
Properties of Real Numbers1

Theorem: For an arbitrary real number x, there is ex-
actly one interger n which satisfies the inequalities n ≤

x < n + 1.

Proof:

1. Define: S = {m|m ∈ N,m ≤ x}
2. S is non empty b/c for any real number x there exists m ∈ N such that

m < x. (I 3.12 2. pg 28)
3. S is bounded by x ⇒ supS exist. (A.10 pg. 25)
4. By Thm 1.32 (pg.27) with h = 1 for some a ∈ S we have a >

supS − 1 ⇒ supS − a < 1, and supS < a + 1, b/c the integers are unique,
and differ by 1, there is only one such a.

5. 4. ⇒ a + 1 /∈ S b/c x ≤ supS for all x ∈ S
6. By construction of S, a ≤ x
7. b/c a + 1 /∈ S, a + 1 > x, by definition of S
Which gives a < x < a + 1 with a ∈ S

Theorem: For arbitrary real numbers x and y such that
x < y, there exists at least one rational number r such
that x < r < y, and thus infinitely many . Density of the
rational numbers.

Proof:

1. x < y ⇒ y − x > 0
2. From A.6 there is a real number 1

y−x

3. Thm I.29 ⇒ there is a n such that 1
y−x

< n ⇒ nx + 1 < ny
4 The first theorem states there is a m such that m < nx < m + 1 ⇒

m + 1 < nx + 1 < m + 2
5. 3. and 4. give nx < m + 1 < nx + 1 < ny
Thus, nx < m + 1 < nx + 1 < ny or x < m+1

n
< y, with n,m ∈ S

1References are from Calculus Vol. 1 Apostol
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Theorem: For arbitrary real numbers x and y, we have:
|x + y| ≤ |x| + |y| (The triangle inequality)

Proof:

For and real number y we have −|r| ≤ r ≤ |r|.
Thus, −|x| ≤ x ≤ |x| and −|y| ≤ y ≤ |y|.
Adding the two gives, −(|x| + |y|) ≤ x + y ≤ |x| + |y|
For a ≤ 0, then |r| ≤ a if and only if −a ≤ r ≤ a
Applying this to x + y, gives |x + y| ≤ |x| + |y|

Theorem: For arbitrary real numbers a1, a2, . . . , an we
have: |

∑

n

k=1 ak| ≤
∑

n

k=1 |ak| (Generalization of the trian-
gle inequality)

Proof:

By induction.
n = 1 case is a triviality.
Assume holds for n.
For n + 1: |

∑n+1
k=1 ak| = |

∑n

k=1 ak + an+1| ≤ |
∑n

k=1 ak| + |an+1|, by the
previous theorem.

And |
∑n

k=1 ak|+|an+1| ≤
∑n

k=1 |ak|+|an+1| =
∑n+1

k=1 |ak|, by the inductive
step.

Thus |
∑n+1

k=1 ak| ≤
∑n+1

k=1 |ak|.
By induction, it hold for every integer n.

Theorem: (a + b)n =
∑

n

k=0

(

n

k

)

akbn−k. (The binomial theo-
rem)

Proof:

By induction.
For n = 1:

∑1
k=0

(

1
k

)

akb1−k =
(

1
0

)

b +
(

1
1

)

a = a + b
Assume holds for n. For n + 1: (a + b)n+1 = (a + b)n(a + b) = a(a +

b)n +b(a+b)n = a
∑n

k=0

(

n

k

)

akbn−k +b
∑n

k=0

(

n

k

)

akbn−k =
∑n

k=0

(

n

k

)

ak+1bn−k +
∑n

k=0

(

n

k

)

akb(n+1)−k by the inductive step.

In the first term let k̂ = k + 1
then above =

∑n+1

k̂=1

(

n

k̂−1

)

ak̂b(n+1)−k̂+
∑n

k=0

(

n

k

)

akb(n+1)−k =
∑n

k̂=1

(

n

k̂−1

)

ak̂b(n+1)−k̂+
(

n

n

)

an+1 +
∑n

k=1

(

n

k

)

akb(n+1)−k +
(

n

0

)

bn+1
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or, removing the hat on the dummy index in the first sum:
∑n

k=1

((

n

k−1

)

+
(

n

k

))

akb(n+1)−k+
an+1 + bn+1

But,
(

n+1
k

)

=
(

n

k−1

)

+
(

n

k

)

and
(

m

m

)

=
(

p

0

)

= 1 for all integer m and p.

Thus: above =
∑n+1

k=0

(

n+1
k

)

akbn−1, and by induction the theorem hold for
all n.
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