τ

′
2)/kBT ] dτ ′1dτ

′
2

20



3.1 Inversion PES

Finally after normalizing the probability Zo,

Zn =
Zo
Zn

a probability map was generated (Fig. 3.6), with contours defining the region of con-

formational space containing defined percentage of molecules.

It is clear from the plot that urea is a very flexible molecule. Only 50 per cent

molecules take the conformations around the global energy minimum. Another half is

off from the most stable conformation.

3.1.5 Dipole Moment

The dipole moment of urea measured is 4.56D in a non-polar solvent (dioxane) [20],

4.2D in water, 6.25D in acetone, [51], and 3.83D in gas states [31].

My calculations show that the dipole moment is 4.31D for the planar structure and

3.57D for the global minimum conformation (Table 3.3).

CO bond length /Å out of plane angle dipole moment /D

global minimum 1.2296 17.0 3.57

planar structure 1.2328 0.0 4.31

Table 3.3: Dipole moment of urea molecules

It is easy to understand why the planar structure is more polar. Urea molecules can

be described as a combination of two mesomeric structures (Fig. 3.7) due to resonance.

The CO bond of carbonyl group in structure (B) and (C) is longer than that in structure

(A) due to their single and double bonding nature (Table 3.3). Also, the oxygen atom

carries a larger negative charge than that in structure (A). Both effects make structure

(B) and (C) a higher dipole moment than that in structure (A).

The resonance is easier to happen while the nitrogen atom has more sp2 hybridiza-

tion than sp3, which is the case of planar structure (Table 3.3, the planar structure
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3.1 Inversion PES

Figure 3.6: Population map - corresponding to inversion PES of urea molecule at 37 ◦C.
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3.1 Inversion PES

has a smaller out of plane angle). Therefore, the planar structure favors structure (B)

and (C) more than that in global energy minimum structure and has a higher dipole

moment.

Figure 3.7: Mesomeric structures of urea molecule - adapted from figure 2, Keuleers,
R. & Desseyn, H. O., Journal of Physical Chemistry A, 1999, 103, 4621-4630.

Hydrogen bonding to carbonyl group always weakens the CO bond, therefore makes

its length longer and increases the dipole moment. It is not surprised that urea

molecules have a higher dipole moment in solution than that in gas states due to

the interaction between them and solvent molecules.
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3.2 Fitting inversion PES

3.2 Fitting inversion PES

Inversion PES (Fig. 3.1) was plotted using variables τ1 and τ2 (section 2.3). They are

the differences between two dihedral angles which are associated with hydrogen atoms

in the same amino group. Since all the conformations on the inversion PES are not far

away from conformation D (planar structure), the geometry of amino groups are fairly

flat. One of these two dihedral angles are always close to 0 and another close to π, and

their difference is close to π. In order to use variables close to 0 to fit the PES, new

invariables were introduced:

ϕ1 = τ1 − π = (τ5 − τ6)− π, ϕ2 = τ2 − π = (τ7 − τ8)− π

PES then was fitted using new variables ϕ1 and ϕ2:

V (ϕ1, ϕ2) =
∑
a+b≤8

fab (ϕ1)
a(ϕ2)

b (3.1)

Totally 45 terms were generated but only 15 coefficients are independent due to sym-

metry restriction:

fab = 0 when (a+b) is odd,

and

fab = fba.

All independent coefficients are listed in Table 3.4 (units in cm−1). Root mean square

error is 1.664379332, and coefficient of determination (R2) is 0.999999715.

The constant term f00 = 551.2 cm−1 is the energy of planar structure (conformation

C).
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3.2 Fitting inversion PES

f00 551.2 f20 -569.77
f11 -362.15 f40 184.78
f31 -6.52 f22 218.35
f60 297.04 f51 41.7
f42 29.77 f33 -8.9
f80 -30.98 f71 -3.47
f62 -16.57 f53 -4.68
f44 8.44

Table 3.4: Coefficients of fitted inversion PES of urea - units in cm−1
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3.3 Normal Mode Analysis

3.3.1 Degrees of Freedom

A urea molecule has eight atoms. By removing three translational degrees of freedom

and three rotational degrees of freedom, we have (3×8−6 = 18) degrees of freedom left.

Any internal coordinate system to describe urea molecule should have 18 coordinates.

In this study, the following 18 internal coordinates were used (atom numbering refers

to Fig. 2.1):

r(C-O) bond length of C1O2 bond

r(C-N3) bond length of C1N3 bond

r(C-N4) bond length of C1N4 bond

θ(OCN3) bond angle between C1O2 bond and C1N3 bond

θ(OCN4) bond angle between C1O2 bond and C1N4 bond

τ(OCN3N4) dihedral angle between O2C1N3 plane and C1N3N4 plane

r(N3H5) bond length of N3H5 bond

r(N3H6) bond length of N3H6 bond

θ(CN3H5) bond angle between C1N3 bond and N3H5 bond

θ(CN3H6) bond angle between C1N3 bond and N3H6 bond

τ(OCN3H5) dihedral angle between O2C1N3 plane and C1N3H6 plane

τ(OCN3H6) dihedral angle between O2C1N3 plane and C1N3H6 plane

r(N4H7) bond length of N4H7 bond

r(N4H8) bond length of N4H8 bond

θ(CN4H7) bond angle between C1N4 bond and N4H7 bond

θ(CN4H8) bond angle between C1N4 bond and N4H8 bond

τ(OCN4H7) dihedral angle between O2C1N4 plane and C1N4H7 plane

τ(OCN4H8) dihedral angle between O2C1N4 plane and C1N4H8 plane

Table 3.5: Conventional internal coordinates of urea molecule

3.3.2 Kinetic Energy Terms

The kinetic energy terms transformed from conventional internal coordinates to any

internal coordinates can be derived from the fundamental formula:

2T = P ′GP
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3.3 Normal Mode Analysis

where T is the kinetic energy, P is a column vector whose elements are the momenta

conjugate to the a given set of internal coordinate Q’s. Since there are always 18

internal coordinates, P is a column vector with 18 components.

G is the kinetic energy matrix whose elements were given by Decius [52],

gqq′ =

N∑
k=1

Sqk · Sq′kµk (3.2)

in which q and q′ are conventional internal coordinates (for urea molecule, they are

described in Tab. 3.5), µk is the reciprocal mass of the kth atom, and Sqk is a vector

which represents the contribution of the kth atom to q. The matrix elements gqq′

represents the interaction between momenta associated with coordinates q and q′. There

are total 33 types of gqq′ ’s and their general formulas were listed by Decius [52].

For urea molecule, the changes in most internal coordinates are very small during

the molecular conformation switching processes and infrared spectra did show that

they are not coupled with the motion of amino groups [43]. Therefore, it is reasonable

only to take the four dihedral angles involving hydrogen atoms in amino groups as

explicit variables. All other conventional internal coordinates were treated as fixed

parameters by taking the value at their optima conformation to reduce the dimensions

of the problem.

2T = (Pτ1 , Pτ2 , Pτ3 , Pτ4)



g11 g12 g13 g14

g21 g22 g23 g24

g31 g32 g33 g34

g41 g42 g43 g44





Pτ1

Pτ2

Pτ3

Pτ4


Here,

τ1 = τ(OCN3H5), τ2 = τ(OCN3H6), τ3 = τ(OCN4H7), τ4 = τ(OCN4H8).
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3.3 Normal Mode Analysis

All the G matrix elements were calculated using equation 4.4, and internal coordinate

values used have been listed in Table 3.1. Calculated G matrix elements are listed as

below (units in cm−1):

g11 = 2176.19 + 247.57 ∗ cos τ1

g22 = 2473.13 + 298.94 ∗ cos τ2

g33 = 2176.19 + 247.57 ∗ cos τ3

g44 = 2473.13 + 298.94 ∗ cos τ4

g12 = 324.10 + 123.78 ∗ cos τ1 + 149.47 ∗ cos τ2 + 254.49 ∗ cos(τ1 − τ2)

g21 = 324.10 + 123.78 ∗ cos τ1 + 149.47 ∗ cos τ2 + 254.49 ∗ cos(τ1 − τ2)

g34 = 324.10 + 123.78 ∗ cos τ3 + 149.47 ∗ cos τ4 + 254.49 ∗ cos(τ3 − τ4)

g43 = 324.10 + 123.78 ∗ cos τ3 + 149.47 ∗ cos τ4 + 254.49 ∗ cos(τ3 − τ4)

g13 = −303.73− 58.56 ∗ (cos τ1 + cos τ3)− 10.78 ∗ cos(τ1 + τ3)− 4.39 ∗ cos(τ1 − τ3)

g31 = −303.73− 58.56 ∗ (cos τ1 + cos τ3)− 10.78 ∗ cos(τ1 + τ3)− 4.39 ∗ cos(τ1 − τ3)

g24 = −303.73− 75.87 ∗ (cos τ2 + cos τ4)− 18.10 ∗ cos(τ2 + τ4)− 7.45 ∗ cos(τ2 − τ4)

g42 = −303.73− 75.87 ∗ (cos τ2 + cos τ4)− 18.10 ∗ cos(τ2 + τ4)− 7.45 ∗ cos(τ2 − τ4)

g14 = −303.73− 58.56 ∗ cos τ1 − 75.87 ∗ cos τ4 − 13.98 ∗ cos(τ1 + τ4)− 5.72 ∗ cos(τ1 − τ4)

g41 = −303.73− 58.56 ∗ cos τ1 − 75.87 ∗ cos τ4 − 13.98 ∗ cos(τ1 + τ4)− 5.72 ∗ cos(τ1 − τ4)

g23 = −303.73− 58.56 ∗ cos τ2 − 75.87 ∗ cos τ3 − 13.98 ∗ cos(τ2 + τ3)− 5.72 ∗ cos(τ2 − τ3)

g32 = −303.73− 58.56 ∗ cos τ2 − 75.87 ∗ cos τ3 − 13.98 ∗ cos(τ2 + τ3)− 5.72 ∗ cos(τ2 − τ3)

3.3.3 Potential Energy Terms

For all important conformations located in inversion PES (conformation A, B, C, and

D in Fig. 3.1), τ1 and τ3 are close to 0 and τ2 and τ4 are close to π. In order to expand
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3.3 Normal Mode Analysis

energy terms using variables close to 0, the following transformation were applied:

τ ′2 = τ2 − π, τ ′4 = τ4 − π

It is trivial that under this transformation we have:

Pτ ′2 = Pτ2 , Pτ ′4 = Pτ4

but many terms in g will change their signs:

cos τ ′2 = − cos τ2, cos τ ′4 = − cos τ4

The potential energy V is then expressed as internal coordinates and the force

constants matrix F :

2V = (τ1, τ
′
2, τ3, τ

′
4)



f11 f12 f13 f14

f21 f22 f23 f24

f31 f32 f33 f34

f41 f42 f43 f44





τ1

τ ′2

τ3

τ ′4


Elements of matrix F can be found by first fitting energy V into a polynomial of τ1,

τ ′2, τ3 and τ ′4:

V =
∑

fabcd (τ1)
a(τ ′2)

b(τ3)
c(τ ′4)

d
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3.3 Normal Mode Analysis

then taken from coefficients of all quadratic terms:

f11 = f2000 × 2 f22 = f0200 × 2

f33 = f0020 × 2 f44 = f0002 × 2

f12 = f1100 f21 = f1100

f13 = f1010 f31 = f1010

f14 = f1001 f41 = f1001

f23 = f0110 f32 = f0110

f24 = f0101 f42 = f0101

f34 = f0011 f43 = f0011

3.3.4 Normal mode coordinates

By solving secular equation

|GF − Eλ| = 0

eigenvalues and corresponding eigenvectors can be obtained. Let L be the matrix

which its column vectors are the eigenvectors of matrix GF , q be the column vector of

conventional internal coordinates, then the transformation:

Q = L−1q

will generate the normal mode coordinates Q.

In normal mode coordinates, matrix G and F have simple forms:

L′G−1L = E, L′FL =


λ1

λ2

· · ·
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3.3 Normal Mode Analysis

3.3.5 Rank-2 Saddle

At the rank-2 saddle point conformation (conformation C in Fig. 3.1), we have:

τ1 = 0, τ ′2 = 0 (τ2 = π), τ3 = 0, τ ′4 = 0 (τ4 = π)

The G matrix at the rank-2 saddle point can be calculated by substituting the above

values for each g element (units in cm−1):

G =



2423.75 43.92 −436.04 −266.73

43.92 2174.19 −301.34 −177.56

−436.04 −301.34 2423.75 43.92

−266.73 −177.56 43.92 2174.19


From all these off-diagonal elements, it is clear that the inversions of two -NH2 amino

groups are coupled together, which is in accord with infrared spectra observation [53].

Around the rank-2 saddle points, 1800 conformations were calculated randomly in

the range of τ1 = ±5, τ ′2 = ±5, τ3 = ±5, τ ′4 = ±5, and the F matrix is found by fitting

V into the following formula (see Appendix A for details):

V =
∑

a+b+c+d≤4
fabcd (τ1)

a(τ ′2)
b(τ3)

c(τ ′4)
d

The F matrix is found to be (units in cm−1):

F =



2967.14 3248.45 −1664.66 −704.73

3248.45 258.87 −704.73 −1399.96

−1664.66 −704.73 2967.14 3248.45

−704.73 −1399.96 3248.45 258.87


Secular equation |GF −Eλ| = 0 was solved to find out the transformation which leads
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3.3 Normal Mode Analysis

to normal mode coordinates:

φ1 = 0.01057 ∗ (τ1 − τ3) + 0.00740 ∗ (τ ′2 − τ ′4)

φ2 = −0.00769 ∗ (τ1 + τ3) + 0.01295 ∗ (τ ′2 + τ ′4)

φ3 = 0.01401 ∗ (τ1 + τ3) + 0.00930 ∗ (τ ′2 + τ ′4)

φ4 = 0.00812 ∗ (τ1 − τ3)− 0.01270 ∗ (τ ′2 − τ ′4)

The kinetic energy and potential energy terms under the normal mode coordinates were

found to be:

2T = P 2
φ1 + P 2

φ2 + P 2
φ3 + P 2

φ4

2V = 4π2ν21φ
2
1 − 4π2ν22φ

2
2 + 4π2ν23φ

2
3 − 4π2ν24φ

2
4

ν1 = 748.5 cm−1, ν2 = 391.5 cm−1, ν3 = 360.9 cm−1, ν4 = 245.4 cm−1

These low-lying vibration modes indicate that vibrations on urea molecule’s inver-

sional PES might be treated as large amplitude motion.
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3.4 Two-dimensional Schrödinger Equation

3.4 Two-dimensional Schrödinger Equation

In several experimental studies [32, 33, 54], the local energy minimum conformations

(conformation B in Fig. 3.1) were considered not a distinct conformation but part of

a large amplitude motion of the global energy minimum conformations (conformation

A). With the fitted inversional PES at hand, it is possible to solve two-dimensional

Schrödinger equation of urea molecule to find out the eigenvalues of low-lying vibration

modes. By comparing these eigenvalues with inversional energy barrier, the validity of

the large amplitude vibration can be justified.

The two-dimensional Schrödinger equation of urea molecule’s inversion motion can

be written as:

− ~2

2
∇ ·

 gϕ1ϕ1 gϕ1ϕ2

gϕ2ϕ1 gϕ2ϕ2

∇ψ(ϕ1, ϕ2) + V (ϕ1, ϕ2)ψ(ϕ1, ϕ2) = Ei ψ(ϕ1, ϕ2) (3.3)

where gϕiϕj is the G matrix elements which associate with momenta Pϕ1 and Pϕ2 ,

V (ϕ1, ϕ2) is the fitted inversion potential energy terms (equation 3.1).

Schrödinger equation 3.3 was solved using Matlab’s Partial Differential Equation

Toolbox. Four eigenvalues were found in the range Ei < 1000 cm−1. They are 501.9

cm−1, 599.1 cm−1, 783.5 cm−1, and 862.0 cm−1 respectively (Table 3.6). Their contour

maps and wave functions were plotted in Fig. 3.8 - 3.15.

Level ground first excited second excited third excited

Energy/cm−1 501.9 599.1 783.5 862.0

Table 3.6: Energy levels of urea molecule’s inversion potential

The ground state’s eigen energy (501.9 cm−1) is lower than energy of the planar

conformation (552.6 cm−1), but already higher than energies of the local energy min-

imum conformation (370.7 cm−1) and rank-1 saddle conformation (381.2 cm−1). The

first excited state’s eigen energy (599.1 cm−1) is higher than energies of all important
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3.4 Two-dimensional Schrödinger Equation

conformations in the inversion PES. Therefore, all these important conformations can

be easily reached by these vibration modes and it could be reasonable to treat them as

a large amplitude motion.
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3.4 Two-dimensional Schrödinger Equation

Figure 3.8: Ground state wave function of urea molecule from inversion poten-
tial - Eigenvalue 501.9 cm−1, plotted by Matlab.

Figure 3.9: Contour map of ground state wave function of urea molecule from
inversion potential - Eigenvalue 501.9 cm−1, plotted by Matlab.
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3.4 Two-dimensional Schrödinger Equation

Figure 3.10: First excited state wave function of urea molecule from inversion
potential - Eigenvalue 599.1 cm−1, plotted by Matlab.

Figure 3.11: Contour map of first excited state wave function of urea molecule
from inversion potential - Eigenvalue 599.1 cm−1, plotted by Matlab.
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3.4 Two-dimensional Schrödinger Equation

Figure 3.12: Second excited state wave function of urea molecule from inversion
potential - Eigenvalue 783.5 cm−1, plotted by Matlab.

Figure 3.13: Contour map of second excited state wave function of urea
molecule from inversion potential - Eigenvalue 783.5 cm−1, plotted by Matlab.
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3.4 Two-dimensional Schrödinger Equation

Figure 3.14: Third excited state wave function of urea molecule from inversion
potential - Eigenvalue 862.0 cm−1, plotted by Matlab.

Figure 3.15: Contour map of third excited state wave function of urea molecule
from inversion potential - Eigenvalue 862.0 cm−1, plotted by Matlab.
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Chapter 4

Four-dimensional Rotation

Potential Energy Surface

4.1 Internal rotation PES

Urea molecule’s energy were calculated with two rotation variables θ1 and θ2 (described

in section 2.3) changing from 0◦ to 360◦. At each point, the values of θ1 and θ2

were fixed, but all other 16 degrees of freedom of urea molecule were left relaxed.

Urea molecule’s geometry was then optimized and energy was calculated. Each energy

generated a point in the PES. Totally 2088 points were calculated and a contour plot

was done to represent the rotation PES of urea (Fig.4.1).

4.2 Important conformations

All important comforamtions on the rotation PES are labelled in Fig. 4.1 and showed

in Fig. 4.2 - Fig. 4.6.

conformation A is a global energy minimum and conformation B is a local energy

minimum. They have been discussed in section 3.1.1.
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4.2 Important conformations

Figure 4.1: Rotational potential energy surface of urea molecule - unit in cm−1.
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4.2 Important conformations

Figure 4.2: E - rank-2 saddle, C2v Figure 4.3: F - rank-2 saddle, Cs

Figure 4.4: G - rank-2 saddle, C2v

Figure 4.5: H - rank-1 saddle, Cs Figure 4.6: I - rank-2 saddle, Cs
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4.3 Dipole moments

conformation E (Fig. 4.2), F (Fig. 4.3), and G (Fig. 4.4) are all rank-2 saddles. In

these conformations, both nitrogen atoms take sp3 hybridization. However, in confor-

mation H (Fig. 4.5) and I (Fig. 4.6), only one nitrogen atom take sp3 hybridization

and another one is sp2 hybridization (planar structure). This is clearly shown in Table

4.1.

out-of-plane angle 1 out-of-plane angle 2

Conformation E 44.9 44.9

Conformation F 44.9 45.5

Conformation G 39.2 39.2

Conformation H 43.8 0.0

Conformation I 33.9 0.0

Table 4.1: Out-of plane angle of different urea molecule conformations in its
rotation PES

4.3 Dipole moments

An interesting observation is that the dipole moment of the molecule changes a lot

during its internal rotation (Table 4.2). It is well-known that urea can dissolve in most

solvents, including both polar and nonpolar solvents. The flexibility of urea molecule’s

geometry and the consequent change of its dipole moment could play important role in

its excellent dissolving ability.

Dipole /debye

Conformation A 3.57

Conformation B 4.26

Conformation E 0.26

Conformation F 2.81

Conformation G 4.72

Conformation H 2.42

Conformation I 4.98

Table 4.2: Dipole moments of important conformations in rotation PES of urea
molecule
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4.4 Internal rotation barrier

4.4 Internal rotation barrier

4.4.1 Early results

The internal rotation barriers around the C-N bonds of urea molecule has been mea-

sured by NMR method as 11.33 kcal/mol in dimethylformamide (DMF) solution [55],

and 13.k kcal/mol in dimethylformamide-dimethyl sulfoxide solution [42]. In solid state,

it was estimated as 25.9 kcal/mol [49] using infrared and Raman spectra data. How-

ever, no experimental data have been reported for urea molecule’s gas phase rotational

barrier. Early calculations by Kontoyianni and Bowen showed it as 16 kcal/mol [56]

using a rigid rotation model. Calculations including relaxation of the geometries lead

to a barrier about 8 kcal/mol [28,40,41,57].

4.4.2 Internal rotation barrier

Both conformation H and I act as saddles in the internal rotation paths. Conformation

H is 5.4 kcal/mol lower than conformation I in the PES (Table 4.3). So there exist

two internal rotation barriers: higher one through conformation I is 13.5 kcal/mol, and

lower one through conformation H is 8.1 kcal/mol.

However, it can be easily seen in PES plot (Fig. 4.1) that there always exist paths to

avoid passing conformation I to connect energy minimum conformations (conformation

A and B).

Symmetry Saddle Index Energy /kcal/mol

Conformation E C2v rank-2 saddle 29.8

Conformation F Cs rank-2 saddle 28.3

Conformation G C2v rank-2 saddle 31.6

Conformation H Cs rank-1 saddle 8.1

Conformation I Cs rank-2 saddle 13.5

Table 4.3: Important conformations in rotation PES of urea molecule
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4.4 Internal rotation barrier

4.4.3 Conjugation

Due to the conjugation between CO double bond’s π electron pair and lone electron

pairs of nitrogen atoms, the internal rotation barrier of urea molecule is higher than

a typical free internal rotation barrier (the internal rotation barrier in ethane is about

2.9 kcal/mol).

Rotation around the C-N bond breaks the conjugation and significantly destabilizes

the structure. This leads to substantial elongation of C-N bond (Table 4.4).

CN bond lengths (Å)

Conformation A 1.394, 1.394

Conformation E 1.451, 1.451

Conformation F 1.465, 1.443

Conformation G 1.457, 1.457

Conformation H 1.364, 1.456

Conformation I 1.377, 1.450

Table 4.4: CN bond lengths of important conformations in rotation PES of
urea molecule

4.4.4 Rotation barrier of floppy molecules

One interesting thing about the rotation paths of urea molecule is that although con-

formation H is a rank-1 saddle, conformation I is actually a rank-2 saddle. There exist

two decreasing normal modes for conformation I. One is along the rotational direction,

another one is along the inversional direction of another side’s amino group. Depending

on which inversional direction it follows, any rotation path through conformation I will

face a choice of two paths. One will lead to a global minimum (conformation A), and

another one to a local minimum (conformation B).

And this observation should be generalized for all floppy molecules. Special atten-

tions should be paid to exam whether or not there exist any high rank saddle points

along the rotational path when calculating a floppy molecule’s rotational energy bar-

rier. if there exists any high rank saddle point along the rotational path, there will be
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4.5 Fitting rotation PES

more than one rotational paths the molecule can choose.

4.5 Fitting rotation PES

Rotation energy barrier is higher than inversion barrier, therefore while urea molecule

undergoes rotation motion, it could undergo inversion motion at the same time. The

inversion variables have to be included also while fitting rotation PES.

Rotation PES was fitted using rotation variables θ1 and θ2 together with two inver-

sion variables ϕ1 and ϕ2 (see section 3.1):

θ1 =
τ5 + τ6

2
, θ2 =

τ7 + τ8
2

ϕ1 = (τ5 − τ6)− π, ϕ2 = (τ7 − τ8)− π

It was fitted into a polynomial up to order 6:

V (ϕ1, ϕ2, θ1, θ2) =
∑

a+b+c+d≤6
fabcd (ϕ1)

a(ϕ2)
b(cos θ1)

c(cos θ2)
d

All data from both inversion PES (1800 data) and rotation PES ( 2088) were used.

Totally 210 terms were generated, but only 110 coefficients are independent due to

symmetry condition:

fabcd = fbadc

All independent coefficients are listed in Table B.1 in Appendix B.
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Chapter 5

Symmetry Analysis

5.1 Complete Permutation-inversion Group

Any rearrangement of identical nuclei in a urea molecule leads to a new but energetically

equivalent conformation. The total number of these conformations equals to the order

of the full permutation-inversion group of urea molecule, which is a direct product of

the permutation groups and the inversion group ε:

G = SN ⊗ SH ⊗ ε = 2!× 4!× 2 = 96

where SN and SH are the groups of permutations of nitrogen atoms and hydrogen

atoms.

5.2 Subsurfaces of PES

However, not all these conformations are accessible to each other in the PES due to

the existing high barriers (which corresponding to bond breaking). For example, of

48 energetically equivalent global energy minimum conformations, only 8 of them are

accessible to each other (Fig.5.1).
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5.3 Longuet-Higgins Group

(a) A1 (b) A2 (c) A3 (d) A4

(e) A′
1 (f) A′

2 (g) A′
3 (h) A′

4

Figure 5.1: Eight energetically equivalent global energy minimum conformations of urea
molecule which are accessible to each others.

The whole PES will split into several subsurfaces which are seperated by insur-

mountable energy barriers. The number of subsurfaces can be find from the order of

complete permutation-inversion group and Longuet-Higgins group:

n =
order of complete permutation-inversion group

order of Longuet-Higgins group

5.3 Longuet-Higgins Group

For non-rigid molecules, Longuet-Higgins showed that the most useful groups should

consist all “feasible” permutations of the various identical nuclei in the molecule, with

or without an accompanying inversion of the positions of all particles in the centre of

mass [58]. In order to be “feasible”, a permutation-inversion operation should be carried

out without passing over a insurmountable energy barrier. By considering Longuet-

Higgins group instead of point group of the molecule, more valuable information, such

as selection rules, can be provided.

For a rigid molecule, its Longuet-Higgins group is the same as its point group. But

for a non-rigid molecule, its point group is a subgroup of its Longuet-Higgins group.
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5.4 Longuet-Higgins Group of Urea

5.4 Longuet-Higgins Group of Urea

All feasible permutation-inversion operations within urea molecule can are listed below

(atom labelled as Fig. 5.2):

E, (34)(5768), (34)(5867), (56)(78), (78), (56), (34)(57)(68), (34)(58)(67)

E∗, (34)(5768)∗, (34)(5867)∗, (56)(78)∗, (78)∗, (56)∗, (34)(57)(68)∗, (34)(58)(67)∗

Figure 5.2: Atom numbering for urea molecule’s permutation-inversion opera-
tion - Plotted using Facio software

This is a group of order 16. Many operations which are not present in its point

group are allowed due to inversion and rotation motions within urea molecule. For

example, permutation (78) and (78)∗ are only feasible when rotation around C1N4

bond and inversion of N4H7H8 amino group are considered.

Therefore, the whole PES of urea will split into 6 subsurfaces:

6 =
96

16

The subsurfaces were characterized by an order-16 Longuet-Higgins group, which
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5.5 Tunneling

is a group isomorphous to group D4h. All 16 permutation-inversion operators of the

group are described in Fig. 5.3 and Fig. 5.4. The character table of the group is given

in Table 5.1. The symbols + and − have been used to indicate the parity (the character

with respect to the inversion E∗) of each representation.

5.5 Tunneling

After obtaining urea’s Longuet-Higgins group, many valuable information can be pro-

vided. One of the most important applications is its energy level degeneration due to

tunneling.

The global energy minimum conformation of urea molecule has a symmetry of C2

(Fig. 3.2) which corresponds to the permutation (34)(57)(68) or (34)(58)(67). If the

internal inversion and internal rotation are impossible for urea molecules, there will

exist eight distinct isoenergetic conformations. They are non-superimposable because

of permutation of identical nuclei and inversion about center of mass. Each of these

eight conformations has its own vibration-rotation wavefunction and they are either

symmetric (A1) or antisymmetric (A2) about the C2 axis. These eight wavefunctions

will generate reducible representations of the Longuet-Higgins group. The characters

of the reducible representation can be determined.

Each operator of the group, except E, (34)(57)(68) and (34)(58)(67), transforms one

conformation into another distinct conformation. This can be seen by applying these

operators on each of eight conformations in Fig. 5.3. None of them will reproduce

themself. The characters of these operator are all zero.

Permutation (34)(57)(68) and (34)(58)(67) each induces a C2 rotation for four of

the eight conformations or wavefunctions. The sign of characters are determined by

these wave functions’ symmetry with respect to the C2 axis.

The characters of reducible representations therefore can be derived from above
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5.5 Tunneling

1: E 2: E*

3: (56) 4: (56)*

5: (78) 6: (78)*

7: (56)(78) 8: (56)(78)*

Figure 5.3: Elements of urea’s permutation group: cont.
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5.5 Tunneling

9: (34)(57)(68) 10: (34)(57)(68)*

11: (34)(58)(67) 12: (34)(58)(67)*

13: (34)(5768) 14: (34)(5768)*

15: (34)(5867) 16: (34)(5867)*

Figure 5.4: Elements of urea’s permutation group: contd.
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5.5 Tunneling
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5.6 Electric Dipole Selection Rules

discussions. They are listed in Table 5.2.

Table 5.2: Reducible representation of symmetric and antisymmetric levels

Symmetry under C2 Character

(34)(57)(68)
E (34)(58)(67)

A1 8 0 0 0 4 0 0 0 0 0
A2 8 0 0 0 -4 0 0 0 0 0

Since the energy barriers of internal inversion and internal rotation are reachable

for urea molecule, each energy level of it will be split into several sublevels due to the

tunneling between the isoenergetic conformations. A symmetric level (A1) will split

into 6 sublevels:

A+
1 +B+

2 + E+ +A−1 +B−2 + E−

and an antisymmetric one (A2) into:

A+
2 +B+

1 + E+ +A−2 +B−1 + E−

As shown above, including inversion and rotation will change the way a level being

assigned. The levels belonging to the same species under the point group of the molecule

will belong to different species due to internal rotation and inversion.

5.6 Electric Dipole Selection Rules

Electric dipole selection rules of urea can also be obtained by analyzing its Longuet-

Higgins group.

The symmetry of the electric dipole is like A−1 : it is invariant to all permutations

without an inversion about the center of mass but changes sign to all permutations
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5.7 Symmetry of inversion PES

with an inversion. Therefore, the selection rules of the electric dipole is:

+↔ − Γi ↔ Γi

That is, A+
1 ↔ A−1 , B+

1 ↔ B−1 , A+
2 ↔ A−2 , B+

2 ↔ B−2 , and E+ ↔ E−.

5.7 Symmetry of inversion PES

If only two inversion motions were considered, the two inversion motions around nitro-

gen atoms will make the inversion about the molecule’s center of mass feasible. There

will be tatally four feasible permutation-inversion operations:

E, (34)(57)(68), E∗, (34)(57)(68)∗,

and it is a group isomorphous with C2h group. Its character table is given in Table 5.3.

Table 5.3: Character Table of Longuet-Higgins Group of Urea While Only Inversion
Included

E (34)(57)(68) E* (34)(57)(68)*

A+ 1 1 1 1
A− 1 1 -1 -1
B+ 1 -1 1 -1
B− 1 -1 -1 1

5.8 Symmetry of rotation PES

If only two rotation motions were considered, there will be totally four feasible permutation-

inversion operations:

E, (56)(78), (34)(57)(68), (34)(58)(67),
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5.9 Graphical Description

and it is a group isomorphous with C2h group. Its character table is given in Table 5.4.

Table 5.4: Character Table of Longuet-Higgins Group of Urea While Only Rotation
Included

E (34)(57)(68) (56)(78) (34)(58)(67)

A+ 1 1 1 1
A− 1 1 -1 -1
B+ 1 -1 1 -1
B− 1 -1 -1 1

While both inversion and rotation motions were included, we will have a group

which is direct product of C2 and C2, a group of order 16, which is confirmed in section

5.4.

5.9 Graphical Description

A graphical description method was proposed to represent floppy molecules’ PES by

Simons et al. [59]. In the graphical description, vertices denote energy minima and edges

connecting the vertices describe energetically accessible paths connecting such minima.

The graphical description is useful to understand the topology of high dimensional

PES. However, cases in which two or more accessible paths can interconnect equivalent

minima or in which nonequivalent energy minima exist were not developed. Urea’s

PES, in which there exist global and local minima, and multi-paths connecting these

minima, could serve as a perfect example to extend the application.

5.10 Graphical Description of Urea PES

As analyzed in section 5.4, urea’s PES splits into 6 subsurfaces, each of them can be

characterized by its Longuet-Higgins group, a group of order 16. The number of each

important conformations in one subsurface can be calculated and listed in Table 5.5:
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5.10 Graphical Description of Urea PES

n =
order of Longuet-Higgins group

order of conformation’s symmetry

Symmetry Number in one subsurface

Conformation A C2 8

Conformation B Cs 8

Conformation C C2v 4

Conformation D C1 16

Conformation E C2v 4

Conformation F Cs 8

Conformation G C2v 4

Conformation H Cs 8

Conformation I Cs 8

Table 5.5: Number of important conformations in PES of urea molecule

To understand the topology of PES, the relationship between the eight accessible

conformation A in Fig.5.1 can be represented as a cube (Fig.5.5).

A1

A′1

A′2

A2

A3

A′3

A′4

A4

Figure 5.5: Graphic description of connections on PES of urea molecule

The top four conformations are connected to bottom four via internal inversion.

As Fig.3.1 shown, conformations B, C, and D lie in these pathways. There are 2

conformation B, 1 conformation C, and 4 conformation D in each of these inversion

connections (Fig.5.6), and we have totally four these inversion connections (Fig.5.5).

Therefore, all 8 conformation B, 4 conformation C, and 16 conformation D from Table

5.5 are located.

It should be pointed out that for local minima conformation B, there exists a similar
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5.10 Graphical Description of Urea PES

A A′
D1

B1 D2

D3 B2
D4

C

Figure 5.6: Inversion paths on PES of urea molecule

cubic graphical structure just like global minima A in Fig. 5.5. The two cubic structures

interweave together, and their connections were partially represented in Fig. 5.6.

If only one amino group makes the internal rotation, the path will go through

conformation H or I, depending on the direction of rotation (Fig.5.7) respectively.

A1 A′2
H

I

A′1 A2
H′

I′

Figure 5.7: One-side rotation paths on PES of urea molecule

There are 1 conformation H and 1 conformation I in each of these one-side rotation

connections, and we have totally eight these one-side paths (Fig.5.5). Therefore, all 8

accessible conformation H and 8 accessible conformation I from Table 5.5 are located.

If both amino groups make the internal rotation, the path will go through confor-

mation E, F, or G, depending on different combinations of the direction of two rotations

(Fig.5.8).

A1 A′3

F1

E

G

F2

A′1 A3

F′1

E′

G′

F′2

Figure 5.8: Two-side rotation paths on PES of urea molecule

There are 1 conformation E, 2 conformation F, and 1 conformation G in each of

these two-side rotation connections. Since we have totally four these two-side paths
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5.10 Graphical Description of Urea PES

(four diagonals in Fig.5.5), all 4 accessible conformation E, 8 accessible conformation

F, and 4 accessible conformation G from Table 5.5 are located.

58



Chapter 6

Conclusion

In this study, the four-dimensional potential energy surface (PES) for the double inter-

nal inversion and rotation in urea was determined using fully optimized MP2/aug-cc-

pVDZ calculations using new introduced inversion and rotation variables.

Calculations of totally 3888 conformations selected by symmetry considerations and

energy criteria were performed. They were then fitted to a polynomial up to order six.

The total number of the independent coefficients are 110.

The most significant properties of this potential, including the inversion barrier and

the rotation barrier, were analyzed. The topology of the PES was characterized using

symmetry analysis. A graphical description method, suggested by Simons et al. [59],

was extended to describe the four-dimensional PES.
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Appendix A

Potential energy of urea fitting

around conformation D

Totally 1800 conformations were chosen randomly in the range of τ1 = ±5, τ ′2 = ±5, τ3 =

±5, τ ′4 = ±5 and fitted into the following form:

V =
∑

a+b+c+d≤4
fabcd (τ1)

a(τ ′2)
b(τ3)

c(τ ′4)
d

Totally 75 terms were generated and coefficients were listed in Table A.1 (units in

cm−1). Root mean square error is 0.007619558, and coefficient of determination (R2)

is 0.999999715.
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f0000 0.037 f1000 0.003 f0100 0.008
f0010 0.003 f0001 0.008 f2000 1483.687
f0200 129.158 f0020 1483.687 f0002 129.158
f1100 3248.440 f1010 -1664.804 f1001 -704.814
f0110 -704.814 f0101 -1400.090 f0011 3248.440
f3000 -0.839 f0300 -0.333 f0030 -0.839
f0003 -0.333 f2100 -1.750 f2010 0.083
f2001 -0.914 f1200 -1.292 f1020 0.083
f1002 0.948 f0210 0.948 f0201 -1.082
f0120 -0.914 f0102 -1.082 f0021 -1.750
f0012 -1.292 f1110 -1.052 f1101 2.304
f1011 -1.052 f0111 2.304 f4000 -540.930
f0400 -99.630 f0040 -540.930 f0004 -99.630
f3100 -1684.233 f3010 613.215 f3001 388.047
f1300 -1329.777 f1030 613.215 f1003 260.214
f0310 260.214 f0301 275.507 f0130 388.047
f0103 275.507 f0031 -1684.233 f0013 -1329.777
f2200 2326.416 f2110 39.098 f2101 -6.709
f2020 1020.014 f2011 -14.738 f2002 484.316
f1210 262.711 f1201 540.704 f1120 -14.738
f1102 284.688 f1021 39.098 f1012 262.711
f0220 484.316 f0211 284.688 f0202 653.430
f0121 -6.709 f0112 540.704 f0022 2326.416
f1111 591.299

Table A.1: Coefficients of fitted PES of urea around conformation D - units in
cm−1
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Appendix B

Coefficients of fitted rotation

PES of urea

Totally 3888 data were used for the fitting:

V (ϕ1, ϕ2, θ1, θ2) =
∑

a+b+c+d≤6
fabcd (ϕ1)

a(ϕ2)
b(cos θ1)

c(cos θ2)
d

210 terms were generated but only 110 coefficients are independent due to symmetry

restriction:

fabcd = fbadc

They are listed in Table B.1 (units in cm−1). Root mean square error is 85.0, and

coefficient of determination (R2) is 0.999095056.
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f0000 -589284.4745 f0001 -316105.9067 f0002 -251176.2612
f0003 -665583.5241 f0004 -338222.2309 f0005 112308.6759
f0006 -66628.54711 f0011 188727.4949 f0012 160638.2717
f0022 -212421.8051 f0031 102531.1903 f0032 -597173.7565
f0033 -268192.9984 f0041 489049.3211 f0042 37633.10974
f0051 201174.101 f0100 1824880.441 f0110 616120.382
f0113 39366.28683 f0120 223903.6325 f0121 -904573.4736
f0122 112712.7104 f0123 347527.1727 f0130 444061.1481
f0140 468114.0812 f0211 309750.9547 f0212 -973713.1468
f0300 581971.3373 f0301 -1784499.326 f0302 -977449.3539
f0303 166617.8839 f0310 -119082.4591 f0320 179421.8147
f0330 -183524.4124 f1005 -257696.0058 f1010 928130.4483
f1011 -384347.5212 f1013 -125534.9922 f1014 -231231.1794
f1020 352281.7771 f1021 352818.8445 f1023 394729.2363
f1030 1569562.994 f1040 193279.4838 f1041 -268033.6024
f1050 -27981.60488 f1100 -6275863.145 f1101 -2504044.626
f1102 -783534.6503 f1103 -1161281.868 f1104 -142183.5924
f1111 528528.44 f1112 42337.35737 f1122 -286271.2633
f1131 77428.73484 f1200 5814990.964 f1210 1944316.27
f1220 558810.3852 f1221 -474220.9583 f1230 -441493.5888
f1311 -98633.81054 f1400 721818.9164 f1401 -999006.8037
f1410 -136597.5601 f1500 -600387.1065 f2000 -1492058.38
f2001 -370345.5221 f2002 -74740.82431 f2003 386215.2914
f2004 -316555.9983 f2010 151312.0313 f2012 1473069.337
f2013 229375.7803 f2020 1103459.575 f2022 98397.82223
f2030 -1177384.428 f2031 -393308.4163 f2040 199052.3747
f2110 2036068.863 f2111 -161648.3444 f2120 -921938.6401
f2121 453305.3069 f2130 1157237.303 f2200 -5816963.753
f2201 -2693913.713 f2202 121713.1897 f2211 -4017.750715
f2300 1078512.252 f2301 1249051.375 f2310 128026.7765
f3011 -259386.6387 f3012 -585150.5986 f3021 415919.0078
f3100 -1187210.378 f3101 65643.48953 f3102 9281.532149
f3110 572421.3938 f3120 690656.3945 f3300 -436432.4202
f4000 -1307788.729 f4001 235137.2199 f4002 -159964.6918
f4010 1231953.416 f4011 258422.6603 f4020 -84556.03438
f4200 219207.2752 f5000 980752.1124 f5001 -109955.6208
f5010 -145115.4992 f6000 -68479.1996

Table B.1: Coefficients of fitted rotation PES of urea - units in cm−1
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