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Because the Hamiltonian governing the vibration-rotation motion of diatomic molecules is essen-

tially one dimensional, the theory is relatively tractable, and analyses of experimental data can

be much more sophisticated than is possible for polyatomics. It is therefore possible to deter-

mine equilibrium structures to very high precision – up to 10−6 Å – and often also to determine

accurate potential energy functions spanning the whole potential energy well. The traditional

way of doing this involves first determining the v-dependence of the vibrational level energies

Gv and inertial rotational constants Bv, and then using a semiclassical inversion procedure to

1 Chapter 6, pp. 159-203, of Equilibrium Structures of Molecules, J. Demaison and A. G. Csaszar editors, Taylor

& Francis, London (2011). Note that the pagination of this offprint is not identical to that in the published version of this

chapter.
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determine the potential energy function as an array of points. A more modern approach is to

perform fully quantum mechanical ‘direct potential fits’, in which least-squares fits of transition

energies to energy level differences computed from a parameterized analytic potential energy

function are used to optimize the parameters defining that function. A key challenge of this ap-

proach is the determination of an optimal analytic potential function form. In both approaches,

a combined-isotopologue data analysis allows one to account for Born-Oppenheimer breakdown

effects.

6.0 Introduction
For diatomic molecules we are able to obtain a much broader range of information from experimental data

than is possible for larger molecules. In addition to equilibrium structures, we can often determine an

accurate bond dissociation energy, an accurate potential curve for the whole potential well, and sometimes

also the Born-Oppenheimer breakdown radial strength functions which define the small differences between

the electronic and centrifugal potential energy functions for different isotopologues of a given species. Such

results allow us to make realistic predictions of the energies and properties of unobserved levels and of a

wide range of other types of data not considered in the original data analysis, including collisional properties

of the atoms produced on dissociating the molecular state of interest. All of this is possible for two reasons:

the first is that modern experimental methods often provide very high quality data for vibrational levels

spanning a large fraction of the potential well; the second is the fact that the relevant Schrödinger equation

is effectively one-dimensional, and can be solved efficiently using standard numerical methods. The present

chapter takes the first point for granted, and focuses on how the experimental information thus obtained can

be used to determine both precise and accurate equilibrium properties, and reliable overall potential energy

functions for diatomic molecules.

There are two basic approaches to the determination of diatomic molecule potential energy functions from

experimental data. The first begins with a description of the patterns of molecular level energies as analytic

functions (usually polynomials) of the vibrational and rotational quantum numbers, and uses an inversion

procedure based on a semiclassical quantization condition to determine an extremely precise and smooth

pointwise potential energy function. The second is fully quantum mechanical, and uses direct fits of simulated

spectra to experimental data to determine parameters defining an analytic potential energy function. While

the latter approach is better in principle, the associated fits are non-linear, and hence require realistic initial

trial parameter values (see Chapter 2) which are most readily obtained from a preliminary analysis of the

data using the conventional parameter-fit/semiclassical-inversion methodology (see § 6.2). This conventional
approach also offers more direct insight regarding how various features of the data reflect the properties of

the potential energy function, as well as insight regarding the nature and magnitude of isotope effects.

The following presentation begins in § 6.1 with a description of the ‘forward’ problem of calculating

vibrational-rotational level energies and some spectroscopic properties from an assumed-known potential

energy function. Section 6.2 then describes the ‘traditional’ semiclassical-based methods for the inverse

problem of determining a potential energy function from experimental data, while the fully quantum me-

chanical ‘direct-potential-fit’ (DPF) procedure for determining potentials is described in § 6.3. Finally, the

determination of Born-Oppenheimer breakdown (BOB) radial strength functions, which account for the

differences between the potentials for different isotopologues and for some non-adiabatic couplings, are pre-

sented in § 6.4.

6.1 Quantum Mechanics of Vibration and Rotation
If we ignore Born-Oppenheimer breakdown and effects due to non-zero electronic and spin angular momen-

tum, the vibration-rotation level energies of a diatomic molecule are the eigenvalues of the one-dimensional

effective radial Schrödinger equation

− �
2

2μ

d2 ψ(r)

dr2
+ VJ (r) ψ(r) = E ψ(r) , (6.1)
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Figure 6.1 Level energies and wavefunctions of Kr2 for J=0 (outer panel) and J=60 (inner panel).

in which r is the internuclear distance, � is Planck’s constant divided by 2π, μ = mAmB/(mA +mB) is

the reduced mass of the two atoms forming the molecule, and the overall effective potential energy function

VJ (r) = V (r) +
�
2

2μ r2
[J(J + 1)] (6.2)

is the sum of the effective electronic potential V (r) plus the centrifugal potential due to molecular rotation.

If we ignore the effect of rotation, exact analytic solutions of Eq. (6.1) are known for a number of simple

analytic potential energy functions, the most familiar of which are the particle-in-a-box square-well potential,

the harmonic oscillator potential, VHO(r) =
1
2 k(r − re)

2 , in which k is the quadratic force constant and re
the equilibrium internuclear distance, and the Morse potential

VM(r) = De

[
1− e−β(r−re)

]2
, (6.3)

in which re is as defined above and De is the well depth.

The eigenvalue expression for the particle-in-a-box, E(v) = [h2/(8μL2)] (v + 1)2, tells us that all else

being equal, vibrational level spacings decrease when the width of the box L increases, or when the effective

mass μ increases. The energy equation for a harmonic oscillator, E(v) = ωe(v + 1/2) with ωe = �
√
k/μ

then tells us that if the width of the potential is exactly proportional to the square root of the energy, the

level spacings will be constant. Thus, if the well width increases more rapidly than the square root of the

energy, the level spacings will decrease with increasing energy. More generally, this means that the pattern

of vibrational level spacings reflects/determines the rate at which the width of the potential well increases

with energy. Unfortunately, none of the simple analytic potentials for which closed-form solutions are known

has sufficient flexibility and sophistication to describe accurately vibrational levels spanning a large fraction

of the potential energy well of a real molecule. As a result, accurate treatments of real molecules necessarily

depend on numerical methods.

For a realistic single-minimum potential energy function, Fig. 6.1 illustrates the pattern of vibrational

levels, the nature of the vibrational wavefunctions, and shows how these properties are affected by molec-

ular rotation. Because of potential function anharmonicity, the level spacings systematically decrease with

increasing energy, and for the rotationless molecule (back panel), those spacing approach zero at the asymp-

tote. This figure also illustrates the extreme asymmetry of the wavefunctions for levels approaching the

dissociation limit. In particular, we see that for v = 13 the maximum in the probability amplitude lies
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near 9.6 Å; for the highest level supported by this potential ( v=15) which is bound by only 0.0008 cm−1,

the outermost wavefunction maximum lies beyond 22 Å! This extreme wavefunction asymmetry can present

challenges when eigenvalue calculations are being performed for levels lying very near the dissociation limit.

The dotted curves in both panels of Fig. 6.1 show the effective centrifugally distorted potential VJ (r) for

the case in which the angular momentum corresponds to J=60 , and the front panel shows the vibrational

level energies and wavefunctions for this case. This emphasizes the important point that rotational level

energies should not be thought of as a stack of sublevels associated with each pure vibrational (J=0) level,

but rather as vibrational levels of the centrifugally distorted potentials VJ (r) for various J . This figure also

shows that metastable ‘quasibound’ levels lying above the potential asymptote but below a potential barrier

maximum have essentially the same qualitative properties as truly bound levels. In practice, most may be

observed by sharp lines in experimental spectra, although the levels lying closest to a barrier maximum will

be broadened by tunneling predissociation [1, 2, 3]. Figure 6.1 also shows that as J increases, the centrifugal

potential will systematically spill vibrational levels out of the well until (at J=104 for Kr2) none remain.

In principle, a wide range of numerical methods may be used to solve Eq. (6.1) to virtually any desired

precision. In practice, however, many methods are unable to routinely treat quasibound levels and bound

levels lying very near dissociation as well as the more commonly considered deeply bound levels. While it

is beyond the scope of this chapter to discuss such details, the author’s strong preference is for a Cooley-

type implementation of the Numerov wavefunction propagator method [4], since it may readily be combined

with a third-turning-point boundary condition that allows quasibound levels to be located as easily as truly

bound states [1, 2, 3]. A ‘black box’ computer code (accompanied by a manual) for determining any or all

vibration-rotation eigenvalues and eigenfunctions of any plausible radial potential V (r) is freely available on

the www [3].

From a given set of calculated eigenvalues and eigenfunctions, it is a straightforward matter to use the

wavefunctions to compute properties such as expectation values of powers of r or of the dipole moment

or other functions of r, or to to calculate the matrix elements (overlap integrals) between different levels

of a given potential or between levels of two different potential energy functions required for predicting

transition intensities[3]. One can also use such ‘forward’ calculations to generate values of some conventional

spectroscopic constants. In particular, it had long been customary to express the energies of rotational

sublevels of a diatomic molecule in terms of a power series expansion about the rigid-rotor limit using the

expression [5]:

E(v, J) = Gv +Bv[J(J + 1)]−Dv[J(J + 1)]2 +Hv[J(J + 1)]3 + Lv[J(J + 1)]4 + . . . (6.4)

It had also long been known that if the centrifugal term in Eq. (6.2) is treated as a perturbation, first-order

perturbation theory allows the inertial rotation constant for any given vibrational level v to be defined as [5]

Bv =
�
2

2μ

〈
ψv(r)

∣∣∣∣ 1r2
∣∣∣∣ψv(r)

〉
. (6.5)

Then in 1981 Hutson [6] showed that exact quantum mechanical values of the centrifugal distortion constants

for all vibrational levels of a given potential well could be generated readily by solving inhomogeneous versions

of Eq. (6.1) in which the inhomogeneous term depends on lower-order solutions and on the centrifugal term

�
2/(2μ r2) . This quickly became a standard procedure, and it is now a routine matter to calculate the

“band constants” {Gv, Bv, Dv, Hv, . . . } associated with all vibrational levels of any given diatomic

molecule potential [6, 7, 3].

It had also long been customary to express the vibrational level energies as expansions about the harmonic

oscillator limit

Gv = ωe(v + 1/2)− ωexe(v + 1/2)2 + ωeye(v + 1/2)3 + ωeze(v + 1/2)4 + . . . , (6.6)

and analogous power series expansions in (v + 1/2) are used to express the v-dependence of the various

rotational constants Bv, Dv, Hv, . . . , etc. [5]. Consideration of the expression for the inertial rotational

constant

Bv = Be − αe(v + 1/2) + γe(v + 1/2)2 + . . . , (6.7)
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together with Eq. (6.5) indicates that within the approximation that the potential minimum corresponds to

v = −1/2 , the expression

re ≈ r(1)e =
√
�2/(2μBe) (6.8)

yields a good first-order estimate of the equilibrium structure. Unfortunately, although v=−1/2 corresponds

to the potential minimum both for the quantum mechanical harmonic and Morse oscillators, and for all

other potentials within the first-order semiclassical approximation (see § 6.2.1), it is not precisely true for

real molecules. Hence, use of this simple extrapolation of an empirical Bv function to obtain an estimate of

the equilibrium bond length requires small corrections (see § 6.2.1).
For the case of a potential function expressed as a harmonic oscillator with higher-order power-series

terms treated as corrections, Kilpatrick and Kilpatrick used perturbation theory to show that power series in

(v + 1/2) are indeed a natural way of expressing the v–dependence of the various band constants of Eq. (6.4)

[8, 9]. However, the resulting expressions quickly grow to have an intimidating degree of complexity, and

hence do not provide a practical way of defining unique values of parameters such as ωe, ωexe, ωeye, . . . ,

etc., associated with a given potential energy function. This remains true today, and in practice, except for

the very lowest-order terms, the (v + 1/2) expansion coefficients associated with the band constants for a

given potential energy function can only be obtained from empirical fits to calculated values of those band

constants.

The perturbation-theory expressions of Kilpatrick and Kilpatrick [8, 9] proved difficult to work with

and impractical to invert. The absence of any other fully quantum mechanical technique for inverting

discrete spectroscopic data to obtain potential energy functions stimulated the development and very wide

application of methods based on approximate semiclassical procedures for solving the radial Schrödinger

equation. Although these semiclassical methods are not as accurate as a full quantum treatment, their

robustness and ease of use made them the basis for most practical diatomic molecule spectroscopic data

analyses for more than half a century.

6.2 Semiclassical Methods
6.2.1 The Semiclassical Quantization Condition

Semiclassical or “phase integral” methods are approximate techniques for solving differential equations that

were well known to mathematicians in the nineteenth century. They were well developed in the early days of

quantum mechanics, and while they are approximate, they often provide quite accurate results, particularly

for species whose reduced masses are relatively large. The tractability of semiclassical methods also made

them particularly useful prior to the improvements in digital computers that have made applications of the

modern fitting/inversion methods of § 6.3 feasible. Moreover, the explicit expressions that they yield for

relating patterns of level energies to the nature of the potential energy function provide an important source

of physical insight. Indeed, semiclassical theory is the basis for much of our understanding of isotope effects

in molecular spectra, as well as for some of the most widely used data inversion methods in molecular physics

[10, 11].

The semiclassical approach to solving the one-dimensional radial Schrödinger equation Eq. (6.1) begins

by writing the eigenfunction in the form

ψ(r) = eiS(r)/� , (6.9)

in which i ≡ (−1)1/2. Substituting this expression into Eq. (6.1) and removing the common factor eiS(r)/�

yields a differential equation for S(r) which is precisely equivalent to the original Schrödinger equation:

i�
d2 S
dr2

−
(
dS
dr

)2

+ 2μ [E − VJ (r)] = 0 . (6.10)

Since Planck’s constant � is quite small, the first term in this differential equation will be much smaller than

the second, so a reasonable zero’th-order approximation (partly corrected for later) is to neglect it, yielding

a simple first-order equation whose solution is

S(0)(r) = ± �

∫ r

Q(r′) dr′ , (6.11)
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Figure 6.2 A. Integrand of the quantization integral of Eq. (6.13). B. Application of the quantization

condition of Eq. (6.13) for defining first-order semiclassical eigenvalues.

in which Q(r′) ≡ √
(2μ/�2)[E − VJ (r′)]. Using the second derivative of this result to replace the first

term in Eq. (6.10) then yields an improved first-order differential equation for S(r) whose solution yields the

“first-order” semiclassical approximation for the wavefunction:

ψ(1)(r) =
A√|Q(r)| exp

{
±i
∫ r

Q(r′) dr′
}

. (6.12)

Equation (6.12) is a fairly good approximation for the wavefunction except near classical turning points,

where Q(r)=0 (e.g., near the points r1(E) and r2(E) in Fig. 6.2A). However, in the immediate neighbour-

hood of such turning points it is a very good approximation to represent the potential as a linear function of

r. The exact solutions of the Schrödinger equation for a linear potential are Airy functions, whose properties

are well known [12]. The combination of Airy functions near the turning points with the semiclassical wave-

functions of Eq. (6.12) in other regions then provides a reasonably good representation for the wavefunction

at all distances.

Finally, one can show that the usual boundary conditions that the wavefunction must die off in the

classically forbidden regions where E < VJ (r) are only satisfied if the integral of Q(r) over the classically

allowed region between the inner and outer turning points r1(E) and r2(E) (see Fig. 6.2A) is precisely

equal to a half-integer multiple of π [11]. In other words, the eigenvalues of the given potential are the

discrete energies for which

v + 1/2 =
1

π

√
2μ

�2

∫ r2(E)

r1(E)

[E − VJ (r)]
1/2 dr , (6.13)

with v being the (integer) vibrational quantum number of the level in question. This expression is known

as the Bohr-Sommerfeld quantization condition.

Panel A of Fig. 6.2 illustrates the definition of the inner and outer turning points r1(E) and r2(E) of a

potential energy curve V (r) at a given energy E, and the shaded area shows the integrand of the integral of

Eq. (6.13). Panel B then shows how the right-hand side of Eq. (6.13) varies as the energy increases from the

potential minimum to the dissociation limit of a typical single-minimum potential. Within the first-order

semiclassical approximation, the energies at which the dotted horizontal lines at half-integer values of (v+1/2)

intersect this curve define the discrete vibrational level energies of this potential.

Because it is based only on the first-order semiclassical wavefunction of Eq. (6.12), the quantization con-
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dition of Eq. (6.13) lacks full quantum mechanical accuracy, and as a result it is rarely used for practical

eigenvalue calculations. However, its simple form and explicit dependence on the potential energy func-

tion means that for certain types of analytic potentials it may be inverted to give explicit expressions for

vibrational-rotational level energies as functions of the parameters defining the potential. Moreover, we shall

see that this quantization condition can also be inverted to yield a numerical procedure for calculating a

pointwise potential function from a knowledge of experimental vibration-rotation level spacings.

The most famous and most widely used potential for which analytic level-energy expressions may be

obtained from Eq. (6.13) is a ‘Dunham-type’ potential, which is a polynomial expansion about the equilibrium

internuclear distance:

VDun(r) = a0 ξ
2
(
1 + a1 ξ + a2 ξ

2 + a3 ξ
3 + . . .

)
, (6.14)

in which ξ ≡ (r − re)/re is the relative displacement from equilibrium. Since r = re(1 + ξ), the centrifugal

potential may also be expressed as a power series in ξ:

[J(J + 1)] �2

2μ r2
=

[J(J + 1)] �2

2μ(re)2
{
1− 2ξ + 3ξ2 − 4ξ3 + . . .

}
, (6.15)

so that the overall potential VJ (r) may also be written as a power series in ξ. In 1932 Dunham showed that

upon substituting such a polynomial potential into the quantization condition of Eq. (6.13) and applying

some clever manipulations, an explicit power-series expression for the level energies may be obtained,

E(v, J) =
∑
m=0

∑
�=1

Y�,m (v + 1/2)� [J(J + 1)]m , (6.16)

whose coefficients Y�,m are explicitly known functions of the potential parameters {a0, a1, a2, a3, . . . } [13].

His derivation showed that this double power series in (v + 1/2) and [J(J + 1)] was indeed a natural way

to describe level energies [13]. However, until relatively recently (see § 6.3), the complexity of the algebraic

expressions for the higher-order Y�,m coefficients, and the even greater complexity arising if a more accurate

higher-order version of the quantization condition is utilized, discouraged practical use of Dunham-type

expressions for determining potential energy functions.

While the above discussion considered only the first-order semiclassical approximation, extended ver-

sions of Eq. (6.13) have been derived based on third-order, fifth-order, and even higher-order semiclassical

approximations for the wavefunctions [14]. In particular, the third-order quantization condition has the form

v + 1/2 =
1

2π

√
2μ

�2

∮
[E − VJ (r)]

1/2 dr +
1

96π

√
�2

2μ

∮
V ′′(r)

[E − VJ(r)]3/2
dr , (6.17)

in which line integrals have been replaced by contour integrals. The additional power of �2 associated with

each higher order of approximation tells us that the accuracy of such treatments quickly approaches that of

the full quantum result [15, 16].

Dunham’s original derivation included some consideration of this leading higher-order correction term

[13], and the resulting estimate of the value of this term at the potential minimum (E=0 ) led to an improved

estimate for the value of v associated with the potential minimum [5]:

vmin = − 1
2 − δvmin = − 1

2 −
{
Be − ωexe

4ωe
+

αe

12Be
+

ωe

Be

(
αe

12Be

)2
}

. (6.18)

This result in turn allows an improved ‘third-order semiclassical’ estimate of the equilibrium bond length

to be obtained from the empirical knowledge of the v–dependence of the vibrational energies and inertial

rotation constants represented by Eqs. (6.6) and (6.7):

re = r(3)e =
√
�2/(2μBv=vmin) . (6.19)

Use of Eq. (6.19) provides the best estimate of a diatomic molecule equilibrium bond length that can

be extracted from the conventional empirical expressions for vibrational-rotational level energies, namely,
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Eqs. (6.4), (6.6) and (6.7). The methodologies described in § 6.3 provide an alternate, and arguably more

direct, way of determining such equilibrium bond lengths. However, it is important to remember that the

existence of quantum-mechanical zero-point energy means that this equilibrium distance does not describe

the actual effective bond length of any real molecule. A best estimate for that distance would be the average

bond length of the molecule in its ground vibration-rotation level,

r0,0 = 〈ψ0,0(r)|r|ψ0,0(r)〉 , (6.20)

in which ψv,J(r) is the radial wavefunction in vibration-rotation state (v, J). However, there is no direct

empirical way of determining this quantity, and to calculate it requires a knowledge of the potential energy

function that would allow the radial wavefunction for the zero-point level to be determined. This result

indicates that determination of precise values for real diatomic molecule bond lengths cannot be achieved

simply from manipulation of empirical molecular constants, but also requires a knowledge of the potential

energy function.

In closing this subsection, it is important to note that the real ground-state bond length r0,0 usually differs

significantly both from re and from the average bond length implied by the inertial rotational constant for

the ground vibrational level, 〈r−2〉−1/2 =
√
�2/(2μBv=0). For example, for the ground electronic state of

H2: r0,0 = 1.034 re = 1.021 〈r−2〉−1/2 [17]. The large differences between these three quantities provides a

sober warning about the danger of thinking of the type of average bond length obtained from an empirical

inertial rotation constants Bv as being the actual average bond length for a molecule in a given vibrational

level.

6.2.2 The Rydberg-Klein-Rees (RKR) Inversion Procedure

By 1929, even before Dunham’s landmark papers, the drawbacks of trying to work with model potentials for

which exact analytic quantum mechanical eigenvalue solutions existed were becoming evident, since the few

such functions available were not flexible enough to account fully for experimental data spanning a significant

fraction of a potential well. As a result, researchers began to investigate the use of semiclassical methods.

A key pioneer in this area was Oldenberg, who noticed that according to Eq. (6.13), the rate at which v

changed with vibrational energy Ev depended on the rate at which the width of the potential well increased

with energy [18]. Another pioneer was Rydberg, who noticed that the concomitant change in the inertial

rotational constant Bv placed a constraint on the asymmetry of that rate of growth [19].

A formal derivation based on these observations was reported by Klein in 1932 [20]. He began by taking

the derivative of Eq. (6.13) with respect to the vibrational energy, and then broke the integral into two

segments to obtain

dv

dE
=

1

2π

√
2μ

�2

{∫ re

r1(E)

dr

[E − V (r)]1/2
+

∫ r2(E)

re

dr

[E − V (r)]1/2

}
. (6.21)

Replacement of the integration over r by an integration over values of the potential energy with increment

du then yielded the expression

dv

dE
=

1

2π

√
2μ

�2

∫ E

0

{
dr2(u)

du
− dr1(u)

du

}
du

[E − u]1/2
. (6.22)

The next steps consisted of replacing E in the above expression by E′, multiplying both sides by the factor

dE′/[E−E′]1/2 , interchanging the order of the resulting double integration on the right hand side, and then

integrating both sides over the variable E′ from its minimum (the current value of u) to E while making use

of the mathematical identity ∫ E

u

dE′√
(E − E′)(E′ − u)

= π . (6.23)

When this was done, the remaining integral on the right hand side of the equation collapsed to the difference

r2(E)−r1(E) . Finally, replacement of the integration over u by an integration over the vibrational quantum
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number v′ yielded the first of the ‘RKR’ equations:

r2(v) − r1(v) = 2

√
�2

2μ

∫ v

−1/2

dv′

[Gv −Gv′ ]1/2
≡ 2 f . (6.24)

In this final result the notation for the energy E has been replaced by the symbol Gv normally employed for

vibrational energy, and use has been made of the fact that within the first-order quantization condition of

Eq. (6.13), the potential minimum corresponds to v′=− 1/2 .

The derivation of the second RKR equation begins by taking the partial derivative of Eq. (6.13) with

respect to the factor [J(J +1)] that defines the strength of the centrifugal contribution to the potential, and

then setting J = 0 :(
∂v

∂[J(J + 1)]

)
E

=

(
∂v

∂E

)
J

(
∂E

∂[J(J + 1)]

)
v

= Bv

(
∂v

∂E

)
J=0

= − 1

2π

√
2μ

�2

∫ r2(E)

r1(E)

dr

r2 [E − V (r)]1/2
. (6.25)

Breaking the range of integration in two at re and applying the same manipulations described above then

yields the second RKR equation,

1

r1(v)
− 1

r2(v)
= 2

√
2μ

�2

∫ v

−1/2

Bv′ dv′

[Gv −Gv′ ]1/2
≡ 2 g . (6.26)

Combining Eqs. (6.24) and (6.26) then yields the final expressions for the turning points

r2(v) =
(
f2 + f/g

)1/2
+ f (6.27)

r1(v) =
(
f2 + f/g

)1/2 − f . (6.28)

In spite of their elegance and obvious potential utility, Klein’s equations saw little practical use for over

three decades. One reason for this would have been the practical difficulty of evaluating the Klein integrals

accurately prior to the advent of digital computers. The nature of this problem is illustrated by the plots

for the ground electronic state of Ca2 shown in Fig. 6.3. Panels A and B show the nature of the Gv′ and

Bv′ functions, while Panel C shows the integrands of Eqs. (6.24) and (6.26) for a representative vibrational

level, v=26. Although the areas under these curves are finite, the fact that the integrands go to infinity at

the upper bound makes an accurate evaluation of these integrals somewhat challenging.

In 1947 Rees pointed out that the two Klein integrals could be evaluated in closed form if G(v) and Bv

were represented by sets of quadratic polynomials in v for different segments of the range of integration

[21]. This contribution led to his name being attached to the method, but the inconvenience of having to fit

data piecewise to sets of quadratics meant that it still saw little use. Finally, by the early 1960’s a number

of groups had developed computer programs for evaluating these integrals for any user-selected expressions

for G(v) and Bv , and the ‘RKR’ method quickly grew to become ubiquitously associated with diatomic

molecule data analyses. However, truly efficient techniques for evaluating the Klein integrals which take

proper account of the singularities in the integrand were not reported until 1972 [22, 23, 24].

One technique for evaluating the RKR integrals accurately is simply to introduce a transformation that

removes the singularities. For example, introduction of the auxiliary variable y =
√
v − v′ transforms

Eqs. (6.24) and (6.26) into the forms

r2(v) − r1(v) = 4

√
�2

2μ

∫ √
v+1/2

0

{√
v − v′

Gv −Gv′

}
dy = 2 f (6.29)

1

r1(v)
− 1

r2(v)
= 4

√
2μ

�2

∫ √
v+1/2

0

{
Bv′

√
v − v′

Gv −Gv′

}
dy = 2 g . (6.30)
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Figure 6.3 Panels A and B: spectroscopic properties of Ca2. Panel C: Integrands of the Klein integrals

of Eqs. (6.24) and (6.26) for level v=26 of Ca2; a numerical factor of 40 has been introduced in order

to place the two integrands on the same vertical scale. Panel D: Integrands of the transformed Klein

integrals of Eqs. (6.29) and (6.30) for the case considered in Panel C. Units for energy are cm−1 in all

panels.

As is illustrated by Panel D of Fig. 6.3, the integrands in these expressions are smooth and well behaved and

have no singularities(!), so a very modest amount of computational effort can yield turning points converged

to machine precision. A particularly convenient procedure is to apply a simple N–point Gauss-Legendre

quadrature procedure to the whole interval, and then bisect that interval and apply the same procedure to

both halves. At each such stage of subdivision the error will decrease by a factor of 1/2N−2 [12]; for N=12

this means an error reduction by three orders of magnitude at each stage of bisection.

It is important to remember that although the experimental data are only associated with integer values

of v, the vibrational energies Gv and rotational constants Bv in these integrals must be treated as continuous

functions of v. Moreover, as illustrated by Fig. 6.2B, the quantization integral of Eq. (6.13) may be evaluated

for any energy E (or Gv), independent of whether or not it corresponds to an integer value of v. Thus, we are

free to solve the RKR equations and evaluate turning points for any chosen mesh of integer or non-integer v

values. This is quite important, since solving the Schrödinger equation numerically requires an interpolation

procedure to provide a mesh of accurate potential function values at distances that will not correspond to

calculated turning points. If the evaluation procedure were restricted to turning points at integer v, such

interpolations would often have limited accuracy, in spite of the fact that the calculated turning points would

be smooth to machine precision.

Two other practical considerations intrude upon the use of RKR potentials. One is the perhaps obvious,

but sometimes overlooked point that calculated turning points cannot really be trusted beyond the vibrational

range of the experimental data used to determine the Gv and Bv functions. This restriction is partially lifted

if ‘near-dissociation expansions’ of the type described in § 6.2.3 are used to represent Gv and Bv. However,

use of the resulting potential to generate reliable solutions to the radial Schrödinger equation would still

require functions for extrapolating inward and outward to be attached smoothly at the ends of the range of
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calculated turning points.

The second practical concern arises from the fact that shortcomings of the experimentally-derived func-

tions characterizing Gv and Bv will give rise to errors in calculated RKR turning points. Since the repulsive

inner wall of a potential function is very steep, especially at high energies, such errors often manifest them-

selves as non-physical behaviour of the inner wall of the potential. For example, rather than have a (negative)

slope and positive curvature that vary slowly with energy, the inner wall might pass through an inflection

point and take on negative curvature, or it might turn outward with increasing energy, with the slope becom-

ing positive. In practice, the experimental Gv function is usually defined with greater relative accuracy than

is the Bv function. However, whatever the source of the problem, a modest degree of inappropriate behaviour

of either the Gv or Bv function can give rise to non-physical behaviour of the inner wall of the potential, as

the expected monotonic increase in slope with energy will greatly amplify the effect of even very small errors

in the f and/or g integrals. Thus, the behaviour of the inner wall of any calculated RKR potential should

always be examined, and if the slope deviates from smooth behaviour with positive curvature, it should be

smoothed or replaced with a physically sensible extrapolating function.

Although small relative errors in the f or g integral can make the curvature or slope of the high-energy

inner wall change in an unacceptable non-physical manner, the rapid growth of the f integral with increasing

Gv means that the width of the potential [r2(v)− r1(v)] as a function of energy may still be relatively well

defined by Eq. (6.24) or (6.29), even when the directly calculated inner potential wall is unreliable. In this

case, combining this directly-calculated well-width function with a reasonable extrapolated inner potential

wall would yield a ‘best’ estimate of the upper portion of the potential (a procedure first introduced by

Verma [25]). Similarly, even in the complete absence of rotational data, a combination of the well-width

information yielded by the calculated f integrals with an inner wall defined by a model such as a Morse

potential can give a realistic overall potential function [26]. A ‘black box’ computer code (accompanied by

a manual) for performing RKR calculations, which allows the use of a variety of possible expressions for Gv

and Bv and takes account of the practical concerns described above, is available on the www [27].

Finally, it is also important to remember that the manipulations of Eq. (6.13) to obtain the RKR equations

(6.24) and (6.26) (or equivalently, (6.29) and (6.30)) are mathematically exact! In other words, within the

first-order semiclassical or WKB approximation [11], this method yields a unique potential energy function

which exactly reflects the input functions representing the v-dependence of the vibrational energy Gv and

inertial rotational constant Bv. A nagging weakness, however, is the fact that the quantization condition of

Eq. (6.13) is not exact, so quantum mechanical properties of an RKR potential will not agree precisely with

the input Gv and Bv data used to generate that potential.

Table 6.1 illustrates this point for four species for which accurate and extensive Gv and Bv functions are

available from the literature. Those functions were used to generate RKR potentials, after which an exact

quantum procedure [3] was used to calculate the associated vibrational level spacings (ΔGv+1/2) and inertial

rotational constants (Bv). The two final columns of this table show the root mean square differences between

those calculated quantities and the values implied by the Gv and Bv functions used to generate the original

RKR potential. In each case the range considered was truncated at G(vmax) which is the smaller of the

upper end to the range of the experimental data used to determine the Gv and Bv functions, or the point at

which the onset of irregular behaviour of the inner-wall turning points (see above) required smoothing and

inward extrapolation to be applied.

Table 6.1 Root mean square errors in vibrational level spacings and rotational constants calculated from

RKR potentials for selected molecules.

molecule μ De vmax
G(vmax)

De
err{ΔGv+1/2} % err{Bv}

[cm−1] [cm−1]

BeH 0.906 17590 9 0.895 0.527 0.031

N2 7.002 79845 20 0.529 0.052 0.0026

Ca2 19.981 1102 25 0.9997 0.00079 0.0021

Rb2 42.456 3993 85 0.916 0.00017 0.0013
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Figure 6.4 Panel A: Schematic illustration of the extrapolation problem of determining the dissociation

limit D. Panel B: A Birge-Sponer plot in which the shaded area illustrates the uncertainty associated

with conventional vibrational extrapolation.

These results show that errors in RKR potentials due to neglect of the second term in Eq. (6.17) are largest

for species with small reduced mass. For a hydride they are quite significant, but their importance drops

rapidly with increasing reduced mass, and for μ � 20 u (Ca2 and Rb2) the vibrational spacing discrepancies

are smaller than typical experimental vibrational energy uncertainties. However, such discrepancies add

up, and even for these ‘heavy’ species the accumulated error in the vibrational energy can be significant.

Overall, although the situation is less satisfactory for light molecules, the first-order semiclassical nature of

the RKR procedure has only a modest negative effect on the quality of the resulting potential, or of quantities

calculated from it. At the same time, that fact that RKR potentials are defined as sets of many-digit turning

points, often need to have their inner wall smoothed, and always need extrapolation functions attached at

their inner and outer ends, are persistent inconveniences. These problems are resolved, however, by use of

the methodology described in § 6.3.
In closing this discussion, it is worth noting that the RKRmethod itself provides no new information about

equilibrium structures beyond that implicit in the first-order semiclassical result of Eq. (6.8). Although the

higher-order quantization condition of Eq. (6.17) is not amenable to the exact inversion procedures described

above, it has been suggested that better-than-first-order results could be obtained simply by replacing

the lower bound on the integrals of Eqs. (6.24) and (6.26) by vmin = −1/2 − δvmin from Eq. (6.18) [28].

Unfortunately, tests analogous to those of Table 6.1 show that although this procedure does give somewhat

better results near the potential minimum, the discrepancies at higher v are larger than those obtained with

the usual first-order method.

6.2.3 Near-Dissociation Theory (NDT)

The preceding discussion shows that the RKR method can give a quite accurate potential energy functions

spanning the range of vibrational energies for which experimental data are available. However, it offers no

advice regarding how to address the question illustrated in Panel A of Fig. 6.4: that is, how to estimate the

distance from the highest observed vibrational level to the dissociation limit D, and how to estimate the

number, energies, and other properties of levels lying above that highest observed vibrational level.

Panel B of Fig. 6.4 illustrates a graphical means for addressing this question which was introduced by

Birge and Sponer in 1926 [29] and remained the method of choice for most of the following half century. In

a Birge-Sponer plot the vibrational level spacings ΔGv+1/2 ≡ Gv+1 −Gv are plotted against the vibrational

quantum number, with the points placed at half-integer values of the abscissa. On this diagram, the numerical

ΔGv+1/2 value is equal to the area of the narrow vertical rectangle whose upper edge is centred at that point.
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As a result, the sum of the areas of the six illustrated rectangles is equal to the sum of the six ΔGv+1/2

values, which is, of course, the distance from level v=0 to level v=6 . It is immediately clear that the area

under a smooth curve through these points from v = 0 to 6 is a very good approximation to that energy

difference. Birge and Sponer then pointed out that if this curve was extrapolated to cut the v axis, the

area under the curve in the extrapolation region would be a very good approximation to the distance from

the highest observed level to the dissociation limit. Moreover, the points at which the extrapolated curve

crossed half-integer v value gives predicted vibrational spacings for unobserved levels extending all the way

to the limit. If these predictions were correct, an RKR potential based on the resulting extrapolated Gv

values could be calculated for the whole well.

The only problem with Birge-Sponer plots is the uncertainty regarding how to perform the extrapolation,

a problem which remained an open question for 44 years. The dash-dot-dot line on Fig. 6.4B shows a linear

extrapolation through the last two experimental points, while the dotted curves bounding the shaded region

are plausible alternative extrapolations, one with negative and one with positive curvature. The ratio of

the area of the shaded region to the overall area under the curve in the extrapolation region is then an

indication of the relative uncertainty in the distance from the last observed level to the dissociation limit.

Unfortunately, it is clear that this uncertainty could be as large as 50-100%!

A solution to this extrapolation problem was finally reported in 1970 [30]. It was based on the realization

that another type of potential for which an explicit analytic expression for the vibrational level energies may

be obtained from Eq. (6.13) is the attractive inverse-power function V (r)=D−Cn/r
n whose form matches

the limiting long-range behaviour of all intermolecular interactions. As was true for the RKR method, the

derivation is remarkably straightforward.

Since the nature of distribution of vibrational levels near dissociation is being sought, the derivation begins

by taking the derivative of Eq. (6.13) with respect to the vibrational level energy to obtain an expression for

the density of states at energy Gv (for J=0 ):

dv

dGv
=

1

2π

√
2μ

�2

∫ r2(v)

r1(v)

dr

[Gv − V (r)]1/2
. (6.31)

Consider now the nature of the integrand appearing in Eq. (6.31). For a model Lennard-Jones(12,6) potential

function

VLJ(r) =
C12

r12
− C6

r6
+ De = De

[(re
r

)6
− 1

]2
(6.32)

which supports 24 vibrational levels, the lower panel of Fig. 6.5 shows a plot of that potential and indicates

the positions of the energies and turning points of selected levels. The upper panel then shows the nature of

the integrand in Eq. (6.31) for those four levels; note that while the integrand goes to infinity at both turning

points, the area under the curve is always finite. It is immediately clear that for the higher vibrational levels,

the area under the curve – and hence the value of the integral – is increasingly dominated by the nature of

the integrand (i.e., of the potential) in the long-range region near the outer turning point.

From the early days of quantum mechanics it has been known that at long range all atomic and molecular

interaction potentials become a sum of inverse-power terms

V (r) � D −
∑
m≥n

Cm/r
m =⇒

{very large r}
D− Cn/r

n , (6.33)

in which the powers m and coefficients Cm are determined by the nature of the interacting atoms. (A

brief summary of the rules governing which terms appear in this sum for a given case is presented in the

Appendix.). This suggests that for levels whose outer turning points lie at sufficiently large r for the

leading (Cn/r
n) term to dominate the interaction, it would be a reasonable approximation to replace V (r)

in Eq. (6.31) by the simple function V (r) ≈ D− Cn/r
n to obtain

dv

dGv
≈ 1

2π

√
2μ

�2

∫ r2(v)

r1(v)

dr

[Gv − (D− Cn/rn)]1/2
. (6.34)
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Figure 6.5 Lower Panel: A 23-level LJ(12,6) potential with selected level energies and turning points

labelled. Upper Panel: Integrand of Eq. (6.31) for selected levels with Gv ≡Gv/De. (Adapted from

Fig. 2 of Ref. [31].)

By making the substitution y= r/r2(v) and noting that [Gv − V (r2(v))] = 0 , and hence that [D − Gv] =

Cn/[r2(v)]
n, Eq. (6.34) becomes

dv

dGv
≈ 1

2π

√
2μ

�2

(Cn)
1/n

[D−Gv}(n+2)/2n

∫ 1

r1/r2

dy

(y−n − 1)1/2
. (6.35)

The dotted curve in the Upper Panel of Fig. 6.5 shows what happens to the exact integrand of Eq. (6.31) for

level v=20 if the actual potential is replaced by the single inverse-power term D−C6/r
6. It is immediately

clear that both the effect of this substitution on the value of this integrand and the effect of replacing the

lower bound of the integral in Eq. (6.35) by zero will be very small, and will become increasingly negligible

for higher vibrational levels (here, v=21− 23). By making use of the mathematical identity∫ 1

0

dy

(y−n − 1)1/2
=

√
π

n

Γ
(
1
2 + 1

n

)
Γ
(
1 + 1

n

) (6.36)

and inverting the resulting expression, the basic near-dissociation theory (NDT) result is obtained:

dGv

dv
=

{
2n

√
π

(Cn)1/n

√
�2

2μ

Γ
(
1 + 1

n

)
Γ
(
1
2 + 1

n

)} [D−Gv]
(n+2)/2n ≡ Kn [D−Gv]

(n+2)/2n . (6.37)

It is usually more convenient to work with the integrated form of this equation; this is the central result

that

Gv = D − X0(n)
(
vD − v

)2n/(n−2)
, (6.38)
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in which X0(n) =
[
(n−2)
2n Kn

]2n/(n−2)

. For n > 2 the integration constant vD is the non-integer effective

vibrational index associated with the dissociation limit – the intercept of the correctly extrapolated Birge-

Sponer plot for the given system – and its integer part vD is the index of the highest vibrational level

supported by the given potential. For n= 1 this expression becomes the Bohr eigenvalue formula for the

levels of a Coulomb potential, and vD(n = 1) = − (1 + δ) , where δ is the Rydberg quantum defect. An

attractive n=2 long-range potential is not physically possible for a diatomic molecule, but integration of

Eq. (6.37) for that case gives essentially the same exponential eigenvalue expression known from quantum

mechanics.

In order to express this result in a practical form, it is convenient to take the first derivative of Eq. (6.38)

to obtain
dGv

dv
=
[(

2n
n−2

)
X0(n)

] (
vD − v

)(n+2)/(n−2)
. (6.39)

Because the vibrational level energies and level spacings are the actual physical observables, the fact that

[dGv′/dv′]v′=v+1/2 ≈ ΔGv+1/2 allows Eqs. (6.37–6.39) to be rearranged to yield the expressions

(
ΔGv+1/2

)2n/(n+2)
= [Kn]

2n/(n+2) (
D−Gv+1/2

)
(6.40)(

D−Gv

)(n−2)/2n
= [X0(n)]

(n−2)/2n (vD − v
)

(6.41)(
ΔGv+1/2

)(n−2)/(n+2)
=

[(
2n
n−2

)
X0(n)

](n−2)/(n+2) (
vD − v − 1/2

)
. (6.42)

Near-dissociation theory therefore predicts that if the observable quantities on the left hand side of these

equations are plotted vs. the vibrational mid-point energy Gv+1/2 ≈ 1
2 (Gv+1 + Gv) (for Eq.(6.40)) or the

vibrational quantum number v (for the other two equations), for levels lying close to dissociation those

plots should be precisely linear, with slopes defined by the constants Kn or X0(n) (i.e., by μ, n and Cn),

while the intercept determines either the energy at the dissociation limit D or the vibrational intercept vD.

Plots of this type, sometimes called ‘Le Roy–Bernstein plots’, are often used to illustrate applications of

near-dissociation theory.

Near-dissociation theory expressions analogous to Eq. (6.38) have been reported for a number of other

properties, such as expectation values of the kinetic energy or of powers of the internuclear distance, and

for values of the rotational constants Bv, Dv, Hv, . . . , etc. While it has little direct import for the present

discussion, it is interesting to note the algebraic structure of the latter, as it explains the reason for the

subscript on the symbolX0(n) appearing in Eq. (6.38). In particular, for levels lying very near the dissociation

limit:

Bv = X1(n)
(
vD − v

) 2n
n−2−2

(6.43)

−Dv = X2(n)
(
vD − v

) 2n
n−2−4

(6.44)

Hv = X3(n)
(
vD − v

) 2n
n−2−6

(6.45)

Lv = X4(n)
(
vD − v

) 2n
n−2−8

, (6.46)

...

in all of which Xk(n) = Xk(n)
/[
μn (Cn)

2
]1/(n−2)

and the Xk(n) are known numerical factors [32, 31].

One type of application of these results is summarized by Fig. 6.6. It illustrates an NDT treatment of

data for the ground electronic state of the very weakly bound Van der Waals molecule Ar2, which was

first observed in 1970 [33]. The square symbols represent the experimental vibrational level spacings and

the dash–dot–dot line is the conventional linear Birge-Sponer (B-S) extrapolation (left-hand ordinate axis)

reported by the experimentalists, while the shaded area defines their estimate of the distance from the highest

observed level (v=4) to the dissociation limit. This approach clearly predicts that v=5 is the highest bound

level of this molecule.

As with all molecular states formed from atoms in electronic S states, n=6 for the ground electronic

state of Ar2 (see Appendix). The round symbols in Fig. 6.6 then show exactly those same experimental data
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plotted (against the right-hand axis) in the manner suggested by Eq. (6.42). Since the data for the lowest

bound levels are not expected to obey the NDT equation, a simple linear fit to these data could not be

trusted to provide a reliable extrapolation. However, an accurate value of the C6 coefficient for this species

was available from ab initio quantum mechanical calculations, so the expected limiting slope of this plot

could be predicted from the resulting known value of the X0(n) coefficient. The solid line on this plot shows

the NDT prediction of the extrapolation obtained when a line with this theoretical slope passes through

the experimental datum for v = 3 . The fact that the second-last point also lies on this line while those

for the two larger level spacings only gradually deviate from it attests to the validity of this extrapolation.

The value of vD=8.27 implied by this NDT extrapolation shows that this molecule actually has 50% more

bound levels than were implied by the linear B-S type extrapolation, and comparison of the shaded area

with the area under the dotted curve in the extrapolation region shows that the estimate of the distance

from the highest observed level to dissociation yielded by the traditional linear B-S extrapolation was more

than a factor of two too small [34].

A second type of application of NDT is the use of Eq. (6.41) in the analysis of ‘photoassociation spec-

troscopy’ (PAS) data, for which the measured observable is the binding energy [D − Gv]. The 1 1Σ+
u state

of Yb2 dissociates to yield one 1S0 atom and one 1P1 atom, a case for which n=3 (see Appendix). Hence,

Eq. (6.41) shows that for levels lying near dissociation, a plot of [D − Gv]
1/6 is expected to be linear with

a slope of [X0(3)]
1/6 determined by the value of the C3 coefficient for this state, and the intercept by its

vD value. Figure 6.7 shows a plot of this type based on the recent results of Takahashi and co-workers [35].

The precise linearity of the points on Fig. 6.7 over a range of almost 80 vibrational levels is a very strong

endorsement of the validity of Eqs. (6.38–6.42), and it illustrates the fact that NDT provides the most reliable

methods known for experimentally determining values of long-range Cn potential function coefficients.

The two cases considered above both represent situations in which experimental data are available for

levels lying sufficiently close to dissociation that NDT may be expected to be valid there. However, for the

much more common situations in which this is not true, NDT still offers a valuable means for obtaining

optimal estimates of the distance from the highest observed levels to dissociation, and of the number and

energies of unobserved levels. In particular, ‘near-dissociation expansion’ expressions (NDEs), which combine

the limiting functional behaviour of Eq. (6.38) with empirical expansions which account for deviations from

that limiting behaviour, were introduced to address this problem. Most work with NDEs has involved the
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use of rational polynomials in the variable (vD − v) :

Gv = D − X0(n)
(
vD − v

)2n/(n−2) [
L/M

]s
. (6.47)

The power ‘ s ’ in Eq (6.47) is set at either s=1 (to yield ‘outer’ expansions) or s=2n/(n − 2) (to yield

‘inner’ expansions), while [L/M ] is given by

[
L/M

]
=

1 +
∑L

i=1 pt+i (vD − v)t+i

1 +
∑M

j=1 qt+j (vD − v)t+j
, (6.48)

with the value of t being determined by the theoretically known form of the leading correction to the limiting

behaviour of Eq. (6.38) [36].

The fundamental ansatz underlying the use of NDEs is that fitting experimental data to expressions

which incorporate the correct theoretically known limiting near-dissociation behaviour (such as Eq. (6.47))

will yield more realistic estimates of the physically significant extrapolation parameters D and vD than could

otherwise be obtained. In effect, it replaces blind empirical extrapolation using Dunham-type polynomials,

with interpolation between experimental data for levels in the lower part of the potential well and the

exactly known functional behaviour near the dissociation limit. Moreover, such expressions often provide

more compact representations of the data than do conventional power series in (v + 1/2).

Figure 6.8 summarizes the results of performing NDE fits to experimental data for the A 2Π state of

MgAr+ [37]. Since this species is a molecular ion, the (inverse) power of the leading term in its long-range

potential is n = 4 , and since at least one of its dissociation fragments is in an S state, the power of the

second term is m=6 (see Appendix). For this case, theory shows that the power t in Eq. (6.48) should be

t=2 [36]. Theory also tells us that for any molecular ion, the value of the C4 coefficient in atomic units is

α/2, with α being the polarizability of the neutral dissociation fragment, so that the value of the limiting

NDT coefficient X0(4) is readily obtained. Moreover, a good theoretical estimate of the C6 coefficient could

be generated for this state, so a realistic value of the leading-deviation coefficient p2 (for fixed q2=0) could

also obtained [37].

The dotted line in Fig. 6.8 shows the limiting slope [4X0(4)]
1/3 defined by the known C4 coefficient, while

the dot-dash curve labelled “linear B-S extrapolation” shows the extrapolation behaviour implied by a linear
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Figure 6.8 Illustrative application of NDE fitting to data for the A 2Π state of MgAr+.

Birge-Sponer plot. The cluster of seven dashed curves shows the results of NDE fits for different {L,M, s} in

which the C4 coefficient was held fixed at the theoretical value and two {pi, qj} parameters were allowed to

vary, with no C6-based constraint being applied to the p2 value. The cluster of nine solid curves then shows

the results of fits in which both X0(C4) and p2(C4, C6) were fixed at the theoretical values, and again two

{pi, qj} parameters were allowed to vary (as well as vD and D). The quality of fit for all of these cases was

essentially the same. It is clear that for a given type of model (i.e., only X0(4) fixed, vs. X0(4) and p2 fixed),

the NDE models corresponding to different choices of {L,M, s} are in reasonably good agreement with one

another. However, the difference between the extrapolation behaviour for these two classes of models shows

that when better theoretical constraints are applied, significantly better extrapolation behaviour is attained.

For reference, the dash-dot-dot curve labelled “free C4” shows that in the absence either of a realistic value

of the leading long-range Cn coefficient or of data for levels lying near dissociation, NDE fits can give quite

unrealistic extrapolations, and should not be trusted.

A final point raised by the above example is the question of model-dependence, which is an ever-present,

but usually ignored problem in scientific data analysis. While all of the nine models corresponding to “fixed

C4 & C6” give fits to the data of equivalent quality, they all extrapolate slightly differently, and the associated

values of the physically interesting parameters D and vD differ by substantially more than the parameter

uncertainty associated with any individual fit. In cases such as this there is no possibility of selecting a

unique ‘best’ model, since there is no physical basis for choosing one set of {L,M, s} values over another.

The best that one can do is to consider as wide a range of models as possible, and then average the resulting

values of the physically interesting parameters and estimate their uncertainties based on both the variance

about their mean and the uncertainties in the individual values. A practical scheme for accomplishing this

which was introduced in Ref. [37] led to the value of vD=58.4(±1.2) indicated by the pointer at the bottom

of Fig. 6.8.

Upon completion of a study such as that illustrated by the results shown in Fig. 6.8, a representative

‘optimal’ NDE function for the vibrational energies could then be chosen and employed in an RKR calculation

to generate a potential spanning essentially the entire potential energy well. Analyses of this type have been
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carried out for a number of molecular systems. In general, fits of vibrational energies and rotational constants

to NDEs tend to be somewhat more compact that conventional Dunham polynomials – fewer parameters

being required to yield a given quality of fit. However, the inter-parameter correlation increases rapidly with

the number of free {pi, qj} parameters, and it becomes increasingly difficult to obtain sufficiently realistic

preliminary estimates of those parameters for the non-linear fit to be stable.

Tellinghuisen and Ashmore addressed this fit stability problem by introducing ‘mixed representations’

for Gv and Bv, in which conventional Dunham polynomials are used at low–v and NDEs at high–v, with

a switching function merging the two domains [38, 39]. Such representations certainly work, and they

have been implemented in standard data analysis [40] and RKR programs [27]. However, the increased

inconvenience associated with these mixed representations makes them somewhat inconvenient to use, and

(to date) neither pure NDEs nor these mixed representations have been widely adopted. Indeed, in recent

years the whole approach of attempting to provide global descriptions of molecular vibrational-rotational

energies using expansions in terms of vibration-rotation quantum numbers is increasingly being supplanted

by the ‘direct-potential-fit’ approach described in § 6.3.

6.2.4 Conclusions Regarding Semiclassical Methods

Since 1932, fits to the Dunham eigenvalue expression of Eq. (6.16) have been a central tool in empirical

analyses of diatomic molecule spectroscopic data, and since the mid 1960’s, use of the resulting Gv and

Bv expressions in the RKR procedure has been a ubiquitous technique for determining diatomic potential

energy functions. Replacing Dunham expansions by NDEs or the ‘mixed representation’ functions described

in § 6.2.3 offered a way of addressing a primary weakness of the Dunham polynomial description – namely, its

inability to provide realistic extrapolation behaviour. However, the undesirable complication of the latter and

the inconvenience of having to perform non-linear least-squares fits which require realistic trial parameters

seems to have discouraged widespread use of these two approaches. Moreover, a number of more general

shortcomings limit the utility and accuracy of determining potential functions in this way.

(i) The RKR method is a first-order semiclassical procedure that lacks full quantum mechanical accuracy,

a problem that is most serious for species of small reduced mass (see Table 6.1).

(ii) It is inconvenient to work with a potential defined by a large array of multi-digit turning points that

have to be interpolated over and extrapolated beyond to yield the type of smooth uniform mesh of

function values required for use in practical calculations. This step also introduces the spectre of

‘interpolation noise’ – uncertainties in calculated properties associated with the choice of a particular

interpolation scheme – a problem that is usually simply ignored.

(iii) The RKR method of § 6.2.2 is based on the fact that determination of the potential function requires

only a knowledge of Gv and Bv. However, the discussion of § 6.1 pointed out that exact quantum

mechanical values of diatomic molecule centrifugal distortion constants (CDCs) {Dv, Hv, Lv. . . . } (the

derivatives of the energy with respect to [J(J+1)] evaluated at J=0 ) can be calculated from any given

potential energy function. Thus, CDCs are not independent parameters, but are implicitly determined

by the Gv and Bv functions. In spite of this, in most published data analyses the centrifugal distortion

expansion coefficients (i.e., the Dunham Y�,m coefficients with m ≥ 2) have been treated as independent

free parameters. As a result, errors in the fitted CDCs would introduce small compensatory errors into

the Bv functions used to define the potential. Over the last 25 years it has become increasingly common

to address this problem by performing self-consistent data analyses in which CDC constants calculated

from a preliminary RKR potential are held fixed in a new fit to the global data set to obtain improved

Gv and Bv functions, and hence a better RKR potential. Iteration of this procedure generally converges

quickly. However, its use does complicate empirical data analyses.

(iv) Combined-isotopologue data analysis fits can be performed using versions of Eq. (6.16) which include

atomic-mass-dependent terms to account both for Born-Oppenheimer breakdown effects and for the

breakdown of the simple reduced-mass scaling implied by the first-order semiclassical quantization con-

dition [40]. However, there is no simple way for distinguishing between these two types of corrections;

as a result, Born-Oppenheimer breakdown contributions to the interaction potential cannot be readily

determined in this way.
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In view of these concerns, there is clearly a need for the type of exact quantum mechanical data analysis

procedure for determining global analytic potential energy functions described in § 6.3. Nonetheless, the

semiclassical methods described in § 6.2 remain valuable for several reasons. One of these is simply the

fact that they are friendly, familiar, and fairly easy to apply. A more fundamental reason, however, is the

fact that the methods of § 6.3 always involve non-linear least-squares fits that require realistic initial trial

parameters if the fit is to be at all stable (see Chapter 2), and this traditional methodology provides an

excellent way of generating such trial parameters (see § 6.3.3). Moreover, use of NDT remains the best way

known for extrapolating beyond observed vibrational data to determine bond dissociation energies, as well

as for determining experimental values of the leading long-range inverse-power Cn coefficient. As a result,

it remains a central tool in the interpretation and analysis of PAS measurements and other types of data

for levels lying very near dissociation. Thus, it can be anticipated that the semiclassical methods described

above will remain essential tools in a spectroscopist’s arsenal for the foreseeable future.

6.3 Quantum-Mechanical Direct-Potential-Fit Methods
6.3.1 Overview and Background

In recent years it has become increasingly common to analyze diatomic molecule spectroscopic data by per-

forming ‘direct potential fits’ (DPFs), in which observed transition energies are compared with eigenvalue

differences calculated from an effective radial Schrödinger equation based on some parameterized analytic

potential energy function, and a least-squares fit is used to optimize the parameters defining that potential.

The effective radial Hamiltonian may also include radial strength functions that characterize atomic-mass-

dependent adiabatic and non-adiabatic Born-Oppenheimer breakdown (BOB) functions, and also (if appro-

priate) radial strength functions that account for splittings due to angular momentum coupling in electronic

states with non-zero electronic angular momentum. As the well depth and equilibrium bond length are usu-

ally central parameters of the potential function model, these equilibrium properties are determined directly

from the fit. The DPF approach was originally introduced for the treatment of atom-diatom Van der Waals

molecules, for which the lack of any well-defined structure precluded the effective use of traditional methods

of analysis [41]. However, over the past two decades it has become increasingly widely used for diatomic

data analyses.

The essence of the method is as follows. The upper and lower levels of any observed spectroscopic transi-

tion are eigenvalues of Eq. (6.1) for the appropriate effective potential energy function. As discussed in § 6.1,
for any given potential this equation can be solved readily using standard methods to yield the eigenvalue

Ev,J and eigenfunction ψv,J(r) of any given vibration-rotation level {v, J}. Moreover, the Hellmann-Feynman

theorem shows that the partial derivative of that eigenvalue with respect to any given potential function

parameter pj may be calculated using the expression

∂Ev,J

∂pj
=

〈
ψv,J(r)

∣∣∣∣∂V (r)

∂pj

∣∣∣∣ψv,J (r)

〉
. (6.49)

The difference between such derivatives for the upper and lower level of each observed transition is the partial

derivative of that datum with respect to parameter pj required by the least-squares fitting procedure.

One challenge of this approach is the fact that the data set often consists of many thousands or tens

of thousands of individual transitions involving a wide range of vibration-rotation levels, which means that

being able to solve Eq. (6.1) efficiently is a matter of some importance. It is always necessary for the

Schrödinger-solver subroutine to start from a realistic initial trial energy for each level of interest, and the

more accurate the initial estimate, the smaller the time required for obtaining the desired solution. One

way of addressing this challenge is as follows. Prior to beginning the fit, the data set would be surveyed to

determine the highest observed vibrational level for each electronic state considered. Then at the beginning

of each cycle of the non-linear fit to optimize the potential function parameters, an automatic procedure

would locate each of those (pure) vibrational levels. A particularly efficient way of doing this would make use

of semiclassical energy derivatives computed using Eq. (6.31) to generate an estimate of the distance from

a given level to the next. Once the pure vibrational levels are known, Hutson’s method (Refs. [6] & [7] see

§ 6.1) may be used to generate values of the first few rotational constants for each vibrational level. As the
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fitting procedure considers the data one at a time, these stored band constants can be used in Eq. (6.4) to

generate a good initial estimate of the required initial trial energy for the level in question. This combined

quantum/semiclassical procedure is quite efficient.

Two other key problems associated with DPF treatment of diatomic molecule data are what potential

function form to use, and how to obtain the realistic initial trial parameters required by the non-linear

least-squares fitting procedure. These topics are discussed in the next two subsections.

6.3.2 Potential Function Forms

A central challenge of the DPF method has been the problem of developing an optimum analytic potential

function form. Ideally, such a function should satisfy the following criteria.

• It should be flexible enough to represent very extensive, high-resolution data sets to the full degree of

experimental accuracy.

• It should be robust and well-behaved, with no spurious extrapolation behaviour outside the region to

which the experimental data are most sensitive.

• It should be smooth and continuous everywhere.

• It should incorporate the correct theoretically known limiting behaviour of Eq. (6.33) at large distances.

• It should be compact and portable – i.e., be defined by a relatively modest number of parameters.

Devising a potential function form that satisfies all of these criteria has been a non-trivial problem, and

work on developing new and better forms (‘potentiology’) remains an active area of research. The following

subsections describe and compare four families of potential function forms that have been used in diatomic

DPF analyses.

A. Polynomial Potential Function Forms

The oldest type of potential function form used in DPF data analyses consists of a simple polynomial

expansion in a radial-coordinate such as the Dunham variable ξDun=(r − re)/re (see Eq. (6.14)). Dunham

expansions themselves have the obvious shortcoming that VDun(r) → +∞ or −∞ as r → ∞ , the sign

depending on the sign of the last non-zero polynomial coefficient. However, this singularity problem is

resolved if the Dunham radial variable is replaced by an alternative such as that proposed by Ogilvie and

Tipping [42]

ξOT(r) = 2

(
r − re
r + re

)
. (6.50)

This variable has the nice property that it approaches finite values at the two limits r → 0 and r → ∞ , so

a potential energy function defined as a power series in this variable will have no singularities. Moreover, the

simplicity of such power-series forms makes it very easy to generate expressions for the partial derivatives

of the potential function required for calculating partial derivatives of the observables using Eq. (6.49).

However, the resulting potentials may still behave unphysically outside the range of the data employed for

their determination.

We recall from the discussion of § 6.2.3 that at long range all intermolecular potentials take on the the

inverse-power-sum form of Eq. (6.33). In principle, polynomial functions of ξOT(r) may be constrained to

approach a specified asymptote in this way [43]. However, the expressions required to impose this behaviour

are quite complex and require the inclusion of multiple additional polynomial coefficients. For example,

requiring a potential function defined as a polynomial in the coordinate ξOT to approach an asymptote

with a specified V (r)∼D−C6/r
6 limiting behavior would require that polynomial to have seven additional

high-order terms beyond those required to represent the experimental data. While this is mathematically

straightforward, the resulting functions have an unfortunate tendency to be somewhat unstable and to

display spurious oscillatory behaviour in the interval between the data region and the limiting long-range

region. Thus, a simple polynomial in a variables such as ξOT is not a viable way of describing an overall

potential energy function.
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The problem of imposing a constraint on the long-range behaviour of a polynomial potential function is

somewhat reduced if one uses a radial variable of the type proposed by Šurkus [44]:

ξ
(p)

Šur
(r) =

rp − (re)
p

rp + (re)p
≡ yeqp (r) (6.51)

At large distances ξ
(p)

Šur
�1−2(re/r)

p + . . . , so if p is set equal to the power (n) of the leading inverse-power

term in the long-range potential, it is a fairly straightforward matter to constrain such a potential function

to have the desired limiting D−Cn/r
n behaviour. However, when the power p has a moderately large value,

such as p=6 , ξ
(p)

Šur
(r) is relatively ‘stiff’ (see § 6.3.2B), and hence a polynomial based on it will have limited

flexibility. Moreover, it would be impossible to constrain such a polynomial to mimic more sophisticated

long-range behaviour, such as V (r) � D − C6/r
6 − C8/r

8. Hence, potential energy functions defined as

polynomials in a Šurkus variable with large p are of limited use.

A practical way to circumvent the problem of the poor long-range behaviour of polynomial potential

functions is simply to attach the desired long-range inverse-power-sum tail smoothly to the fitted polynomial

at some point near the outer end of the data-sensitive range of r. This has been the approach used by a

group at the University of Hannover in a large number of very careful studies of alkali metal and alkaline

earth diatomics, for many of which the data span almost the entire potential energy well. They represent the

potential energy function within the ‘data range’ by a polynomial in the variable ξHan=(r− rm)/(r+ b rm)

in which rm is a fixed distance located near re, and ‘ b ’ is a fitted constant [45]. However, no polynomial

is reliable outside the range of the data to which is it fitted, so to obtain a useful overall potential function

it is always necessary to attach both some simple repulsive analytic function at the inner end of the data

region and the desired inverse-power-sum at the outer end. Although these extrapolation functions are

parameterized so that they attach to the polynomial smoothly, the point of attachment remains an ad hoc

choice. Moreover, the whole attachment procedure relies on the fact that the polynomial potential energy and

its first derivative are both physically correct at the extreme ends of the data-sensitive region, a sometimes

questionable assumption. This type of potential form also has three other worrisome shortcomings.

(1) The polynomials required to account fully for the data often have very high orders – orders between

20 and 40 being common for extensive experimental data sets. Fits to polynomials of such high order

tend to be very highly correlated, and sometimes convergence is difficult to achieve.

(2) While the independent variable typically spans the range ξHan ∈ (−0.1, 0.6) and the potential function

on that domain spans an energy range of order 104 cm−1, the higher-order polynomial coefficients are

usually of oscillating sign and have magnitudes as much as 4− 8 orders of magnitude greater than the

range of the function being fitted. This is a signature for a marginally stable model.

(3) In most published analyses using this form, all of the (many) potential coefficients reported are listed

to 18 significant digits. This means that quadruple-precision arithmetic would be needed to reproduce

these functions on most computers, a point that can make such potentials somewhat inconvenient for

others to use. Moreover, if the parameters of any model describing data (such as energy level spacing)

known to 6 − 8 significant digits truly requires its parameters to be specified to 18 significant digits,

there must be something wrong with the model.

In summary, although a number of very extensive, high-resolution data sets have been fitted accurately

using polynomial potentials, such functions do not represent an optimum way of summarizing what is known

about a molecule.

B. The ‘Expanded Morse Oscillator’ (EMO) Potential Form, and the Importance of the

Definition of the Expansion Variable

An important development in potential function modeling was the demonstration by Coxon and Hajigeorgiou

that a Morse potential with a distance-dependent exponent coefficient was a compact and flexible function

that could provide a very accurate representation of a potential energy well [46, 47, 48]. A potential well

typically spans an energy range of 103 − 105 cm−1 and needs to be known to an accuracy of � 10−3 cm−1 if

it is to explain high resolution experimental data. Coxon and Hajigeorgiou had the insight to realize that the

De value and the algebraic structure of the Morse function would account for the bulk of that change, while

180



modest variations of the exponent coefficient would allow precise changes in the potential function shape to

be defined by a relatively modest number of parameters. In their early work, the Morse function exponent

coefficient was represented by a simple power series in r. However, that proved to be inappropriate, since it

meant that as r → ∞ the exponent coefficient polynomial would approach either +∞ or−∞ (depending on

the mathematical sign of the highest-order expansion coefficient). Such singularities are removed if the power

series expansion variable is replaced by a quantity such as ξOT(r) (see Eq. (6.50)), but problems remain, since

the value of the expansion variable at the outer end of the data region remains a long way from its limiting

value [49]. However, a more robust model is obtained if a version of the Šurkus variable of Eq. (6.51) with

p � 3 is used as the exponent expansion variable [50, 51, 52].

The resulting model is called the ‘Expanded Morse Oscillator’ (EMO) potential:

VEMO(r) = De

(
1 − e−β(r)·(r−re)

)2
, (6.52)

in which

β(r) = βEMO(r) =

N∑
i=0

βi
(
yrefp (r)

)i
, (6.53)

with

yrefp (r) = yp(r; rref) =
rp − (rref)

p

rp + (rref)
p . (6.54)

In all currently published work using this model, the reference distance in the expansion variable was set

as rref ≡ re . However, recent work using the related ‘MLR’ model (described below) shows that fixing

the exponent-expansion-variable reference distance rref at a value larger than re , typically in the range

1.2 re − 1.5 re , allows accurate fitted potential functions to be obtained that require a substantially smaller

number of βi expansion coefficients than would otherwise be needed [53, 54].

One other key feature of this model is the power ‘ p ’ in the definition of the radial expansion variable.

For p= 1 , the values of yrefp (r) at the inner and outer ends of the data region are a long way from their

limiting values of −1 and +1, respectively. As a result, a moderately high-order polynomial function of that

variable will have a high probability of behaving poorly (e.g., showing oscillatory behaviour) on the intervals

between the data region and the yp = ±1 limits. As p increases, however, the mapping of yp(r) onto r

places the values of yp(r) at the inner and outer ends of the data region ever closer to the limiting values of

±1, and hence removes the possibility of such misbehaviour.

The importance of being able to set p > 1 and rref > re is illustrated by Fig. 6.9, which shows how

yp(r; rref) depends on p and r for the two cases rref =re (solid curves) and rref=1.5 re (dashed curves). The

vertical broken lines on this plot are the inner and outer ends of the data-sensitive region2 for the ground

X 1Σ+
g state of Rb2, as considered in the analysis of Ref. [54]. For p=1 the variable y1(r; re) at the outer

end of the data region is barely half way to its limiting value of +1 , while y1(r; rref =1.5 re) ≈ 0.33 . Thus,

any function of those variables whose coefficients are defined by its behaviour within the data region would

have ample opportunity to behave unphysically between the end of the data region and the limit r→∞ . In

contrast, for higher values of p the variable yp(r) at the outer end of the data region becomes relatively flat

and close to its upper bound, so that an exponent coefficient function β(r) defined as a polynomial in that

variable would change very little at larger distances. This bodes well for stable extrapolation behaviour of

the associated potential energy function.

The solid curves in Fig. 6.9 show that the fact that yp(r; re) is close to its upper limit at the outer end

of the data region does not necessarily mean that the same is true at the inner end; hence (for example),

setting p � 3 does not suffice to ensure sensible inward extrapolation. However, the dashed curves in

Fig. 6.9 show that choosing a value of rref somewhat larger than re makes the range of yrefp more ‘symmetric’

at the two ends of the data range. Indeed, if rref is set at the geometric mean of the inner and outer

bounds, rref =
√
rinner×router , the range of yp(r; rref) will be precisely symmetric on that domain; i.e.,

yp(rinner; rref) = −yp(router; rref) , independent of the choice of p . When combined with an appropriate

2 Defined here as the inner and outer classical turning points of the highest vibrational level involved in the experimental

data set.
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Figure 6.9 Plot of the radial variables yeqp (r)=yp(r; rref =re) (solid curves) and yrefp (r)=yp(r; rref =1.5 re)

(dashed curves) for various p , and the data-sensitive region for ground-state Rb2.

choice of p > 1 , setting rref at an appropriate value greater than re will ensure stable extrapolation past

both the inner and the outer ends of the data region.

The EMO potential form has been used in a number of empirical data analyses, yielding accurate analytic

potential functions that fully reproduce the experimental data considered, giving very good estimates of the

equilibrium distance re , and (if De is a fitting parameter) also giving a realistic estimate of the well depth.

Indeed, this potential function form satisfies all of the criteria itemized in § 6.3.1 except one: its fundamental

exponential-type nature means that it cannot incorporate the inverse-power-sum behaviour characteristic

of all long-range interatomic potentials. For molecular states with simple single-well potentials for which

no realistic estimates of the leading long-range inverse-power Cm coefficients are known, the EMO form is

arguably the best model potential function available. However, if values of the Cm coefficients are known, it

is always better to incorporate the theoretically predicted inverse-power behaviour into the potential using

the type of model potential energy function described in the following subsection.

C. The Morse/Long-Range (MLR) Potential Form

The potential function form described in this section has the same basic algebraic structure as the Morse-type

potential of § 6.3.2B, but it incorporates two key differences. The first is the replacement of the exponent

distance factor (r− re) in Eq. (6.52) by the variable yeqp (r) of Eq. (6.51); the second is the introduction of a

pre-exponential factor to incorporate the desired long-range behaviour. The resulting function is

VMLR(r) = De

(
1 − uLR(r)

uLR(re)
e−β(r)·yeq

p (r)

)2

. (6.55)

The fact that yeqp (re) = 0 and the pre-exponential factor equals unity at r= re ensures that this function

retains the Morse-type property of having its minimum at re and a well depth of De . Since the coefficient

function β(r) is written as a (constrained) polynomial in yrefp (r), the exponent in Eq. (6.55) will approach a

finite value as r→∞ . If this limiting value of the exponent is defined as

β∞ ≡ lim
r→∞

{
β(r) · yeqp (r)

}
= lim

r→∞ {β(r)} = ln

(
2De

uLR(re)

)
, (6.56)

then the limiting long-range behaviour of the MLR function will be simply

VMLR(r) � De − uLR(r) + O
(
u2LR
4De

)
. (6.57)
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Thus, if uLR(r) is defined as the sum of inverse-power terms appropriate for the molecular state in question

uLR =
Cm1

rm1
+

Cm2

rm2
+ . . . , (6.58)

then the long-range tail of the MLR function will have the correct theoretically predicted inverse-power

long-range form.

A simple way to constrain the polynomial expression for β(r) to approach the limiting value β∞ as

r → ∞ is to write it in the form

β(r) = βMLR(r) = yrefp (r) β∞ + [1− yrefp (r)]
∑
i=0

βi
[
yrefq (r)

]i
. (6.59)

However, in order to prevent the leading contributions to the asymptotic expansion of the exponential term

in Eq. (6.55) from modifying the long-range behaviour specified by Eq. (6.58), the power p in Eqs. (6.55) and

(6.59) must satisfy the condition p > mlast −mfirst , where mfirst and mlast are, respectively, the powers of

the first and last terms included in the chosen definition of uLR(r) [55]. For states formed from ground-state

atoms, the leading terms contributing to the long-range potential energy often correspond to m=6, 8 and

10; if these three terms define uLR(r), it becomes necessary to set p ≥ 5 . Note, however, that there are

no restrictions on the value of q, and giving it a somewhat smaller value than p often yields good fits with

polynomials of lower-order than would otherwise be required [53, 54].

The basic form of the MLR potential function seen in Eq. (6.55) is remarkably simple, and the fact that

the leading terms in the long-range potential energy are explicitly incorporated within its algebraic form

rather than being represented via a separate attached function is a great improvement over other models.

The fact that the empirical function that determines the details of the potential function shape appears in an

exponent, together with the use of an expansion variable yrefp (r) centred at a distance rref > re , also make

this form particularly flexible, and allow accurate fits to be obtained with a relatively modest number of

expansion parameters. Moreover, the physically interesting quantities re , De , and Cn are explicit parameters

of the MLR model that may be varied in the fit, while for other functional forms the determination of De and

Cm parameters depends partly on where and how the long-range tail is attached to the polynomial spanning

the data region.

Illustrations of the importance of the parametrization details described above are provided by the results

of DPF analyses of extensive high-resolution data sets for the ground electronic states of MgH and Ca2
summarized in Table 6.2. In a recently published data analysis for MgH using a simple version of the MLR

form which fixed rref=re and p=q=4 , an exponent polynomial of order 18 was required to give a good fit,

and the resulting higher-order βi expansion coefficients had alternating mathematical signs and magnitudes

of order 106 − 107 [56]. The fact that polynomial coefficients of this magnitude are required to represent a

function with the range −2.8 � β(r) � −0.5 on the data-sensitive domain −0.3 � yeqp (r) � 0.6 is a clear

signature of a marginally stable model. In contrast, use of the extended MLR model described above with

rref = 2.3 Å≈ 1.33 re and {p, q}= {5, 4} yields the same quality of fit with an exponent polynomial order

of only 14, and the magnitudes of the resulting βi coefficients ranged from ∼ 0.05 to 20, values much more

consonant with the domain and range of the function being fitted.

The second case considered in Table 6.2 again shows that employing a more sophisticated MLR form

for which rref > re and q < p allows the data to be fully explained by a much more compact function

Table 6.2 Results of fits performed using different potential function models; dd is the relative (normalized

by the data uncertainties) root-mean-square difference between simulated and experimental transition

energies.

No. parameters

species model uLR(r) polynomial fitted total dd

MgH(X 1Σ+) ‘basic’ MLR C6, C8 19 21 24 0.78

full MLR C6, C8, C10 15 18 22 0.78

Ca2(X
1Σ+

g ) Hannover polynomial C6, C8, C10 21 25 31 0.69

‘basic’ MLR C6, C8 12 15 17 0.622

full MLR C6, C8, C10 8 12 16 0.619183



Table 6.3 Comparison of potentials obtained from fits to data for Ca2(X
1Σ+

g ) using MLR functions with-

out [55] vs. with rref > Re and q < p . In the model of Ref. [55] the exponent polynomial order was

truncated to 4 for r < re . As in Table 6.2, dd is the dimensionless root mean square deviation for the

fit to the 3553 data.

From Ref. [55] generalized MLR

De / cm
−1 1102.076 (±0.004) 1102.080 (±0.004)

re / Å 4.27781 (±0.000025) 4.27782 (±0.00002)

C6 /cm
−1 Å

6
1.032 (±0.001)×107 1.046 (±0.003)×107

C8 /cm
−1 Å

8
3.096×108 3.0608×108

C10 /cm
−1 Å

10
— 8.344×109

{p, q} {5, 5} {5, 3}
rref / Å [ re ] [5.55]
β0 −1.074136 −1.46725
β1 0.0232 −0.20011
β2 −0.42734 −0.72636
β3 −0.1602 0.1227
β4 −0.3443 −0.2763
β5 −8.228 0.507
β6 72.177 0.357
β7 −291.79 1.02
β8 639.5 —
β9 −797.5 —
β10 533. —
β11 −150. —

dd 0.622 0.619

than had been obtained using a ‘basic’ MLR form in which rref = re and q = p [55, 54]. The first Ca2
entry in this table also shows that a fit to the same data set using a ‘Hannover polynomial potential’ of

the type described in § 6.3.2A requires many more parameters than either MLR model. Further details for

this case are presented in Table 6.3, which compares the parameter sets required to account for the data

using the ‘basic’ (from Ref. [55]) and ‘generalized’ MLR forms. It is clear that the type of generalized MLR

function described above yields a more compact and robust model than do either the ‘basic’ MLR form or

the polynomial potentials of § 6.3.2A. As a result, fits using this form can be expected to yield more reliable

fitted values of physically significant parameters such as De, the equilibrium bond length re , and any fitted

Cm coefficients.

An instructional observation provided by Table 6.3 concerns parameter uncertainties. The uncertainties

in De, re and C6 seen there are the full correlated 95% confidence limit uncertainties in those parameters

yielded by the fit to the given model. However, the difference between the C6 values yielded by these fits

of equivalent quality to the same data set is an order of magnitude larger than the parameter uncertainties

from the individual fits. This illustrates the fact that that model-dependence – the dependence of a fitted

parameter value on the model used for the analysis – is often a much larger source of real uncertainty that

is the conventional parameter uncertainty implied by the statistics of a given fit. The only way to estimate

the magnitude of uncertainty due to model-dependence is to compare the results of fits performed using

a wide variety of models. For the case of Ca2, this led to estimated uncertainties in De and re of 0.008

cm−1 and 0.00003 Å, respectively, only slightly larger that the uncertainties shown in Table 6.3, but for C6

the analogous estimated total uncertainty of 0.02×107 cm−1 Å
6
was an order of magnitude larger that the

uncertainty implied by the individual fits [55].

The MLR potential function form described in this section is being employed in an increasing number of

practical data analyses, and is arguably the best model for a single-well potential energy function developed

to date. However, it has not been shown that the exponent-polynomial version of this function described

above are able to describe double-minimum or shelf-state potentials accurately. Fortunately, a completely
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different type of potential function model has been developed which seems ideally suited for dealing with

such cases.

D. The Spline-Pointwise Potential (SPP) Form

A ‘Spline-Pointwise Potential’ (SPP) is an analytic potential energy function defined as a cubic spline function

passing through a chosen grid of points, with the energies of the spline points being the parameters varied

in the DPF procedure. This novel approach was first introduced in the late 1980’s by Tiemann and Wolf,

who applied it to the analysis of their data for a number of systems including species with shallow wells

and quasibound levels supported by potential energy barriers arising from potential curve avoided crossings

[57, 58, 59, 60]. While remarkable for its time, fits using the original version of this approach tended to

be somewhat unstable, and required very careful monitoring. As a result, it saw little further use until the

turn of the century when Pashov and co-workers re-discovered it and showed that use of singular-value-

decomposition at the core of the least-squares procedure allowed fits using this potential function form to

be stable and ‘routine’ [61, 62, 63].

A cubic spline function is normally thought of as a set of cubic polynomials with a distinct cubic spanning

the interval between each pair of adjacent points, while the coefficients are constrained to impose continuity

and smoothness at each internal grid point. For DPF applications, however, Pashov and co-workers showed

that it was more convenient to write such a spline function as a linear combination of basis functions

associated with the N specified mesh points {ri},

VSPP(r) =

N∑
i=1

V (ri) S
N
i (r) , (6.60)

in which the potential function values V (ri) at the grid points ri are the parameters to be varied in the

fits. They also chose to use ‘natural’ cubic splines, so defined by the fact that the second derivative of the

function vanishes at the first and last grid points. This is a very simple function to use, since the partial

derivative functions required by the least-squares procedure are the parameter-independent functions SN
i (r).

SPP functions have been used in successful DPF data analyses for regular single-well potentials, for

double-well potentials, and for states whose potential functions have a single well with a rotationless barrier

protruding above the asymptote. However, one shortcoming is the fact that there is no natural way to

extrapolate such a function outside the data region at either small or large r. In particular, the fact that

natural splines are used means that the resulting functions will always have zero curvature at the first

and last grid points, and that some ad hoc procedure will have to be used to attach both a sensibly steep

extrapolating function at the inner end of the data-sensitive region and the requisite inverse-power-sum tail

at the outer end. This makes it difficult for fits using this model to yield accurate estimates of the length

of the extrapolation to the dissociation limit, or to determine experimental values of long-range potential

coefficients. Another concern is that a relatively large number of potential parameters (typically ∼ 50 grid-

point function values) is required to define a high quality potential, so that of order 100 many-digit numbers

must be precisely transcribed by those wishing to use such a potential function. Moreover, while physically

interesting parameters such as the equilibrium bond length re and well depth De may be determined from

such potential functions, they are not explicit parameters of the model, and hence it is difficult to obtain

realistic estimates of their uncertainties.

For the reasons listed above, SPP function do not provide the best type of model to use for ordinary

single-well potential functions. However, for potentials with double minima or ‘shelf’ behaviour they are an

unparalleled success, since no other functional form can provide a smooth, flexible function that can handle

the relatively abrupt changes of character associated with such cases [62, 63]. This form has also been used

in successful DPF treatments of molecular states with a rotationless potential energy barrier [64]. Thus, in

spite of shortcomings associated with their extrapolation behaviour, SPP potential functions will remain an

essential component of a spectroscopist’s toolkit for the foreseeable future.

Documented computer programs for using DPF fits to spectroscopic data to determine analytic potentials

having any of the potential function forms described above are publicly available [61, 65].
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6.3.3 Initial Trial Parameters for Direct Potential Fits

Vibration-rotation level energies and level energy differences are not linear functions of potential function

parameters. Thus, DPF data analysis procedures are always based on non-linear least-squares fits, and they

always require realistic initial trial values of the parameters defining the chosen potential function form. This

is another situation in which the traditional data analysis methods described in § 6.2 prove to be of enduring

value, since an RKR potential can always provide a good first-order estimate of the potential, and fitting

the analytic potential form of interest to RKR points can give good estimates of the required initial trial

parameter values. Preliminary potentials may also be obtained by ab initio methods, but they will be less

accurate than RKR potentials, so the latter are preferred, when they are available.

Both polynomial and SPP potential functions are linear functions of the relevant expansion parameters, so

fitting their forms to a preliminary set of RKR or ab initio turning points presents no problems. Moreover, the

Morse-type algebraic structure of EMO and MLR potentials means that it is also a relatively straightforward

matter to obtain preliminary estimates of their exponent expansion parameters βi . For example, the MLR

function of Eq. (6.55) may be rearranged to give

β(r) · yeqp (r) = − ln

⎧⎨⎩ uLR(re)

uLR(r)

⎛⎝ 1±
√
VMLR(r) − VMLR(re)

De

⎞⎠
⎫⎬⎭ . (6.61)

Since Eq. (6.59) shows that βMLR(r) is a linear function of the expansion parameters βi , given some plausible

initial estimates of re and De, that initial set of turning points defines the right-hand-side of Eq. (6.61),

and one may use an ordinary linear least-squares fit to determine the desired trial βi values. A similar

rearrangement of the expression Eq. (6.52) defining an EMO potential yields an expression analogous to

Eq. (6.61) for determining initial estimates of the exponent expansion coefficients for that case. Given such

a set of trial exponent expansion parameters, it is a straightforward matter to perform a proper nonlinear

least-squares fit to the desired potential form to the given turning points, a procedure that also could optimize

the assumed values of re and De and for an MLR potential, possibly also the leading Cm coefficient(s).

In addition to serving as a means of providing realistic initial trial parameters for DPF data analyses,

fits of given sets of turning points to Eqs. (6.52) or (6.55) can serve as a very efficient means for presenting

the results of ab initio calculations of potential energy functions. A computer program for performing

turning-point fits of this type is available (with a manual) on the www [66].

6.4 Born-Oppenheimer Breakdown Effects
The discussion of § 6.3 focused on the problem of determining analytic potential energy functions that

accurately explain all of the available discrete spectroscopic data for specified molecular states in terms

of eigenvalues of the radial Schrödinger equation Eq. (6.1). For a heavy molecule such as Rb2, a single

potential energy function usually will suffice to explain the results for all isotopologues of that species.

However, for species of small-reduced-mass, Born-Oppenheimer breakdown (BOB) effects give rise both

to differences between the effective potentials for different isotopologues, and to atomic-mass-dependent

corrections to the simple centrifugal potential
(
�
2/2μr2

)
[J(J+1)] of Eq. (6.2). This has import with respect

to the determination of equilibrium structures, since most observed transitions involve excited rotational

levels, and it is the extrapolation of their properties to J =0 that allows the determination of equilibrium

structures and properties.

In practice, BOB effects often may be accounted for with ordinary DPF methodology simply by introduc-

ing atomic-mass-dependent terms into the effective potential energy function of Eq. (6.2). Most such work

reported to date has been based on the effective radial Schrödinger equation derived by Watson [67, 68], in

which atomic-mass-dependent non-adiabatic contributions to the kinetic energy operator are incorporated

both into an effective ‘adiabatic’ contribution to the electronic potential energy function, and into the non-

adiabatic BOB contribution to the effective centrifugal potential energy of the rotating molecule. Following

the conventions of Refs. [69, 50], the resulting effective radial Schrödinger equation for isotopologue α of
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molecule A–B in a singlet electronic state may be written as{
− �

2

2μα

d2

dr2
+

[
V

(1)
ad (r) + ΔV

(α)
ad (r)

]
(6.62)

+
[J(J + 1)]�2

2μα r2

[
1 + g(α)(r)

]}
ψv,J(r) = Ev,J ψv,J(r) .

Here, V
(1)
ad (r) is the total electronic internuclear potential for a selected reference isotopologue (labeled

α = 1 ), ΔV
(α)
ad (r) is the difference between the effective adiabatic potentials for isotopologue–α and for

the reference species (α=1), and g(α)(r) is the non-adiabatic centrifugal potential correction function for

isotopologue–α. Both ΔV
(α)
ad (r) and g(α)(r) are written as sums of two terms, one for each component atom,

whose magnitudes are inversely proportional to the mass of the particular atomic isotope [67, 68, 70, 69],

ΔV
(α)
ad (r) =

ΔM
(α)
A

M
(α)
A

S̃A
ad(r) +

ΔM
(α)
B

M
(α)
B

S̃B
ad(r) (6.63)

g(α)(r) =
M

(1)
A

M
(α)
A

R̃A
na(r) +

M
(1)
B

M
(α)
B

R̃B
na(r) , (6.64)

in which ΔM
(α)
A =M

(α)
A −M

(1)
A is the difference between the atomic mass of atom A in isotopologue α and

in the reference isotopologue (α=1 ).

For a given isotopologue α, Eq. (6.62) effectively has the same form as Eq. (6.1), so the full machinery

of DPF data analysis described in § 6.3 can be applied. The only difference is that in addition to the

parameterized analytic potential energy function V
(1)
ad (r), the fit must simultaneously consider parameters

defining the adiabatic and non-adiabatic radial strength functions S̃
A/B
ad (r) and R̃

A/B
na (r). This is a very

straightforward matter, and raises no significant practical problems. Indeed, the fact that these contributions

to the radial Hamiltonian are relatively small means that no effort need be devoted to obtaining initial trial

values of the parameters defining these BOB radial strength functions. As a result, simultaneous fits to

data sets for multiple isotopologues to determine both an analytic potential energy function and BOB radial

strength functions have been ‘routine’ since the early 1990’s [47].

As in the case of the potential energy function, some thought must be given to the analytic form of the

radial strength functions S̃
A/B
ad (r) and R̃

A/B
na (r) [50]. For one thing, S̃

A/B
ad (r) must have the same limiting

long-range inverse-power behaviour as the potential function itself, since different isotopic forms of a given

molecular species are normally3 expected to have the same limiting long-range functional behaviour. A

second point is that for an electronic state that dissociates to yield an atom in an excited electronic state,

the limiting asymptotic value of S̃
A/B
ad (r) must correlate with any difference in the associated atomic energy

level spacing. For the case of a molecular state of species A–B which dissociates to yield both atoms in

excited electronic states, A∗ +B∗, the overall adiabatic correction to the potential for isotopologue–α must

approach a limiting value equal to the sum of the associated atomic isotope shifts:

lim
r→∞ΔV

(α)
ad (r) = δE(α)(A∗) + δE(α)(B∗) , (6.65)

in which δE(α)(A∗) is the difference between the A→A∗ atomic excitation energy of the isotope of that

atom in molecular isotologue α vs. the corresponding value for the reference isotopologue. Note that this

expression assumes that the absolute zero of energy for a given molecular species is set at the limit for

dissociation to two ground state atoms; analogous (but more complicated) constraints would arise for other

choices of the reference energy.

The above constraints on the adiabatic radial strength functions S̃
A/B
ad (r) are taken into account by the

same type of analytic form used for the MLR potential exponent coefficient:

S̃A
ad(r) = yeqpad

(r) uA∞ + [1− yeqpad
(r)]

∑
i=0

uAi
(
yeqqad(r)

)i
, (6.66)

3 An example of a special exception to this rule is the A 3Σ+
u state of 6,7Li2 discussed in Ref. [53].
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in which pad=m1 , the power of the leading inverse-power term in the long-range potential for the state in

question, and uA∞ is defined as

uA∞ = δE(α)(A∗)
(
M

(α)
A /ΔM

(α)
A

)
. (6.67)

There is no physical constraint on the value of the the integer qad defining the power series expansion variable

in Eq. (6.66), but experience shows that it should be larger that 1 (say qad � 3 ) to prevent the resulting

function from having implausible extrema in the interval between the data region and the asymptotic limit

[50]. If the associated radial expansion variables are expressed relative to re (i.e., solely in terms of yeqp/q(r)),

this form also allows the difference in isotopic dissociation energies to be written as

δD(α)
e = D(α)

e −D(1)
e =

ΔM
(α)
A

M
(α)
A

(uA∞ − uA0 ) +
ΔM

(α)
B

M
(α)
B

(uB∞ − uB0 ) . (6.68)

Most of the considerations discussed above also apply to the non-adiabatic centrifugal radial strength

functions R̃
A/B
ad (r), so the same type of analytic form may be used to represent these functions:

R̃A
na(r) = yeqpna

(r) tA∞ + [1− yeqpna
(r)]

∑
i=1

tAi
(
yeqpna

(r)
)i

. (6.69)

In this case, however, there is no constraint on the limiting long-range form of the function, so there is no

point in using different powers to define the radial variables in the summation and in the other two yp-factors.

Moreover, physical arguments indicate that for neutral molecules t
A/B
∞ =0 , while for a molecular ion which

dissociates to yield (say) A+Q+B, it is defined in terms of Watson’s ‘charge-modified reduced mass’ [67]

and the conventional reduced mass of the dissociation products [50]. Note that the power-series summation

in Eq. (6.69) has no constant term because the derivation of Eq. (6.62) gave rise to an indeterminacy which

is best accounted for by assuming that g(α)(r=re)=0 [67, 68].

The constraint that g(α)(re) = 0 (i.e., that t
A/B
0 = 0 ) means the isotopologue dependence of the equi-

librium bond length is defined by the value of the first radial derivative of the adiabatic correction function

ΔV
(α)
ad (r) at r=re . In terms of the parameterization presented above this means that

δr(α)e = r(α)e − r(1)e =
ΔM

(α)
A

M
(α)
A

S̃A
ad(re)

′

k̃
+

ΔM
(α)
B

M
(α)
B

S̃B
ad(re)

′

k̃
, (6.70)

in which k̃ is the harmonic force constant of the potential function at its minimum and the radial derivative

of S̃A
ad(re) ma be written as

S̃A
ad(re)

′ ≡
(
dS̃A

ad(r)

dr

)
r=re

=
(uA∞ − uA0 ) p

A
ad + uA1 qAad

2 re
. (6.71)

Finally, we note that straightforward extensions of Eq. (6.62) have also been developed that take account

of the e/f Λ-doubling splittings which occurs for singlet states with non-zero integer electronic orbital angular

momentum [51], and for the spin splittings of rotational levels in 2Σ states [65, 56]. Treatments of all of

these BOB effects are incorporated into the publicly available DPF data analysis program DPotFit [65].

6.5 Concluding Remarks

This chapter has shown that the analysis of diatomic molecule spectroscopic data can yield both very

accurate equilibrium properties, including bond lengths and well depths, and accurate overall potential

energy functions. The accuracy of bond lengths determined in this way will match that of experimental Bv

values for the lowest observed vibrational levels, with typical uncertainties of order 10−4− 10−6 Å, while the

uncertainties in the associated dissociation energies are no more than a few % of the binding energy of the

highest observed vibrational level.
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The standard methods described herein often also allow accurate resolution of isotopic differences, both

in equilibrium parameters and in the overall potential energy curves, due to Born-Oppenheimer breakdown.

However, one cautionary note must be raised regarding the isotopologue dependence of equilibrium bond

lengths. The discussion of § 6.4 attributes all such effects to the slope and curvature of the effective adiabatic

correction potential ΔV
(α)
ad (r) appearing in Eq. (6.62), because the Watson convention [67, 68] of defining the

equilibrium value of the non-adiabatic centrifugal potential correction function g(α)(re) to be precisely zero

has been adopted. As was pointed out in Ref. [67], this is an ad hoc assumption introduced because of a fun-

damental indeterminacy associated with removal of the atomic-mass-dependent non-adiabatic contribution

to the kinetic energy operator in order to obtain the working Hamiltonian of Eq. (6.62). Unfortunately, it

is impossible to improve on this description using only the information contained in transition energies, and

since the effects of this approximation may be expected to be very small, it suffices for almost all practical

purposes.

Traditional “parameter-fit” analyses of experimental data based on equations such as (6.4) and (6.16)

have been shown to be at least partially superceded by the DPF methods of § 6.3. However, both the

traditional methods and the associated semiclassical methods of § 6.2 remain of enduring value, both because

of the physical insight they offer, and because of their practical importance in providing the realistic initial

trial parameters required by DPF methods. Within the DPF methodology, it is also clear that use of an

appropriate analytic potential energy functional form is of central importance for obtaining an optimally

compact, flexible, and accurate potential energy function that extrapolates realistically at both large and

small distances. Three keys to these objectives are: (i) placing most of the flexibility of the potential energy

function in a parameterized exponent coefficient, rather than in linear terms, (ii) choosing an optimal

definition for the radial expansion variable, and (iii) incorporating the theoretically-known limiting long-

range behaviour within the overall functional form, rather than having it as a separate attached tail.

While the present discussion has been focussed on diatomic molecules, the DPF method was originally

introduced as a way of describing three-dimensional atom-diatom systems [41]. The type of potential energy

function description used herein has already proved useful for atom-molecule and molecule-molecule Van

der Waals systems [71, 72], and in due course this type of approach can be expected to be applied to more

‘normal’ polyatomic molecules.

Appendix. What Terms Contribute to a Long-Range Potential?

If two atoms lie sufficiently far apart that their electron clouds overlap negligibly, then their interaction

energy may be expanded as the simple inverse-power sum of Eq. (6.33). The nature of the atomic species to

which a given molecular state dissociates determines which powers contribute to this sum. More complete

discussion may be found in Refs. [73, 74, 75, 76].

An m = 1 term will arise in Eq. (6.33) only for ion-pair states that dissociate to yield two atoms with

permanent charges. In this case the interaction coefficient is C1 =−Za Zb e
2/4πε0, in which Za and

Za are the (± integer) number of charges on atoms a and b, respectively.

An m=2 term arises classically from the interaction between a permanent charge and a permanent dipole

moment. Although no atom possesses a permanent dipole moment, an electronically excited one-

electron atom such as excited H or He+ may behave as if it does, since the presence of the interaction

partner can cause a mixing of degenerate states of different symmetry to yield a hybrid atomic orbital

which is effectively dipolar. If its interaction partner is an ion, it will contribute an m= 2 term to

Eq. (6.33).

An m = 3 term arises classically from the interaction between two permanent dipole moments. The

preceding discussion indicates that this could occur in the interaction of two electronically excited

one-electron atoms, each of which is in a dipolar hybrid state. However, a much broader range of cases

involves the interaction between a pair of atoms of the same species in different atomic states between

which electric dipole transitions are allowed. In this case, the ‘resonance’ mixing of the wavefunctions

for two equivalent atoms whose total orbital angular momentum quantum numbers differ by one (i.e.,

S with P , or P with D) effectively makes them act as if they both had permanent dipole moments,

and an r−3 interaction energy arises.
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Another type of r−3 term can arise from the first-order interaction between an ion and a particle with

a permanent quadrupole moment (e.g., with a P–state atom). For this case C3 ∝ Za eQb , where Za e

is the charge on the ion and Qb is the permanent quadrupole moment on its interaction partner.

An m=4 term could arise in first order from the interaction of an ion with a particle having a permanent

octupole moment (e.g., a D–state atom), or between a particle with (or acting as if it had) a permanent

dipole moment and a species having a permanent quadrupole moment. In both cases the associated C4

interaction coefficients would be proportional to the product of the two charge moments with a factor

defined by the symmetry of the particular molecular state.

A more common type of r−4 interaction term arises as the second-order charge-induced dipole inter-

action between an ion and the electron distribution of its interaction partner. For this case C4 =(
Za

2 e2/4πε0
)
αb
d/2 , in which Za e is the charge on the ion (atom–a) and αb

d the dipole polarizability

of particle–b. This is usually the leading long-range term for molecular ions.

An m=5 term arises from the classical electrostatic interaction of two permanent quadrupole moments.

Thus, it will contribute to the long-range potential whenever neither of the interacting atoms is in an

S state. As with all first-order interactions, the associated C5 coefficient is proportional to the product

of the associated permanent moments with a factor depending on the symmetry of the particular

molecular state, or more particularly, as the product of an electronic state symmetry factor times

〈re2〉a 〈re2〉b , where 〈re2〉α is the expectation value of square of the electron radius in the unfilled

valence shell of atom–α.

“Dispersion energy” terms with m = 6, 8, 10, . . . etc., arise in second-order perturbation theory and

contribute to all interactions between atomic particles (except when one is a bare nucleus). For the

case of uncharged atoms, at least one of which is in an S–state, these are the leading (longest-range)

contributions to Eq. (6.33). Because they arise in second-order perturbation theory, these terms are

always attractive for pairs of ground-state atoms.
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Exercises
1. Making use of the fact that the semiclassical value for the expectation value of the property f(r) is

〈f(r)〉 =

∫ ∞

0

f(r) dr

[Gv − V (r)]1/2

/∫ ∞

0

dr

[Gv − V (r)]1/2
, (6.72)

use the machinery of § 6.2.3 to determine an explicit near-dissociation theory expression for the expec-

tation value of f(r)=r2.

2. For a potential whose long-range tail has the form V (r) � D−Ae−br, derive the analog of Eq. (6.37).

3. Show that a polynomial potential expanded in terms of the Šurkus variable of Eq. (6.51) with p=4

cannot give a 1/r6 term.

4. Derive the ‘geometric mean rule’ for rref which was presented in the second-last paragraph of § 6.3.2B.
5. From consideration of the limiting long-range behaviour of Eq. (6.59), show why it is necessary to set

p > (mlast−mfirst) in the definition of an MLR potential.

6. Determine the limiting long-range behaviour of Eq. (6.66), and show that it is ∝ r−m1

7. What is the limiting short-range functional behaviour of an MLR potential energy function? (A simple

way of removing this high-order singularity has been devised.)
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