
Chapter 5

Completeness I

Completeness is the key property of the real numbers that the rational numbers
lack. Before examining this property we explore the rational and irrational
numbers, discovering that both sets populate the real line more densely than
you might imagine, and that they are inextricably entwined.

5.1 Rational Numbers

�

�

�

�

Definition

A real number is rational if it can be written in the form p
q , where p and q

are integers with q 6= 0. The set of rational numbers is denoted by Q. A real
number that is not rational is termed irrational.

Example 1

2
,− 5

6
, 100, 567877

−1239
, 8

2
are all rational numbers.

Exercise 1

1. What do you think the letter Q stands for?

2. Show that each of the following numbers is rational: 0, -10, 2.87, 0.0001,
−8−9, 0.6666. . . .

3. Prove that between any two distinct rational numbers there is another
rational number.

4. Is there a smallest positive rational number?

5. If a is rational and b is irrational, are a+ b and ab rational or irrational?
What if a and b are both rational? Or both irrational?

Historical Roots

The proof that
√
2 is irrational

is attributed to Pythagoras
ca. 580 − 500 BC who is well
known to have had a triangle
fetish.

What does
√
2 have to do with

triangles?

A sensible question to ask at this point is this: are all real numbers rational?
In other words, can any number (even a difficult one like π or e) be expressed
as a simple fraction if we just try hard enough? For good or ill this is not the
case, because, as the Greeks discovered:

45



46 CHAPTER 5. COMPLETENESS I

�

�

�

�
Theorem√
2 is irrational.

Euler’s constant

Euler’s γ constant is defined by

γ = lim
n→∞

[

n
∑

k=1

1

k
− log n

]

= 0.5772...

It is not known whether γ is ra-

tional or irrational. It is only

known that, if γ = p
q
, q is

larger than 1010
′
000.

This theorem assures us that at least one real number is not rational. You
will meet the famous proof of this result in the Foundations course. Later in
the course you will prove that e is irrational. The proof that π is irrational is
also not hard but somewhat long and you will probably not meet it unless you
hunt for it.

We now discover that, despite the fact that some numbers are irrational, the
rationals are spread so thickly over the real line that you will find one wherever
you look.

Exercise 2

1. Illustrate on a number line those portions of the sets

{m|m ∈ Z}, {m/2|m ∈ Z}, {m/4|m ∈ Z}, {m/8|m ∈ Z}

that lie between ±3. Is each set contained in the set which follows in the
list? What would an illustration of the set {m/2n|m ∈ Z} look like for
some larger positive integer n?

2. Find a rational number which lies between 57/65 and 64/73 and may be
written in the form m/2n, where m is an integer and n is a non-negative
integer.

Integer Part

If x is a real number then [x],
the integer part of x, is the
unique integer such that

[x] ≤ x < [x] + 1.

For example

[3.14] = 3 and [−3.14] = −4.

�

�

�

�
Theorem

Between any two distinct real numbers there is a rational number.

I.e. if a < b, there is a rational p
q with a < p

q < b.

Open Interval

For a < b ∈ R, the open inter-

val (a, b) is the set of all num-

bers strictly between a and b:

(a, b) = {x ∈ R : a < x < b}

Proof. Consider the set of numbers of the form p
q with q fixed, and p any

integer. Assume that there are no such numbers between a and b. Let p
q be

the number immediately before a. Then p+1

q is the number immediately after
b. We necessarily have

p+ 1

q
− p

q
≥ b− a ⇐⇒ 1

q
≥ b− a.

If we choose q sufficiently large, then the above inequality is wrong. Then there
is at least one rational number between a and b. �

Chalk and Cheese

Though the rationals and ir-

rationals share certain prop-

erties, do not be fooled into

thinking that they are two-of-

a-kind. You will learn later

that the rationals are “count-

able”, you can pair them up

with the natural numbers. The

irrationals, however, are mani-

festly “uncountable”

�

�

�

�

Corollary

Let a < b. There is an infinite number of rational numbers in the open interval
(a, b).

Proof. One can think of many proofs. One could proceed as above, but
proving that there are more than N numbers between a and b, for arbitrarily
large N . But we can also use the theorem directly. We know that there must
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be a rational number, say c1, between a and b. Then there is another rational
number, say c2, between c1 and b. Then there is c3, etc... All those numbers
are distinct and they are between a and b. �

We have shown that the rational numbers are spread densely over the real
line. What about the irrational numbers?

Exercise 3 Prove that between any two distinct rational numbers there is an
irrational number. [Hint: Use

√
2 and consider the distance between your two

rationals.]

�

�

�

�
Theorem

Between any two distinct real numbers there is an irrational number.

Proof. We can proceed as in the proof of the previous theorem. Consider the
set of numbers of the form p

q +
√
2 with q fixed, and p any integer; all those

numbers are irrational. Assume that there are no such numbers between a and
b. Let p

q +
√
2 be the number immediately before a. Then p+1

q +
√
2 is the

number immediately after b. We necessarily have

p+ 1

q
+
√
2−

(p

q
+
√
2
)

≥ b− a ⇐⇒ 1

q
≥ b− a.

If we choose q sufficiently large, then the above inequality is wrong. Then there
is at least one irrational number between a and b. �

Is It Love?

We have shown that between
any two rationals there is an
infinite number of irrationals,
and that between any two irra-
tionals there is an infinite num-
ber of rationals. So the two
sets are intimately and inextri-
cably entwined.

Try to picture the two sets on

the real line.

�

�

�

�

Corollary

Let a < b. There is an infinite number of irrational numbers in the open interval
(a, b).

Whatever method you used to prove the last corollary will work for this one
too. Can you see why?

5.2 Least Upper Bounds and Greatest Lower

Bounds

Boundless Bounds

If U is an upper bound then so
is any number greater than U .
If L is a lower bound then so is
any number less than L.

Bounds are not unique

�

�

�

�

Definition

A non-empty set A of real numbers is

bounded above if there exists U such that a ≤ U for all a ∈ A;
U is an upper bound for A.

bounded below if there exists L such that a ≥ L for all a ∈ A;
L is a lower bound for A.

bounded if it is both bounded above and below.



48 CHAPTER 5. COMPLETENESS I

Exercise 4 For each of the following sets of real numbers decide whether the
set is bounded above, bounded below, bounded or none of these:

1. {x : x2 < 10} 2. {x : x2 > 10} 3. {x : x3 > 10} 4. {x : x3 < 10}

�

�

�

�

Definition

A number u is a least upper bound of A if
1. u is an upper bound of A and
2. if U is any upper bound of A then u ≤ U .

A number l is a greatest lower bound of A if
1. l is a lower bound of A and
2. if L is any lower bound of A then l ≥ L.

The least upper bound of a set A is also called the supremum of A and is
denoted by supA, pronounced “soup A”.
The greatest lower bound of a set A is also called the infimum of A and is
denoted by inf A.
Example Let A = { 1

n : n = 2, 3, 4, . . . }. Then supA = 1/2 and inf A = 0.

Exercise 5 Check that 0 is a lower bound and 2 is an upper bound of each
of these sets

1. {x| 0 ≤ x ≤ 1} 2. {x| 0 < x < 1} 3. {1 + 1/n|n ∈ N}
4. {2− 1/n|n ∈ N} 5. {1 + (−1)n/n|n ∈ N} 6. {q| q2 < 2, q ∈ Q}.

For which of these sets can you find a lower bound greater than 0 and/or an
upper bound less that 2? Identify the greatest lower bound and the least upper
bound for each set.

Can a least upper bound or a greatest lower bound for a set A belong to the
set? Must a least upper bound or a greatest lower bound for a set A belong to
the set?

We have been writing the least upper bound so there had better be only one.

Exercise 6 Prove that a set A can have at most one least upper bound.

5.3 Axioms of the Real Numbers

Despite their exotic names, the following fundamental properties of the real
numbers will no doubt be familiar to you. They are listed below. Just glimpse
through them to check they are well known to you.

• For x, y ∈ R, x+ y is a real number

closure under addition

• For x, y, z ∈ R, (x+ y) + z = x+ (y + z)

associativity of addition
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• For x, y ∈ R, x+ y = y + x

commutativity of addition

• There exists a number 0 such that for x ∈ R, x+ 0 = x = 0 + x

existence of an additive identity

• For x ∈ R there exists a number −x such that x+ (−x) = 0 = (−x) + x

existence of additive inverses

• For x, y ∈ R, xy is a real number

closure under multiplication

• For x, y, z ∈ R, (xy)z = x(yz)

associativity of multiplication

• For x, y ∈ R, xy = yx

commutativity of multiplication

• There exists a number 1 such that x · 1 = x = 1 · x for all x ∈ R.

existence of multiplicative identity

• For x ∈ R, x 6= 0 there exists a number x−1 such that x ·x−1 = 1 = x−1 ·x
existence of multiplicative inverses

• For x, y, z ∈ R, x(y + z) = xy + xz

distributive law

• For x, y ∈ R, exactly one of the following statements is true: x < y, x = y
or x > y

trichotomy

• For x, y, z ∈ R, if x < y and y < z then x < z

transitivity

• For x, y, z ∈ R, if x < y then x+ z < y + z

adding to an inequality

• For x, y, z ∈ R, if x < y and z > 0 then zx < zy

multiplying an inequality

There is one last axiom, without which the reals would not behave as ex-
pected:�

�

�

�

Completeness Axiom

Every non-empty subset of the reals that is bounded above has a least upper
bound.

If you lived on a planet where they only used the rational numbers then all
the axioms would hold except the completeness axiom. The set {x ∈ Q : x2 ≤ 2}
has rational upper bounds 1.5, 1.42, 1.415, . . . but no rational least upper bound.
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Of course, living in the reals we can see that the least upper bound is
√
2.

This sort of problem arises because the rationals are riddled with holes and the
completeness axiom captures our intuition that the real line has no holes in it -
it is complete.

Exercise 7 If A and B denote bounded sets of real numbers, how do the
numbers supA, inf A, supB, inf B relate if B ⊂ A?

Give examples of unequal sets for which supA = supB and inf A = inf B.

The following property of the supremum is used frequently throughout Anal-
ysis.

Possible Lack of

Attainment

Notice that supA and inf A

need not be elements of A.

�

�

�

�

Lemma

Suppose a set A is non-empty and bounded above. For every ǫ > 0, there exists
a ∈ A such that

supA− ǫ < a ≤ supA.

Proof. Ab absurdo. If the lemma is wrong, then there exists ε > 0 such that
the interval (supA− ε, supA] contains no number of A. Since A has no number
greater than supA, that means that all numbers of A are less (or equal) than
supA − ε. Then supA − ε is an upper bound for A. It is smaller than supA,
which contradicts the fact that supA is the least upper bound. �

Exercise 8 Suppose A is a non-empty set of real numbers which is bounded
below. Define the set −A = {−a : a ∈ A}.

1. Sketch two such sets A and −A on the real line. Notice that they are
reflected about the origin. Mark in the position of inf A.

2. Prove that −A is a non-empty set of real numbers which is bounded below,
and that sup(−A) = − inf A. Mark sup(−A) on the diagram.

Different Versions of

Completeness

This Theorem has been named

‘Greatest lower bounds ver-

sion’ because it is an equiva-

lent version of the Axiom of

Completeness. Between now

and the end of the next chap-

ter we will uncover 5 more ver-

sions!

�

�

�

�

Theorem Greatest lower bounds version

Every non-empty set of real numbers which is bounded below has a greatest
lower bound.

Proof. Suppose A is a non-empty set of real numbers which is bounded below.
Then −A is a non-empty set of real numbers which is bounded above. The
completeness axiom tells us that −A has a least upper bound sup(−A). From
Exercise 8 we know that A = −(−A) has a greatest lower bound, and that
inf A = − sup(−A). �
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5.4 Consequences of Completeness - Bounded

Monotonic Sequences

The mathematician Weierstrass was the first to pin down the ideas of com-
pleteness in the 1860’s and to point out that all the deeper results of analysis
are based upon completeness. The most immediately useful consequence is the
following theorem:�

�

�

�
Theorem Increasing sequence version

Every bounded increasing sequence is convergent.

Figure 5.1: Bounded increasing sequences must converge.

Figure 5.1 should make this reasonable. Plotting the sequence on the real
line as the set A = {a1, a2, a3, . . . } we can guess that the limit should be supA.
Proof. Let (an) be a bounded increasing sequence. We show that an → supA.
Let ε be any positive number. By the above lemma, there exists aN ∈ A such
that supA− ε < aN ≤ supA. Since (an) is increasing, we have

supA− ε < an ≤ supA

for all n > N . Then |an − supA| < ε. This holds for every ε > 0, so that
an → supA. �

Check that your proof has used the completeness axiom, the fact that the
sequence is increasing, and the fact that the sequence is bounded above. If you
have not used each of these then your proof must be wrong!�

�

�

�
Corollary Decreasing sequence version

Every bounded decreasing sequence is convergent.

Proof. The sequence (−an) is bounded and increasing, then it converges to a
number −a. Then an → a by the theorem of Section 2.6. �

Example In Chapter 3, we considered a recursively defined sequence (an)
where

a1 = 1 and an+1 =
√
an + 2.

We showed by induction that an ≥ 1 for all n (because a1 = 1 and ak ≥ 1 =⇒
ak+1 =

√
ak + 2 ≥

√
3 ≥ 1) and that an ≤ 2 for all n (because a1 ≤ 2 and

ak ≤ 2 =⇒ ak+1 =
√
ak + 2 ≤

√
4 = 2). So (an) is bounded.
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We now show that the sequence is increasing.

a2n − an − 2 = (an − 2)(an + 1) ≤ 0 since 1 ≤ an ≤ 2

∴ a2n ≤ an + 2

∴ an ≤
√
an + 2 = an+1.

Decreasing?

To see whether a sequence (an)
is decreasing, try testing

an+1 − an ≤ 0

or, when terms are positive,

an+1

an
≤ 1.

Hence (an) is increasing and bounded. It follows from Theorem 5.4 that (an)
is convergent. Call the limit a. Then a2 = limn→∞ a2n+1 = limn→∞ an+2 = a+2
so that a2 − a − 2 = 0 =⇒ a = 2 or a = −1. Since (an) ∈ [1, 2] for all n we
know from results in Chapter 3 that a ∈ [1, 2], so the limit must be 2.

Exercise 9 Consider the sequence (an) defined by

a1 =
5

2
and an+1 =

1

5

(

a2n + 6
)

.

Show by induction that 2 < ak < 3. Show that (an) is decreasing. Finally, show
that (an) is convergent and find its limit.

Exercise 10 Explain why every monotonic sequence is either bounded above
or bounded below. Deduce that an increasing sequence which is bounded above
is bounded, and that a decreasing sequence which is bounded below is bounded.

Exercise 11 If (an) is an increasing sequence that is not bounded above,
show that (an)→∞. Make a rough sketch of the situation.

The two theorems on convergence of bounded increasing or decreasing se-
quences give us a method for showing that monotonic sequences converge even
though we may not know what the limit is.

5.5 * Application - kth Roots *

So far, we have taken it for granted that every positive number a has a unique
positive kth root, that is there exists b > 0 such that bk = a, and we have been
writing b = a1/k. But how do we know such a root exists? We now give a
careful proof. Note that even square roots do not exist if we live just with the
rationals - so any proof must use the Axiom of Completeness.

Stop Press√
2 exists!!!

Mathematicians have at last
confirmed that

√
2 is really

there.

Phew! What a relief.

�

�

�

�
Theorem

Every positive real number has a unique positive kth root.

Suppose a is a positive real number and k is a natural number. We wish to
show that there exists a unique positive number b such that bk = a. The idea of
the proof is to define the set A = {x > 0 : xk > a} of numbers that are too big
to be the kth root. The infimum of this set, which we will show to exist by the
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greatest lower bound characterisation of completeness in this chapter, should be
the kth root. We must check this.

Note that the greatest lower bound characterisation is an immediate conse-
quence of the completeness axiom. It is indeed equivalent to the completeness
axiom, and some authors give it as the completeness axiom.

Arbitrary Exponents

The existence of nth roots sug-
gests one way to define the
number ax when a > 0 and x
is any real number.
If x = m/n is rational and n ≥
1 then

ax =
(

a1/n
)m

If x is irrational then we know
there is a sequence of rationals
(xi) which converges to x. It
is possible to show that the
sequence (axi) also converges
and we can try to define:

ax = lim
i→∞

axi

Fill in the gaps in the following proof:

Exercise 12 Show that the set A is non-empty [Hint: Show that 1+ a ∈ A].

By definition the set A is bounded below by 0. So the greatest lower bound
characterisation of completeness implies that b = inf A must exist. Argue that
for each natural number n there exists an ∈ A such that b ≤ an < b+ 1

n .

Exercise 13 Show that akn → bk and conclude that bk ≥ a.

We will now show that bk ≤ a, by contradiction. Assume bk > a. Then
0 < a

bk
< 1 so we may choose δ > 0 so that δ < b

k

(

1− a
bk

)

.

Exercise 14 Now achieve a contradiction by showing that b− δ ∈ A. (Hint:
use Bernoulli’s Inequality.)

We have shown that bk = a. Prove that there is no other positive kth root.

Check Your Progress

By the end of this chapter you should be able to:

• Prove that there are an infinite number of rationals and irrationals in every
open interval.

• State and understand the definitions of least upper bound and greatest
lower bound.

• Calculate supA and inf A for sets on the real line.

• State and use the Completeness Axiom in the form “every non-empty set
A which is bounded above has a least upper bound (supA)”.
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