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1.2. Properties of the Real Numbers as an

Ordered Field.

Note. In this section we give 8 axioms related to the definition of the real numbers,

R. All properties of sets of real numbers, limits, continuity of functions, integrals,

and derivatives will follow from this definition.

Definition. A field F is a nonempty set with two operations + and · called addition

and multiplication, such that:

(1) If a, b ∈ F then a + b and a · b are uniquely determined elements of F (i.e., +

and · are binary operations).

(2) If a, b, c ∈ F then (a + b) + c = a + (b + c) and (a · b) · c = a · (b · c) (i.e., + and

· are associative).

(3) If a, b ∈ F then a + b = b + a and a · b = b · a (i.e., + and · are commutative).

(4) If a, b, c ∈ F then a · (b + c) = a · b + a · c (i.e., · distributes over +).

(5) There exists 0, 1 ∈ F (with 0 6= 1) such that 0 + a = a and 1 · a = a for all

g ∈ F.

(6) If a ∈ F then there exists −a ∈ F such that a + (−a) = 0.

(7) If a ∈ F a 6= 0, then there exists a−1 such that a · a−1 = 1.

0 is the additive identity, 1 is the multiplicative identity, −a and a−1 are inverses

of a.
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Example. Some examples of fields include:

1. The rational numbers Q.

2. The rationals extended by
√

2: Q[
√

2].

3. The algebraic numbers A.

4. The real numbers R.

5. The complex numbers C.

6. The integers modulo p where p is prime Zp.

Theorem 1-3. For F a field, the additive and multiplicative identities are unique.

Theorem 1-4. For F a field and a ∈ F, the additive and multiplicative inverses of

a are unique.

Theorem 1-5. For F a field, a · 0 = 0 for all a ∈ F.

Theorem 1-6. For F a field and a, b ∈ F:

(a) a · (−b) = (−a) · b = −(a · b).

(b) −(−a) = a.

(c) (−a) · (−b) = a · b.
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Note. We add another axiom to our development of the real numbers.

Axiom 8/Definition of Ordered Field. A field F is said to be ordered if there

is P ⊂ F (called the positive subset) such that

(i) If a, b ∈ P then a + b ∈ P (closure of P under addition).

(ii) If a, b ∈ P then a · b ∈ P (closure of P under multiplication).

(iii) If a ∈ F then exactly one of the following holds: a ∈ P , −a ∈ P , or a = 0

(this is The Law of Trichotomy).

Example. Q, Q[
√

2], A, and R is an ordered field. C and Zp are fields that are

not ordered.

Definition. Let F be a field and P the positive subset. We say that a < b (or

b > a) if b − a ∈ P .

Note. The above definition allows us to compare pairs of elements of F and to

“order” the elements of the field.

Exercise 1.2.5. If F is an ordered field, a, b ∈ F with a ≤ b and b ≤ a then a = b.



1.2. The Real Numbers, Ordered Fields 4

Theorem 1-7. Let F be an ordered field. For a, b, c ∈ F:

(a) If a < b then a + c < b + c.

(b) If a < b and b < c then a < c (“<” is transitive).

(c) If a < b and c > 0 then ac < bc.

(d) If a < b and c < 0 then ac > bc.

(e) If a 6= 0 then a2 = a · a > 0.

Note. Recall interval notation from Calculus 1 (see page 18).

Note. We have trouble defining exponentiation when the exponent is irrational

(at least, for now).

Theorem 1-8. Let x be a positive real number and let n be a positive integer.

Then there is a unique positive number y such that yn = x.

Note. The proof of Theorem 1-8 depends on a result from the next section and

we will consider it then.

Note. In Theorem 1-8, we say y = x1/n = n

√
x. We define xp/q = (x1/q)p where p

and q are positive integers.
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Theorem 1-9. Let x be a positive real number, and let s1 and s2 be positive

rational numbers where s1 < s2. Then

(a) xs1 < xs2 if x > 1.

(b) xs1 > xs2 if 0 < x < 1.

Theorem 1-10. Let x and y be positive real numbers with x < y and let s be a

positive rational number. Then xs < ys.

Exercise 1.2.7. Prove:

(a) 1 > 0.

(b) If 0 < a < b then 0 < 1/b < 1/a.

(c) If 0 < a < b then an < bn for natural number n.

(d) If a > 0, b > 0 and an < bn for some natural number n, then a < b.

(f) Prove Theorem 1-10.

Theorem 1-12. The Binomial Theorem.

Let a and b be real numbers and let m be a natural number. Then

(a + b)m =

m
∑

j=0

(

m

j

)

ajbm−j .
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Note. We can use Mathematical Induction to prove the Binomial Theorem (in

fact, you likely did so in Math Reasoning [MATH 2800]).

Definition. For a ∈ R, the absolute value of a is

|a| =







a if a ≥ 0

−a if a < 0.

Note. Theorem 1-13 lists several familiar properties of the absolute value function.

In particular:

Theorem 1-13. For all a, b ∈ R

(g) |a| < |b| if and only if −b < a < b.

(h) |a + b| ≤ |a| + |b| (this is the Triangle Inequality).

(i) ||a| − |b|| ≤ |a − b|.

Definition. Let X be a set and d a function d : X × X → R satisfying

(i) d(a, b) ≥ 0 for all a, b ∈ X and d(a, b) = 0 if and only if a = b.

(ii) d(a, b) = d(b, a).

(iii) d(a, c) ≤ d(a, b) + d(b, c) (this is the Triangle Inequality).

Function d is then called a metric on X .
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Note. A metric on R based on absolute value is d(x, y) = |x−y|. This is the metric

we will use throughout this course to define such fundamental things as limits.

Example. Examples of metrics on X = R2 include the Euclidean metric and the

taxicab metric.
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