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Chapter 1

REAL NUMBERS

The foundation of Mathematical Analysis is the real numbers. While the set of real

numbers is relatively simple, it provides nontrivial examples for most important

ideas in analysis. A good understanding of real numbers is a necessary prerequisite

for understanding the concepts of differential and integral calculus as well as more

advanced topics in analysis.

In this chapter we introduce real numbers using the axiomatic approach. As

primitive notions we take the set of real numbers, the operations of addition and

multiplication, and the inequality. We then formulate ten axioms that completely

describe the set of real numbers. Everything else in this book can be derived from

these ten axioms.

Most facts in this chapter will look familiar. We prove these properties of real

numbers not to verify their correctness, but to show that they follow from the

axioms.

The set of all real numbers will be denoted by R. In what follows, real numbers

will be referred to simply as numbers.

1.1 Addition

These are the fundamental properties of addition of numbers:

1+ a+ b = b+ a;

2+ (a+ b) + c = a+ (b+ c);

3+ The equation a+ x = b is solvable.

Equalities 1+ and 2+ hold for all numbers a, b, and c. Property 3+ says that

for every pair of numbers a and b there exists a number x satisfying a+ x = b. We

do not prove properties 1+, 2+, and 3+, so they can be considered as axioms.

Later we will assume, for the sake of logical completeness, that there are at

least two distinct real numbers. Why that assumption is desirable will be dealt

with when the need arises. Proposition 1.1.1 asserts the existence of a number with

a very special property. But without an understanding tacitly assumed but not
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2 An Introduction to Analysis

explicitly mentioned, the statement is not quite true and the proposed proof is not

quite valid. See if you can find the chink in the logic and the remedy.

1.1.1. There exists one and only one number x such that b+ x = b for all numbers

b.

Proof. The existence of a number x satisfying b+x = b follows from 3+. However we

may only assert that for every b there exists some number x satisfying the required

equation, but we do not know whether that number is the same for all b. This must

be proved.

Let a denote an arbitrary number. There exists a number x satisfying

a+ x = a. (1.1)

We will prove that this same number x satisfies b + x = b for every number b. In

fact, from 3+ it follows that there is a number y such that a+y = b, or, equivalently,

b = a+ y. (1.2)

By (1.2), 2+, 1+, 2+, (1.1), and (1.2), we conclude that

b+ x = (a+ y) + x = a+ (y + x) = a+ (x+ y) = (a+ x) + y = a+ y = b.

We thus have proved that the number x satisfying a+ x = a for some arbitrary

a, satisfies the same equation for any a. We still have to prove that this is the only

number with this property. Assume that there are two such numbers and denote

them by x1 and x2. Then we have simultaneously

x1 + x2 = x1 and x2 + x1 = x2.

Consequently, by 1+, we have

x1 = x1 + x2 = x2 + x1 = x2.

This proves that there is only one number with the required property.

Proposition 1.1.1 is interesting for the reason that it allows one to distinguish

from the set of all real numbers exactly one real number with the following property:

If we add that number to any number a, then as the result we obtain the same

number a. The number with this particular property is called zero and is denoted

by 0. In view of 1+ we have

0 + a = a+ 0 = a. (1.3)

1.1.2. If a+ x = b and a+ y = b, then x = y.

In other words: The solution of a + x = b is unique for each pair of numbers a

and b.
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Proof. If a+ x = b and a+ y = b, then

a+ x = a+ y. (1.4)

By 3+ there is a number z such that

a+ z = 0. (1.5)

From (1.3), (1.5), 2+, 1+, (1.4), 1+, 2+, (1.5), and (1.3), we obtain

x = x+ 0 = x+ (a+ z) = (x+ a) + z = (a+ x) + z

= (a+ y) + z = (y + a) + z = y + (a+ z) = y + 0 = y.

Note that 1.1.2 implies the following useful property, which is often called the

cancellation law for addition:

1.1.3. If a+ x = a+ y, then x = y.

The unique solution x of the equation a+ x = b is called the difference of a and

b and is denoted by b− a. From this definition it follows that

1.1.4. a+ (b− a) = b.

By introducing the difference we have defined a new operation which associates

a number b − a with a pair of numbers a and b. This operation is called subtrac-

tion. Proposition 1.1.2 asserts the uniqueness of subtraction and property 3+ its

feasibility.

1.1.5. a− a = 0.

Proof. By the definition of 0 we have a+0 = a and, by 1.1.4, a+(a−a) = a. Hence

a− a = 0, by 1.1.2.

1.1.6. (b− a) + a = b and (b+ a)− a = b.

Proof. The first of these identities follows at once from 1.1.4, by 1+. In view of 1.1.4

we also may write a+((b+a)−a) = b+a. Hence, by 1+, we get ((b+a)−a)+a = b+a,

and finally (b+ a)− a = b, by 1.1.3.

The number 0− a is denoted simply by −a and is called the opposite of a. We

thus have

0− a = −a. (1.6)

1.1.7. a+ (−a) = 0.

Proof. Substitute b = 0 in 1.1.4 and use (1.6).

1.1.8. b+ (−a) = b− a.
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Proof. From 1.1.7 we have (a+(−a))+b = 0+b = b and consequently a+(b+(−a)) =

b. Comparing this with 1.1.4 we see that b+ (−a) = b− a, by 1.1.2.

1.1.9. −(−b) = b.

Proof. Substituting b for a in 1.1.7 we get b + (−b) = 0 and therefore, by 1+,

(−b)+ b = 0. On the other hand, substituting −b for a into the same equation 1.1.7

we obtain (−b) + (−(−b)) = 0. Consequently −(−b) = b, by 1.1.2.

EXERCISES 1.1

(1) Does the set {0} with the usual definition of addition of numbers satisfy

1+, 2+, 3+?

(2) Does the empty set with the usual notion of addition of numbers satisfy

1+, 2+, 3+?

(3) In the proof of Proposition 1.1.1, find the chink in the logic and the remedy.

(4) Denote Z3 = {0, 1, 2}. Define addition ⊕ in Z3 by the table below. Does

(Z3,⊕) satisfy 1+, 2+, 3+?

⊕ 0 1 2

0 0 1 2

1 1 2 0

2 2 0 1

(5) Denote Z4 = {0, 1, 2, 3}. Define addition ⊕ in Z4 by the table below. Does

(Z4,⊕) satisfy 1+, 2+, 3+?

⊕ 0 1 2 3

0 0 1 2 3

1 1 2 3 0

2 2 3 0 1

3 3 0 1 2

(6) Prove the following identities:

(a) a− 0 = a.

(b) a+ (b− c) = (a+ b)− c.
(c) a− (b− c) = (a+ c)− b.
(d) (a− b) + (c− d) = (a+ c)− (b+ d).

(e) −(a+ b) = −a− b.
(f) −(b− a) = a− b.

1.2 Multiplication

Multiplication assigns to each pair of numbers a and b another number ab, called

the product of a and b. Multiplication has properties similar to those of addition:
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1∗ ab = ba;

2∗ (ab)c = a(bc);

3∗ The equation ax = b is solvable whenever a 6= 0.

Property 3∗ differs from the analogous property of addition by the additional

assumption that a is different from 0. The necessity of this restriction is discussed

in Section 1.3.

1.2.1. There exists one and only one number x such that, bx = b for all numbers b.

Proof. Let a denote an arbitrary number different from 0. In view of 3∗ there exists

a number x such that

ax = a. (1.7)

We are going to show that the same number x also satisfies bx = b for all b.

By 3∗ there exists a number y satisfying ay = b, or

b = ay. (1.8)

Hence

bx = (ay)x = a(yx) = a(xy) = (ax)y = ay = b.

We have proved existence of a number with the desired property. It remains to

show its uniqueness. If there were two such numbers, x1 and x2, then we would

have

x1x2 = x1 and x2x1 = x2.

By 1∗ the second equation can be written as x1x2 = x2 and thus it follows that

x1 = x2. This proves that the number is unique.

Proposition 1.2.1 distinguishes a number with the property that each number b

multiplied by that number gives b as the result. This particular number is called

the unit and denoted by 1. In view of 1∗ and 1.2.1 we have

1 · a = a · 1 = a.

In expressions with specific numbers like the one above, it is customary to write

a · b instead of ab.

1.2.2. If ax1 = b and ax2 = b, and a 6= 0, then x1 = x2.

In other words: The solution of the equation ax = b with a 6= 0 is unique.

Proof. If ax1 = b and ax2 = b, then

ax1 = ax2. (1.9)

By 3∗ there is a number y such that

ay = 1. (1.10)
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6 An Introduction to Analysis

From (1.9), (1.10), 1∗ and 2∗, we find successively

(ax1)y = (ax2)y,

(x1a)y = (x2a)y,

x1(ay) = x2(ay),

x1 · 1 = x2 · 1,
x1 = x2.

As in the case of addition, the above property implies the cancellation law for

multiplication:

1.2.3. If ax = ay and a 6= 0, then x = y.

In view of 3∗ and 1.2.2, given a pair of numbers a and b such that a 6= 0, there

exists exactly one number x such that ax = b. This number is called the quotient of

the numbers b and a with denominator a and numerator b. This number is denoted

by b
a . Since the number b

a satisfies the equation ax = b, we have

a
b

a
= b for a 6= 0. (1.11)

Note that the above defines a new operation which assigns to every pair of

numbers a and b such that a 6= 0, the number b
a . This operation is called division.

1.2.4.
a

a
= 1 for a 6= 0.

Proof. For b = a, (1.11) implies a aa = a. On the other hand, a · 1 = a. Hence, by

1.2.2, we obtain a
a = 1.

1.2.5. c
b

a
=
b

a
c =

bc

a
.

Proof. The first equality is an immediate consequence of 1∗. To establish the second

equality, we multiply both sides of (1.11) by c to get (a ba )c = bc, and hence

a

(
b

a
c

)
= bc (1.12)

by 2∗. Since formula (1.11) holds for each number b it thus remains true when b is

replaced by bc:

a
bc

a
= bc. (1.13)

Now (1.12) and (1.13) implies b
ac = bc

a , by 1.2.2.

1.2.6.
b

a
a = b and

ba

a
= b for a 6= 0.
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Proof. The first identity follows from (1.11) and 1∗. If in (1.11) we write ba instead

of b, then we get a baa = ba = ab. Hence the identity ba
a = b follows by 1.2.2.

The number 1
a , for a 6= 0, is called the reciprocal of a.

1.2.7. c
1

a
=
c

a
for a 6= 0.

Proof. From 1.2.5 with b = 1 we get c 1a = c·1
a and hence c 1a = c

a .

EXERCISES 1.2

(1) Does the set {0} satisfy 1∗, 2∗, 3∗?

(2) Is 0 = 1 or is 0 6= 1? Explain.

(3) Denote Z3 = {0, 1, 2}. Define multiplication ⊗ in Z3 by the table below.

Does (Z3,⊗) satisfy 1∗, 2∗, 3∗?

⊗ 0 1 2

0 0 0 0

1 0 1 2

2 0 2 1

(4) Show that 1
2 = 2 in (Z3,⊗).

(5) Denote Z4 = {0, 1, 2, 3}. Define multiplication ⊗ in Z4 by the table below.

Does (Z4,⊗) satisfy 1∗, 2∗, 3∗?

⊗ 0 1 2 3

0 0 0 0 0

1 0 1 2 3

2 0 2 0 2

3 0 3 2 1

(6) Denote Y = {0, 1, 2}. Define addition and multiplication in Y by the

following tables:

⊕ 0 1 2

0 0 1 2

1 1 2 0

2 2 0 1

⊗ 0 1 2

0 2 0 1

1 0 1 2

2 1 2 0

Does Y with addition ⊕ and multiplication ⊗ satisfy 1+, 2+, 3+, 1∗, 2∗,

and 3∗? Which of the three elements in Y equals 1
2?

(7) Does it follow from axioms 1+, 2+, 3+, 1∗, 2∗, and 3∗ that ab 6= 0 whenever

a 6= 0 and b 6= 0?

(8) Prove that 1
a
1
c = 1

a c , provided a 6= 0, c 6= 0, and ac 6= 0.

(9) Prove that 1

( 1
a )

= a, provided a 6= 0 and 1
a 6= 0.
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(10) In the proof of 1.2.5, both sides of (1.11) are multiplied by c to get
(
a bc
)
c =

bc. Why can we multiply both sides of an equality by the same number

and then assert that the resulting quantities are equal?

1.3 Distributivity

We now complete the list of properties of addition and multiplication with a property

that links the two operations.

+∗ a(b+ c) = ab+ ac

This property is called the distributivity of multiplication over addition. In view

of 1∗ we may also write (b+ c)a = ba+ ca.

1.3.1. a(b− c) = ab− ac and (b− c)a = ba− ca.

Proof. In view of 1.1.4 we have

ac+ (ab− ac) = ab (1.14)

and

c+ (b− c) = b. (1.15)

Multiplying both sides of (1.15) by a we get a(c+ (b− c)) = ab and then applying

+∗ we get

ac+ a(b− c) = ab. (1.16)

From (1.14) and (1.16) we get a(b − c) = ab − ac, by 1.1.2. This proves the first

identity. The second identity follows by 1∗.

1.3.2. 0 · a = a · 0 = 0.

Proof. From 1∗ we have 0 · a = a · 0. For c = b we obtain, from the first identity in

1.3.1, a(b− b) = ab− ab and hence a · 0 = 0, by 1.1.5.

From 1.3.2 it follows that the equation ax = b has no solution if a = 0 and b 6= 0.

This explains the necessity of the restriction a 6= 0 in 3∗. On the other hand, if

a = 0 and b = 0, then every number x satisfies ax = b. This explains the necessity

of the restriction a 6= 0 in 1.2.2.

1.3.3. (−a)b = −(ab) and (−a)(−b) = ab.

Proof. Since

(−a)b = (0− a)b = 0 · b− ab = 0− ab = −(ab),

we have (−a)b = −(ab). Using this equality we may write

(−a)(−b) = −(a(−b)) = −(a(0− b)) = −(a · 0− ab)
= −(0− ab) = −(−(ab)) = ab,

by 1.3.1, 1.3.2, and 1.1.9.
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1.3.4. If a 6= 0 and b 6= 0, then ab 6= 0.

Proof. It suffices to prove that if a 6= 0 and ab = 0, then b = 0. Indeed, since

a · 0 = 0 (by 1.3.2), b = 0 follows from 1.2.2.

1.3.5. If a 6= 0 and b 6= 0, then
b

a
6= 0.

Proof. It suffices to prove that, if a 6= 0 and

b

a
= 0, (1.17)

then b = 0. Multiplying (1.17) by a we get b
aa = 0 · a. Hence b = 0, by 1.2.6 and

1.3.2.

1.3.6.
b

a

d

c
=
bd

ac
for a 6= 0 and c 6= 0.

Proof. Since

(ac)

(
b

a

d

c

)
=

(
(ac)

b

a

)
d

c
=

(
a

(
c
b

a

))
d

c

=

(
a

(
b

a
c

))
d

c
=

((
a
b

a

)
c

)
d

c
=

(
a
b

a

)(
c
d

c

)
,

we have

(ac)

(
b

a

d

c

)
= bd.

On the other hand, we may write

(ac)
bd

ac
= bd,

because ac is different from zero, by 1.3.4. Hence b
a
d
c = bd

ac , by 1.2.2.

1.3.7.
b

a
=
bc

ac
for a 6= 0 and c 6= 0.

Proof. From 1.2.4 and 1.3.6 we obtain

b

a
=
b

a
· 1 =

b

a

c

c
=
bc

ac
.

1.3.8.
b

a
+
c

a
=
b+ c

a
and

b

a
− c

a
=
b− c
a

for a 6= 0.

Proof. We have

b

a
+
c

a
= b

1

a
+ c

1

a
= (b+ c)

1

a
=
b+ c

a
,

which proves the first identity. The proof of the second identity is similar.
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Identities in 1.3.7 and 1.3.8 allow us to add and subtract fractions with arbitrary

denominators different from zero. Indeed,

b

a
+
d

c
=
bc

ac
+
ad

ac
=
bc+ ad

ac

and

b

a
− d

c
=
bc

ac
− ad

ac
=
bc− ad
ac

.

1.3.9.
c(
b
a

) = c
a

b
for a 6= 0 and b 6= 0.

Proof. By 1.3.4, we have ab 6= 0 and thus

1 =
ab

ab
=
ba

ab
=
b

a
· a
b

and hence (
b

a
· a
b

)
c = 1 · c = c,

and

b

a

(
c
a

b

)
= c. (1.18)

Since b
a 6= 0, we may write

b

a
· c(

b
a

) = c, (1.19)

by (1.11). From (1.18) and (1.19), by using 1.2.2, we obtain the desired identity.

EXERCISES 1.3

(1) Prove that

(
d
c

)(
b
a

) =
ad

bc
for a 6= 0, b 6= 0, c 6= 0.

(2) Does (Y,⊕,⊗) defined in Exercise 1.2.6 satisfy +∗?

(3) Does (Z3,⊕,⊗) satisfy +∗? (see Exercises 1.1.4 and 1.2.4.)

(4) Does (Z4,⊕,⊗) satisfy +∗? (see Exercises 1.1.5 and 1.2.5.)

1.4 Inequalities

All properties of real numbers considered so far can be called algebraic. They

concern the algebraic operations of addition and multiplication. We now include

a non-algebraic property of being positive. To indicate that a is positive we write

0 < a. We assume the following properties:

1< For every number a, one and only one of the following relations holds:

a = 0 or 0 < a or 0 < −a.

2< If 0 < a and 0 < b, then 0 < a+ b and 0 < ab.
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Any number a such that 0 < −a is called negative. Property 1< says that every

number is either zero, positive, or negative. Property 2< tells us that the sum and

the product of two positive numbers are positive.

1.4.1. If 0 < a and 0 < b, then 0 <
b

a
.

Proof. If we had b
a = 0, then we would get b = b

aa = 0 · a = 0, which contradicts

1<. If we had 0 < − b
a , it would mean by 1.3.3 that 0 <

(
− b
a

)
a = −b, which again

contradicts 1<. Consequently, we must have 0 < b
a .

1.4.2. If a 6= 0, then 0 < aa.

Proof. If a 6= 0, then 0 < a or 0 < −a, by 1<. If 0 < a, then 0 < aa, by 2<. If

0 < −a, then 0 < (−a)(−a) = aa, by 2< and 1.3.3.

1.4.3. 0 < 1.

Proof. By 1.4.2 we have 0 < 1 · 1 = 1. (See Exercise 1.4.1.)

If 0 < b−a, we say that a is less than b and write a < b. We can also say that b

is greater than a and write b > a. By this convention the symbol 0 < b can be read

in two ways: “the number b is positive” or “the number b is greater than zero”,

because 0 < b− 0.

From the definition of inequality and from 1< we obtain the following important

property:

1.4.4 (Trichotomy). For each pair of numbers a and b, one and only one of the

following relations holds:

a = b or a < b or b < a.

1.4.5 (Transitivity). If a < b and b < c, then a < c.

Proof. The inequalities a < b and b < c mean that 0 < b − a and 0 < c − b.

Therefore, in view of 2<, we obtain 0 < (b− a) + (c− b) = c− a.

Instead of “a < b and b < c” we often write “a < b < c.”

1.4.6. If a < b, then a+ c < b+ c.

Proof. Since b− a = (b + c)− (a + c), we have 0 < (b + c)− (a + c), which means

that a+ c < b+ c.

1.4.7. If a < b and c < d, then a+ c < b+ d.

Proof. This is a direct consequence of 2< and the definition of inequality.

1.4.8. If a < b and 0 < c, then ac < bc.
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Proof. If a < b, then 0 < b − a and 0 < (b − a)c by 2<. Hence 0 < bc − ac, which

means that ac < bc.

1.4.9. If a < b, c < d and 0 < b, 0 < c, then ac < bd.

Proof. From 1.4.8 it follows that ac < bc and bc < bd. Hence, by transitivity,

ac < bd.

Note that in general, a < b and c < d does not imply ac < bd.

We write a ≤ b to indicate that either a = b or a < b. As an immediate con-

sequence of 1.4.4 and this notational convention we obtain the following property:

For each pair of real numbers a and b, one and only one of the following relations

holds:

a ≤ b or b < a.

1.4.10. If a ≤ b and b ≤ a, then a = b.

Proof. Since the inequalities a < b and b < a exclude each other, by 1.4.4, only one

possibility remains, namely a = b.

EXERCISES 1.4

(1) In the proof of 1.4.3, use was made of 1.4.2. But in order to legitimately use

1.4.2, an understanding, tacitly made but not explicitly mentioned, must

have been employed. What was that understanding?

(2) Provide a complete proof for 1.4.4.

(3) Provide a complete proof for 1.4.7.

(4) Show that, if 0 < ε, then m− ε < m for any real number m.

(5) Show that, in general, a < b and c < d does not imply ac < bd.

(6) Let a, b ∈ Z3. We will write a < b if the same inequality holds for the natural

numbers a and b. Does (Z3,⊕,⊗, <) satisfy 1<, 2<? (See Exercises 1.1.4

and 1.2.4.)

(7) Let a, b ∈ Z4. We will write a < b if the same inequality holds for the natural

numbers a and b. Does (Z4,⊕,⊗, <) satisfy 1<, 2<? (See Exercises 1.1.5

and 1.2.5.)

(8) Is it possible to define in Z3 a relation “<” so that 1<, 2< would be

satisfied? How about Z4?

(9) Let X be a set with addition +, multiplication ·, and order <, such that all

conditions 1+, 2+, 3+, 1∗, 2∗, 3∗, +∗, 1<, 2< are satisfied. Prove that,

if X has at least two elements, then it has infinitely many elements.

(10) Does the set {0} satisfy all conditions 1+, 2+, 3+, 1∗, 2∗, 3∗, +∗, 1<,

2<?

(11) Does the set N of all natural numbers satisfy all conditions 1+, 2+, 3+,

1∗, 2∗, 3∗, +∗, 1<, 2<?
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(12) Does the set Q of all rational numbers satisfy all conditions 1+, 2+, 3+,

1∗, 2∗, 3∗, +∗, 1<, 2<?

1.5 Bounded sets

A set of numbers is said to be bounded from below by a number m, if all its elements

are greater than or equal to m. The number m is then called a lower bound of that

set. If m is a lower bound of a set, then each number less than m is another lower

bound of the same set. For instance the set of all positive numbers is bounded from

below. All negative numbers as well as zero are its lower bounds. The number 0

is the greatest lower bound. It is also the greatest lower bound of the set of all

non-negative numbers. In this case the greatest lower bound belongs to the set,

whereas in the case of the set of all positive numbers it does not.

Definition 1.5.1. A number m is called the greatest lower bound of a given set P ,

if

(a) m is a lower bound for P , that is, m ≤ x for each x ∈ P
and

(b) m is the greatest of the lower bounds for P , that is, if n ≤ x for each x ∈ P ,

then m ≥ n.

Notice that a set can have only one greatest lower bound. Indeed, assuming that

m1 and m2 are the greatest lower bounds of P , we have m1 ≤ m2 and m2 ≤ m1,

so m1 = m2, which proves the uniqueness.

A question arises, whether every set bounded from below possesses a greatest

lower bound. This does not follow from the properties of real numbers considered

so far (see Exercise 1.5.1). If we want to use this property, it must be adopted as

an additional axiom.

D Every nonempty set bounded from below has a greatest lower bound.

This axiom is often called the Dedekind Axiom. Dedekind (Richard Dedekind,

1831–1916) was the first to construct a model of real numbers. All together we get

the following Axioms of The Real Numbers:

1+ a+ b = b+ a;

2+ (a+ b) + c = a+ (b+ c);

3+ The equation a+ x = b is solvable;

1∗ ab = ba;

2∗ (ab)c = a(bc);

3∗ The equation ax = b is solvable whenever a 6= 0;

+∗ a(b+ c) = ab+ ac;
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1< For every number a, one and only one of the following relations holds:

a = 0 or 0 < a or 0 < −a;

2< If 0 < a and 0 < b, then 0 < a+ b and 0 < ab;

D Every nonempty set bounded from below has a greatest lower bound.

We will refer to this collection of ten axioms as R.

S: Do these axioms completely characterize the set of real numbers?

T: People trained in formal logic would say no, because both the empty set and
the set consisting of the single element 0 satisfy all ten of the axioms. And yet
neither is the set of all real numbers.

S: What if we assume that the set contains at least two elements?

T: Then everything is fine. The existence of two numbers implies, by means of the
adopted axioms, the existence of all real numbers. But we have to be very careful
with the words “two elements” which have to be understood in the colloquial
sense: “one element and another one.” A careful reader could notice that we
have used the existence of two different real numbers in the proofs of 1.1.1 and
1.4.3. In the first case we need an element b in order to have an equation which
must then have 0 as its solution. In the second case we use the fact that 1 6= 0,
which follows from the existence of two different elements.

S: So the existence of at least two elements is to be adopted as an additional axiom
of real numbers.

T: This is one possibility. Or else we may say that the set of real numbers is the
set containing at least two elements and satisfying the axioms in R.

S: I like this better, because then the number of axioms remains 10, and it is nice
to have exactly as many axioms as fingers.

A set is said to be bounded from above if all its elements are less than or equal

to a number n.

Definition 1.5.2. By the least upper bound of a given set P we mean a number m

such that:

(a) m is an upper bound for P , that is, x ≤ m for each x ∈ P
and

(b) m is the least of the upper bounds for P , that is, if x ≤ n for each x ∈ P , then

m ≤ n.

Using axiom D one can easily prove property

D’ Every nonempty set bounded from above has a least upper bound.

To see that D implies D’ and, conversely, D’ implies D, it suffices to consider

the set P ′ of all elements opposite to those from P , that is, a number x belongs to

P ′ if and only if −x belongs to P . Consequently, axiom D can be replaced by D’
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and we will obtain an equivalent set of axioms. In view of this equivalence, we will

use the same name, Dedekind Axiom, to mean either of the two versions.

In order to avoid possible misunderstanding it should be strongly emphasized

that if we say “the set P has a greatest lower bound m” (or “a least upper bound

m”), then m need not belong to P . This only means that a number with the

required properties exists.

Here is a nice application of the Dedekind Axiom.

Theorem 1.5.3 (Archimedean Property). For any positive real number ε there is

a natural number n such that nε > 1.

Proof. We argue by contradiction. If there is no n such that nε > 1, then the set

S = {nε : n ∈ N} is bounded by 1. By the Dedekind Axiom, S has a least upper

bound m. Then nε ≤ m for all n ∈ N. Hence, (n− 1)ε ≤ m− ε for all n ∈ N. But

in this case we would have nε ≤ m− ε for all n ∈ N, contradicting the definition of

m.

From the Archimidean Property we easily obtain the following useful property

of the real numbers.

Corollary 1.5.4. There is a rational number between any two distinct numbers.

Proof. Let a and b be arbitrary numbers such that a < b. Since b − a > 0, there

exists a natural number n such that n(b − a) > 1. Then there must be an integer

m such that na < m < nb. Otherwise, for some integer m we would have

m ≤ na < nb ≤ m+ 1

and consequently

n(b− a) = nb− na ≤ m+ 1−m = 1.

For any integer m such that na < m < nb we have

a <
m

n
< b.

EXERCISES 1.5

(1) The set Q of all rational numbers with addition and multiplication defined

as usual satisfy all conditions 1+, 2+, 3+, 1∗, 2∗, 3∗, +∗, 1<, 2< (see

Exercise 2.4.12). Show that Q does not satisfy condition D. This will show

that condition D cannot be deduced from the other nine in R.

(2) Provide details of the proof of equivalence of D and D’.

(3) Find greatest lower bounds and least upper bounds of the following sets:

(a)

{
1,

1

2
,

1

3
,

1

4
, . . .

}
,
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(b)
{

0,− 1
2 ,

2
3 ,−

3
4 ,

4
5 ,−

5
6 , . . .

}
.

(4) Find the least upper bound of the set of all rational numbers whose square

is less than 2.

(5) Consider the set X = {a1, a2, a3, . . . } where an’s are defined inductively:

a1 = 1, an+1 =
3an + 4

2an + 3
for n = 1, 2, 3, . . .

Show that X is bounded from above and from below. Can you find the

least upper bound of X?

(6) Using Crolollary 1.5.4, show that there are infinitely many rational numbers

between any two distinct numbers.

1.6 Countable and uncountable sets

Suppose we have two boxes of matches: one with white matches and the other one

with red. Is there a way for a person who cannot count, to determine which box

contains more matches?

Let’s take one match from each box and put them aside. From the remaining

matches, again take one match from each box and put them aside too. Continuing

this process, either we will exhaust both boxes simultaneously or one of the boxes

will become empty while the other box will still contain at least one match. The

first case occurs if and only if the number of matches is the same in both boxes.

In the second case, the box that became empty had fewer matches and the other

more. Note that we do not have to count the matches.

Using the described idea, we can check whether two sets have the same quantity

of elements without counting them. Two sets are called equipotent if, to every

element from the first set we can assign exactly one element from the second set in

such a way that each element of the second set is assigned to exactly one element

of the first set. We then say that there is a bijection between those sets.

Obviously, every set is equipotent with itself. Moreover, if a set A is equipotent

with a set B, then B is equipotent with A. Equipotency is also transitive, that is,

if a set A is equipotent with a set B and B is equipotent with a set C, then A is

equipotent with C. Thus equipotency is an equivalence relation.

In order to establish a correspondence between elements of equipotent sets, we

do not necessarily need to join elements in pairs; it suffices to give a law which

says how the elements should be joined. Here, however, facts may come to light

which seem paradoxical at first glance. For instance the set of all natural numbers

is equipotent with the set of all even natural numbers. To establish a bijection

between these sets, we associate with every natural number the number that is

exactly twice as large, thus even. This is an example of a set which is equipotent

with one of its proper subsets. This property can be used as a definition of an

infinite set: a nonempty set is called infinite if it is equipotent with a proper subset

of itself. On the other hand, a nonempty set is called finite if it is not equipotent
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with any proper subset of itself. Finite sets can be also defined as follows: a set A

is finite if it is empty or there exists a natural number n such that A is equipotent

with the set {1, 2, . . . , n}. In this case, we can write A = {a1, a2, . . . , an}.
A set which is equipotent with the set of all natural numbers is called countable.

Elements of such a set can be numbered so that to each element of the set there

corresponds a natural number and each natural number corresponds to one and

only one element from the set. All elements of a countable set can thus be arranged

into an infinite sequence. In other words, if A is a countable set, we can write

A = {a1, a2, a3, . . . }. Conversely, if all elements of a set can be arranged into an

infinite sequence such that every element appears in the sequence exactly once, then

the set is countable. Hence the union of a countable set and a finite set or another

countable set is countable. It is also clear that a subset of a countable set is either

countable or finite.

Theorem 1.6.1. The union of a countable family of countable sets is countable.

Proof. Let Z1, Z2, Z3, . . . be a sequence of countable sets. The elements of each set

Zn can be arranged into an infinite sequence, so we can write

Zn = {an,1, an,2, an,3, . . . }.

Consequently, the elements of the union can be arranged into an infinite matrix

a1,1 a1,2 a1,3 · · ·
a2,1 a2,2 a2,3 · · ·
a3,1 a3,2 a3,3 · · ·

...
...

...

an,1 an,2 an,3 · · ·
...

...
...

Now we want to arrange all entries of this matrix into a single sequence. We can

accomplish this by first splitting entries of the matrix into finite groups such that

the n-th group consists of all entries ai,j such that i+ j = n+ 1. Thus, in the n-th

group we will have

an,1, an−1,2, an−2,3, . . . , a2,n−1, a1,n.

These entries form the n-th diagonal of the matrix.

By writing down the first diagonal, then the second diagonal, and so on, we will

arrange all entries of the matrix into a single sequence:

a1,1, a2,1, a1,2, a3,1, a2,2, a1,3, . . .

In this sequence, some elements of the union may appear several times if some

Zn’s have elements in common. In such a case, we have to remove each element

which is equal to one of the preceding elements. In this way we obtain an arrange-

ment of the union in a sequence, which proves that the union is countable.
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The following diagram represents the idea of the above proof in a more intuitive

and easier to remember way. To arrange all entries of the infinite matrix into a

single sequence, we follow the indicated path.

a1,1 a1,2 a1,3 a1,4 · · ·

a2,1 a2,2 a2,3 a2,4 · · ·

a3,1 a3,2 a3,3 a3,4 · · ·

a4,1 a4,2 a4,3 a4,4 · · ·

...
...

...
...

Theorem 1.6.2. The set Q of all rational numbers is countable.

Proof. Let, for n = 1, 2, 3, . . . , Zn denote the set of all rational numbers that can

be written with n in the denominator, that is,

Zn =

{
0

n
,

1

n
,
−1

n
,

2

n
,
−2

n
, . . .

}
.

Clearly, each set Zn is countable and we have

Q =

∞⋃
n=1

Zn.

Thus the set Q is countable by Theorem 1.6.1.

Theorem 1.6.3. The set R of all real numbers is not countable.

In the proof of the above theorem we will use the fact that every real number

between 0 and 1 can be uniquely represented in the form of an infinite sequence of

digits

0.d1d2d3 . . . (1.20)

such that dn 6= 0 for some index n (to exclude 0) and there are arbitrarily large

indices n for which dn 6= 9 (to exclude sequences that have nothing but 9’s from

some point on.) The representation of a real number in the form (1.20) is called

a decimal expansion. Any such sequence represents a real number between 0 and

1. (Decimal expansions of real numbers will be discussed in more detail in Section

5.7.)
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Proof. We argue by contradiction. Suppose that the set R is countable. Then the

set of all real numbers between 0 and 1 must be countable and thus its elements

can be arranged into a sequence a1, a2, a3, . . . . Let

an = 0.dn,1dn,2dn,3 . . .

be the unique decimal expansion of an. Now we consider a real number whose

decimal expansion is

0.e1e2e3 . . . , (1.21)

where en 6= dn,n and en 6= 9. Note that (1.21) represents a real number between 0

and 1, though it is not among the numbers in the sequence a1, a2, a3, . . . . Thus the

assumption that the set R is countable leads to a contradiction.

A set that is neither finite nor countable is called uncountable. Real numbers

which are not rational numbers are called irrational numbers. Note that Theorems

1.6.2 and 1.6.3 imply that the set of irrational numbers is uncountale. Moreover,

we obtain the following useful theorem.

Theorem 1.6.4. There are infinitely many irrational numbers between any two

distinct numbers.

Proof. If a < b, then

x←→ x− a
b− a

establishes a bijection between the set of all real numbers between a and b and the

set of all real numbers between 0 and 1. Since there are uncountably many numbers

between 0 and 1, there are uncountably many numbers between a and b.

EXERCISES 1.6

(1) Prove that the union of a finite set and a countable set is countable.

(2) Prove that the union of a finite family of countable sets is countable.

(3) Let A and B be countable sets. Prove that the set A × B is countable.

(A×B denotes the set of all ordered pairs (a, b) with a ∈ A and b ∈ B.)

(4) Prove that every infinite subset A of a countable set B is countable.

(5) Is the set of all finite sequences of rational numbers countable?

(6) Is the set of all infinite sequences of rational numbers countable?

(7) Is the set of all infinite sequences of natural numbers countable?

(8) Is the set of all infinite binary sequences countable?

(9) A number α ∈ R is called algebraic if it is a root of a polynomial with

integer coefficients, that is, there are integers λ0, λ1, . . . , λn, not all zero,

such that λ0α
n +λ1α

n−1 + · · ·+λn−1α+λn = 0. Is the set of all algebraic

numbers countable?
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