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APPENDIX A 

CONSTRUCTION OF THE REAL 

NUMBERS 

Introduction. Let Q be the set of rational numbers. The most important properties 
of Q are the properties of the arithmetic operations and the properties of the order 
relation on Q. These properties are summarized by two sets of rules called the field 
axioms and the order axioms. The principal deficiency of Q is that it is not complete. 
The set of rational numbers x such that x2 < 2 is bounded above, yet there is no 
rational least upper bound. We would like to extend Q to R, a set of numbers that 
not only satisfies the field axioms and the order axioms but also has the completeness 
property. This section reviews a standard way to construct the real numbers that 
meets this objective. 

Outline of the construction of R. Prior to attempting any construction such as the 
present one, we freely make use of the real numbers without proving their existence. 
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4 2 0 CONSTRUCTION OF THE REAL NUMBERS 

We know many of the properties that they must have. In particular, we know that any 
real number is the limit of a sequence of rational numbers. That fact suggests that we 
try to define real numbers as the limits of convergent sequences of rational numbers. 
But Definition 2.3.2 of convergent sequences depends explicitly upon the limit point. 
We have defined convergence to L, not convergence per se. To circumvent this 
difficulty, we base our construction on Cauchy sequences of rational numbers rather 
than convergent sequences. Cauchy sequences are defined purely in terms of rational 
numbers, and they coincide with the class of sequences that we shall ultimately regard 
as convergent to a limit in R. 

Let 6 be the class of all Cauchy sequences of rational numbers. C cannot be identified 
with the set of real numbers because many different Cauchy sequences may converge 
to the same real number. Hence we introduce an equivalence relation on 6, making 
two Cauchy sequences equivalent if the difference sequence converges to zero. Note 
that convergence to zero can be defined in terms of rational numbers only. Hence 
real numbers will be defined as equivalence classes of Cauchy sequences of rational 
numbers. We will see that the usual arithmetic operations and the order relation 
can be defined easily for these equivalence classes, and that the resulting system is 
complete. 

In what follows, we only assume basic knowledge of the rational numbers. We restate 
some of the earlier definitions using only rational numbers, making sure that all of 
our arguments are formulated in terms of rational numbers only. 

A.1 FIELD AND ORDER AXIOMS IN 

Definition A.1.1 Field axioms on Q. There are two binary operations Q x Q - t Q 
called addition and multiplication. Addition applied to (a, b) G Q x Q gives (a + b). 
Multiplication applied to (a, b) G Q x Q gives (a ■ b). These operations have the 
following properties. 

Commutativity 

a + b = b + a and a ■ b — b ■ a for all a, b G Q. 

Associativity 

(a + b) + c = a + (b + c) and (a ■ b) ■ c = a ■ {b ■ c) for all a, b, c £ Q. 

Distributivity 

a ■ (b + c) = (a ■ b) + (a ■ c) for all a, b, c G Q. 

Existence of the neutral elements There are two elements in Q, 0 and 1, such that 
0 ^ 1 and such that 

0 + a = a and 1 • a = a for all a G Q . 



EQUIVALENCE CLASSES OF CAUCHY SEQUENCES IN Q 4 2 1 

Existence of inverses for addition (subtraction) 

For each a s Q , there is a (—a) G Q such that a + (—a) = 0. 

Existence of the inverse for multiplication (division) 

If a G Q and if a ^ 0, then there is a (1/a) e Q such that a ■ (1/a) = 1. 

Definition A.1.2 Order axioms on Q. There is a set PQ C Q, called the positive 
(rational) numbers, with the following two properties. 

1. For each p G Q, exactly one of the following three cases is true: p = 0, 
p G PQ, or - p G PQ. 

2. If p, q g PQ, then p + <j G PQ and pq G PQ. 

Remarks A.1.3 Our objective. We would like to construct a set R with the following 
properties. 

1. There are two binary operations I x R ^ R o n R , addition and multiplication, 
that satisfy the field axioms on R. 

2. There is a set PR C R, the set of positive (real) numbers, that satisfies the order 
axioms on K. 

3. There is a one-to-one mapping <p : Q —> R such that ip(p + q) = <¿>(p) + ip{q) 
and ^(pq) = ip(p)<fi(q) for all p, <? G Q and such that </>(PQ) C PR. Here 
<p(p) + v(?) a nd iP(p)lf(<l) a r e stated in terms of the addition and multiplication 
operations on R. 

4. Every nonempty subset of R with an upper bound has a least upper bound. 
Hence, R satisfies the completeness axiom, Axiom 2.2.3. 

A.2 EQUIVALENCE CLASSES OF CAUCHY SEQUENCES IN Q 

Definition A.2.1 Cauchy sequences of rational numbers. A sequence x : N —» Q 
is called a Cauchy sequence of rational numbers if for each rational number a > 0, 
there is an -/V G N such that \xm — xn\ < a for all m, n> N. Let 6 be the set of all 
Cauchy sequences of rational numbers. 
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Definition A.2.2 Zero sequences of rational numbers. A sequence x : N —> Q is 
called a zero sequence of rational numbers if for each rational number a > 0, there 
is an N e N such that \xn \ < a for all n > N. Let Z be the set of all zero sequences 
of rational numbers. 

Lemma A.2.3 Every zero sequence of rational numbers is also a Cauchy sequenceof 
rational numbers. Hence Z C C. 

Proof. This is left as an exercise. D 

Definition A.2.4 Constant sequences of rational numbers. Each rational number 
q G Q defines a constant sequence q : N —> Q: we set qn = q for all n G N. Let 
Q be the set of all constant sequences of rational numbers. It is clear that q G 6 for 
each q G Q. Hence Q C C. Note that q G Z if and only if q = 0. 

Definition A.2.5 Sum and product of two sequences. If x : N —> Qandy : N —» Q 
are two sequences, then their sum is defined as the sequence (x + y)n — xn + yn 

and their product as the sequence {xy)n = xnyn. 

Lemma A.2.6 Let x : N —» Q and y : N —> Q be two sequences. 

(1) Ifx, y G C, then (x + y ) e ß and (xy) G C. 

(2j /fx, y G Z, f/î n (x + y) G 2. COTÍ/ (xy) G Z. 

f JJ IfxeZ and y G C, iÄen (xy) G Z. 

Proof. This is left as an exercise. D 

Definition A.2.7 Addition and multiplication on C. Addition on 6 is the operation 
C x e —> e that takes the pair (x, y) G C x C to (x + y) G C. Similarly, multiplication 
on C is the operation C x C —> C that takes the pair (x, y) G 6 x Q to (xy) G 6. 
Note that if p, g e Q, then (p + q) = p + q and (pq) — pq, with the notations of 
Definition A.2.4. 

Definition A.2.8 An equivalence relation on C. Define a relation on 6 x C as 
follows. If x, y G C, then x is related to y if and only if (x — y) G Z. It is easy to 
check that this is an equivalence relation on C in the sense of Definition 1.1.9. We 
write x ~ y for (x - y) G Z. Note that if p, q G Q, then p ~ q if and only if p = q, 
with the notations of Definition A.2.4. 
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Definition A.2.9 Real numbers. Equivalence classes were defined in Definition 
1.1.11. The equivalence class represented by x e 6 is the set 

EX = {x' e e i x' ~ x} c e. 

Any two equivalence classes are either identical or disjoint. In fact, if x ~ y, then 
Ex — Ey, and if x T¿ y, then Ex f) Ey = 0. The union of all equivalence classes 
is C. Each equivalence class is also called a real number. The equivalence class 
Ex is the real number represented by the sequence x. The same real number can be 
represented by any sequence in Ex, i.e., by any sequence x' ~ x. Let K denote the 
collection of all equivalence classes. This collection is called the set of real numbers. 

Definition A.2.10 Operations on real numbers. We will define addition and mul-
tiplication operations R x R —> R. Let Ex, Ey G R. Hence Ex and Ey are two 
real numbers and also two equivalence classes represented by the sequences x and y. 
Their sum Ex + Ey and their product Ex Ey are defined as 

Ex + Ey = Ex-i-y and ExEy = Exy. 

This definition has to be justified. If Ex = Ex< and Ey = Ey>, must we have 
Ex+y = Exi+y> andExy = Exiy>l If not, then the definitions above are meaningless. 
The required justification is provided by Lemma A.2.11 below. 

These definitions are reasonable. They depend on the fact that the limit of the sum of 
two sequences is the sum of their limits. The same is also true for products. Theorem 
A.2.15 below shows that the field axioms are satisfied on R with these operations. 

Lemma A.2.11 Letx, x', y, y' G 6. Ifx ~ x' and y ~ y', then (x + y) ~ (x' + y') 
and (xy) ~ (x'y1). 

Proof. Let x' = x + p and y' = y + q with p, q £ Z. Then 

[x1 + y1) - (x + y) = p + q e Z 

by the second part of Lemma A.2.6. Hence (x + y) ~ (x' + y'). Also, 

(x'y') - (xy) = (py) + (xq) + (pq) G Z, 

by the second and third parts of Lemma A.2.6. Hence (xy) ~ (x'y'). □ 

Definition A.2.12 Positive real numbers. Call a sequence x : N —» Q an eventually 
positive sequence if there is an n G N such that xn > 0 for all n > N. Call a real 
number Ex € M. a positive real number if each y G Ex is an eventually positive 
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sequence. Let P R C R be the set of all positive real numbers. These definitions 
are reasonable as well. In fact, the limit of a sequence is positive if and only if all 
the sequences converging to the same limit are eventually positive. Theorem A.2.16 
below shows that the order axioms are satisfied on R with this definition of positivity. 

Lemma A.2.13 Let i £ E , Assume that for each rational number a > 0 and for 
each W e N , there is ann > N such that \xn\ < a. Then x £ Z. 

Proof. Given a rational a > 0, find a n I V e N such that \xn — xm\ < a/2 for all 
m, n > N. This can be done since x G C. By assumption, we can find an m G N 
such that m > N and such that \xm\ < a/2. Let n> N. Then 

\xn\ = \xm + (xn ~ xm)\ < \xm\ + \xn - xm\ < {a/2) + (a /2) = a. 

Hence x e Z. □ 

Lemma A.2.14 Let x G C and x $ Z. Then there is an a > 0, a € Q, such that the 
following are true. 

(1) There is Í D I M É N such that \xm\ > a for all m > M. 

(2) There is an N € N such that either xn > afar all n > N or —xn > afar all 
n> N. 

(3) Let y ~ x. Then there is a K G N such that Xk and y^ are both nonzero and 
have the same sign for all k > K. 

Proof. Since x 0 Z, the hypothesis of Lemma A.2.13 cannot be true. Hence there 
is a rational number a > 0 and an M e N such that \xm\ > a for all m > M. This 
proves the first part. 

Now find m N > M, N e N, such that \xm - xn\ < a for all m, n > N. This 
can be done since x is a Cauchy sequence. Let m, n > N. If xm and xn have 
opposite signs, then \xn — xm\ > 2a, since \xm\ > a and \xn\ > a. This violates the 
condition that \xm — xn\ < a for all m, n > N. Hence either xn> a for all n > N 
or xn < —a for all n > N. This proves the second part. 

Let y ~ x. Then (x - y) G Z. Find a K > N, K G N, such that \yk - xk\ < a/2 
for all k > K. Then —a/2 < yk — xk < a/2 shows that 

Xk - a/2 <yk<xk+ a/2 

for all k > K. Hence we see that if a < xk, then a/2 < yk, and if xk < —a, then 
yk < —a/2 for all k > K. This proves the last part. □ 
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Theorem A.2.15 Let K be the collection of all equivalence classes in C. Let the 
addition and multiplication operations R x R —> R on R be defined by 

Ex + Ey = Ex+y and ExEy = Exy, 

as in Definition A.2.10. Then these operations satisfy the field axioms, Axiom A. 1.1, 
onR. 

Proof. Let 0 and I be the constant sequences consisting of all Os and all Is. Note 
that i?g = Z. We see that EQ is the neutral element for addition in R and E\ is the 
neutral element for multiplication in R. 

First, we verify the division axiom. Let Ex ^ EQ. We will show that there is a y € C 
such that ExEy — E\. Now i € 6 and x £ Z. Then the first part of Lemma A.2.14 
shows that there is a rational number a > 0 and an N £ N such that \xn\ > a for 
all n > N. Define a sequence y : N —>Qbyyn = O i f n < A r and yn = \/xn if 
n> N.We claim that y G C and ExEy =E1.lfm,n>N, then 

\yn-ym\ = \0-/xn)~ (\/xm)\ = \xn~xm\/\xnxm\ 
< (l/a2)\xn -xm\. 

Given a rational number b > 0, find an M > N, M G N, such that \xn — xm\ < a2b 
for all m, n> M. Then we see that \yn — ym\ <b for all m, n > M. Hence y G 6. 
We see that xnyn = 1 for all n > N. Therefore (xnyn — 1) = 0 for all n > N. 
Then we see that (xy — 1) ~ 0 or that xy ~ 1. Hence E'xE'y = £?i. 

The verification of the other axioms is quite routine. We verify only distributivity 
as an example. Addition and multiplication in C have the distributivity property. In 
fact, if a, b, c G C, then 

(a(b + c))n = an(b + c)n = anbn + anbn 

= {ab)n + (ac)n = ((ab) + (ac))n. 

Now let Ea, Eb, Ec G K with a, b, c G C. Then 

Ea(Eb + Ec) = EaEb+c = Ea(b+C) 
= E(ab) + (ac) = -Eob + Eac 

— EaEb + EaEb. 

Therefore the distributivity axiom is satisfied. □ 

Theorem A.2.16 Let R be the set of real numbers with the arithmetic operations as 
defined in Definition A.2.10. Let PR be the set of all positive real numbers as defined 
in Definition A.2.12. Then the order axioms, in Definition A. 1.2, are satisfied on R. 
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Proof. First, note that EQ = —EQ is not positive. For example, the sequence 
xn = ( —l)n(l/n) is a zero sequence which is not eventually positive. Now let 
Ex T¿ EQ. We will show that either Ex or —Ex is positive. 

We have x g Z. Hence the second part of Lemma A.2.14 shows that either x or 
—x is eventually positive. Assume that x is eventually positive. Then the last part 
of Lemma A.2.14 shows that if y ~ x, that is, if y G Ex, then y is also eventually 
positive. Hence Ex is a positive real number. Similarly, if —x is eventually positive 
and if y ~ x, then — y is also eventually positive. In this case —Ex = E^x is a 
positive real number. This proves the first part of the order axioms. 

For the second part, assume that Ex and Ey are both positive. Then, by the second 
part of Lemma A.2.14, there are a, b > 0, a, b G Q, and a n J V e N such that xn> a 
and yn > b for all n > N. Then xn+yn>a + b>0 and xnyn > ab > 0 for 
all n > N. Hence Ex + Ey and ExEy are both nonzero, and they are both positive 
numbers. □ 

Definition A.2.17 Canonical embedding of Q into R. Let <p : Q -> R be the 
function defined as <p(p) = Ep. Here p G C is the constant sequence with all terms 
equal to p G Q. We will call ip : Q —> R the canonical embedding ofQ into R. 

Theorem A.2.18 77¡e canonical imbedding of Q mío M ¿s a one-to-one function 
ip : Q —> R. // presewes addition and multiplication in the sense that 

<f{p + q) = <p(p) + <fi{q) and ip{pq) = ip(p)tp(q) for all p, q G Q. 

A/so, <¿> : Q —> R preserves the order in the sense that (p(Pq) C PR. 

Proof. If .Ep = Eq, then p ~ q and (p — 5) is a zero sequence. But a constant 
sequence is a zero sequence only if the constant term is zero. This is obvious, as 
already mentioned in Definition A.2.4. Hence Ep = Eq in R only if p = q in Q. 
This shows that ¡p : Q —> R is one-to-one. For the second part, 

V>(P + 9) = £(P+g) = Ep + Eq = (p(p) + (/3(g). 

Here the second equality follows from the definition of addition in R. The proof of 
vipq) = f(p)(P((l) is similar. For the last part, note that if p is a positive rational 
number, then p is not a zero sequence and eventually (in fact, always) is positive. 
Hence ip(p) = Ep is a positive real number. □ 

Remarks A.2.19 Identification of Q with </?(Q). We ignore the differences between 
p G Q and p G C and </>(p) = £p- G M. The meaning will be clear from the context. 
Hence we consider Q as a subset of R. We also denote the real numbers with single 
letters, as is customary. 
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A.3 COMPLETENESS OF M 

The addition and multiplication operations and the order relation on E satisfy the field 
and order axioms. Hence we can develop all the related concepts, inequalities between 
real numbers, absolute values of real numbers, sequences, convergent sequences, and 
Cauchy sequences of real numbers as done before. We omit the repetition of these 
definitions and the related results. Instead, as an example, we give a detailed proof 
(perhaps more detailed than necessary) of the completeness of M. 

Note that any real number r is an equivalence class of Cauchy sequences of rational 
numbers. Any sequence x in this equivalence class will be called a representative 
(sequence) for r. The choice of representatives is arbitrary and not important. If 
r = <p(p) = p is a rational number, however, then the constant sequence p = p 
is taken as the standard representative of r = p. The identifications used here are 
explained in Remarks A.2.19. 

Lemma A.3.1 Let x be a representative for r £ l . Assume that there is an N G N 
such that 0 < xn. Then 0 < r. 

Proof. Any real number must satisfy exactly one of the following conditions: r = 0 
or r G P or —r G P. Our hypothesis rules out the last condition. In fact, this 
condition means that all representatives of — r must eventually be positive. But — r 
has at least one representative — x which is not eventually positive. Hence — r G' P. 
Therefore either r = 0 or r G P. □ 

Remarks A.3.2 Let x be a representative for r g l Assume that there is an N G N 
such that 0 < xn. Then 0 < r by Lemma A.3.1, but we cannot conclude that 0 < r. 
In fact, 0 < r means that not one but all representatives of r must eventually be 
positive. A simple counterexample is xn = 1/n, a positive sequence that represents 
0. 

Lemma A.3.3 Let r > 0, r £ 1. Then there is a p G Q such that 0 < p < r. 

Proof. Let x be a representative sequence for r. Hence x is eventually positive, since 
r > 0. Lemma A.2.14 shows that there is an a > 0, a G Q, and a n i V e N such that 
either xn > a for all n > N or xn < — a for all n > N. The second case cannot be 
true, since x must eventually be positive. Hence xn > a for all n > N. Then, by 
Lemma A.3.1 above, 0 < a < r. Letp = a/2. Then 0 < (a/2) < a < r shows that 
0 < p < r. □ 

Lemma A.3.4 Let r, s G M. and r < s. Then there is a q G Q such that r < q < s. 
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Proof. We have 0 < (s — r). Use Lemma A.3.3 to find p £ Q such that 0 < 
p < (s — r). Let x and y be representatives for r and s. Then 0 < (s — r) — p 
shows that the sequence (yn — xn — p) is eventually positive. Find M £ N such that 
Vm > xm + P for all m > M. Since x is a Cauchy sequence, there is an N > M, 
N £ N, such that \xN - xn \ < p/4 for all n> N. 

Let qi = xN + (p/4) and q2 = xN + (3p/4). If n > N, then 

qi-xn = (p/4) + (XJV - xn) > (p/4) + \xN - xn\ > 0 

shows that that r < qlt and 

q2=xN + (3p/4) = x„ + (XJV - xn) + (3p/4) < xn + p < yn 

shows that q-2 < s. If q = {q\ + q2)¡1 = x^ + (p/2), then x < q < s. D 

Remarks A.3.5 Upper bounds. Completeness is formulated in terms of upper 
bounds. They were introduced in Definition 2.2.1. M £ K is called an upper bound 
for a set A c R if a < M for all a £ A. Note that if A has an upper bound M £ K, 
then it also has an upper bound M' £ Q. This follows from Lemma A.3.4 or just 
from the fact that any Cauchy sequence of rational numbers is bounded by a rational 
number. 

Lemma A.3.6 Let A be a nonempty set of real numbers. Assume that A has an 
upper bound. Then there is a p £ Q such that p is not an upper bound for A but 
p + 1 is an upper bound for A. 

Proof. Let a £ A. Then r = (a — 1) is not an upper bound. Let s < r, s £ Q. 
Then s is not an upper bound. The sequence sn = s + n is an unbounded sequence. 
Hence there are n £ N for which s + n is an upper bound for A. Use the induction 
principle to find the least m £ N such that q = s + m is an upper bound. Then 
p = q — 1 = s + (m — 1) is not an upper bound. (Note that this is obviously true if 
m>2, but it is also true even if m = 1.) D 

Lemma A.3.7 Let A be a nonempty set of real numbers. Assume that A has an 
upper bound. Then there are two sequences of rational numbers pn and qn such that 
if n £ N, then pn is not an upper bound for A, qn is an upper bound for A, and 
( 9 n - P n ) - ( l / 2 ) " - 1 . 

Proof. Let p, q £ Q be the two numbers obtained in Lemma A.3.6. Let p\=p and 
q\ = q. Our requirements are satisfied for n = 1. Assume that p„, qn are obtained 
such that pn is not an upper bound, qn is an upper bound, and (qn —pn) = (1/2)™-1. 
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Let sn = (pn + qn)/2. If sn is not an upper bound, then let pn+i = sn and 
qn+i = qn- If sn is an upper bound, then let pn+i — Pn and qn+i = sn. We see 
that our requirements are also satisfied for n + 1. Hence the sequences pn and qn are 
defined by the induction principle. G 

Lemma A.3.8 The sequences pn and qn obtained in Lemma A.3.7 are equivalent 
Cauchy sequences. 

Proof. We see that pn < pn+\ < qn+i < Qn- By induction it follows that 

Pn < Pn+k < qn+k < qn for all k e N. 

Therefore, if m > n, then \pn-pm\ < \Pn~qn\ = ( l / 2 ) n _ 1 . But (1/2)""1 is a zero 
sequence. Hence pn is a Cauchy sequence. Similarly, qn is also a Cauchy sequence. 
The equivalence of pn and qn follows from the fact that (qn — pn) = (1 /2)" - 1 is a 
zero sequence. Q 

Theorem A.3.9 Let A be a nonempty set of real numbers. Assume that A has an 
upper bound. Then A has a least upper bound. More explicitly, there is an r 6 R 
such that r is an upper bound for A, but ifs < r, s £R, then s is not an upper bound 
for A. 

Proof. Let pn and qn be the sequences obtained in Lemma A.3.7. Lemma A.3.8 
shows that they are equivalent Cauchy sequences. Hence they represent the same 
r £ l . We claim that r is a least upper bound for A. 

Assume that r is not an upper bound for A. Then there is an a G A such that r < a. 
Use Lemma A.3.4 to find g e Q such that r < q < a. Then the sequence q — qn 

represents the positive number (q — r) E K. Hence it must eventually be positive. 
Hence there is an N € N such that q > qn for all n > N. This means that qn < q < a 
and qn is not an upper bound for A. This is a contradiction. Hence r is an upper 
bound for A. 

Now suppose that A has an upper bound s £ R, s < r. As before, find a p g Q 
such that s < p < r. Then (pn — p) must eventually be positive, as it represents 
(r — p) > 0. Therefore pn > p > s for some n £ N. This means that pn is an upper 
bound for A. This is a contradiction. Hence A cannot have upper bounds less than 
r. Therefore r is a least upper bound for A. D 




