
THE REAL NUMBER SYSTEM

In this lecture we shall study some properties of real numbers. We are already familiar

with the set of natural numbers (or positive integers) N = {1, 2, 3, . . .}1. The set of integers

Z2 consists of positive integers, 0, and negative integers, i.e., Z = {. . . ,−2,−1, 0, 1, 2, . . .}.

Quotients of integers are called rational numbers denoted by Q, that is, Q = {m
n

: m,n ∈

Z, n 6= 0}.

We can represent integers by points on a straight line (called the number line) by fixing

the number 0 and a unit distance. By subdividing the segment between 0 and 1, we can

represent the rational numbers 1
n
, where n ∈ N. Thus, we can use this to represent any

rational number by a unique point on the number line. Though rational numbers seems

to fill the number line, there are some gaps. For example, the number
√

2 is not a rational

number (can be easily proved). Similarly, numbers like π and e are also irrationals (not

so easy to prove!). Such numbers are called irrational numbers. The rational numbers

and the irrational numbers together constitute the set R.

But what exactly are irrational numbers? Or for that matter real numbers? We haven’t

actually given the precise (mathematical) definition of real numbers. To define the real

numbers, one begins with the set Q and construct the set R. There are two standard

approaches for the construction of R from Q, one due to Dedekind (through Dedekind

cuts) [3], and the other due to Cantor (through Cauchy sequences) [1]. Both Cantor and

Dedekind published their construction in 1872. We will not study these constructions in

this course because they are little complicated, rather we will study some other useful

and important properties of real numbers.

We already know that the set of real numbers R is a field under usual addition and

multiplication. Moreover, under usual addition and scalar multiplication, R(R) is a vector

space. We also know that the set of rational numbers Q is a subfield of R and it is also a

subspace of R(Q).

Order Properties

We refer to the vector space and field properties of real numbers as algebraic properties.

The set R contains a subset R+, called the set of all positive real numbers, satisfying the

following properties:

1In some texts the natural numbers start at 0 instead of 1. This is just a matter of notational

convention. The first evidence we have of zero is from the Sumerian culture in Mesopotamia, some 5000

years ago. For more details see [2].

2The letter Z stands for the German word Zahlen for numbers.
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(1) Given any x ∈ R, exactly one of the following statements is true:

x ∈ R+; x = 0; −x ∈ R+.

(2) If x, y ∈ R+, then x+ y ∈ R+ and xy ∈ R+.

We define an order relation on R as follows:

For x, y ∈ R, we define x to be less than y, we write x < y, if y − x ∈ R+. We also

write y > x and say that y is greater than x. It follows that R+ = {x ∈ R : x > 0}. Using

the algebraic properties of R and the properties (1) and (2) above we can easily prove the

following:

(i) Given any x, y ∈ R, one of the following is true.

x < y; x = y, y < x.

This is called the Law of Trichotomy.

(ii) If x, y, z ∈ R such that x < y and y < z, then x < z.

(iii) If x, y, z ∈ R such that x < y, then x+ z < y+ z. Moreover, if z > 0, then xz < yz,

whereas if if z < 0, then xz > yz.

The notation x ≤ y means that either x < y or x = y. Likewise, x ≥ y means x > y or

x = y.

Completeness Property

We begin with the following definitions.

Definition 1. Let S be a nonempty subset of R.

• We say that S is bounded above if there exists α ∈ R such that x ≤ α for all

x ∈ S. Any such α is called an upper bound of S. Express this definition in

terms of quantifiers.

• We say that S is bounded below if there exists β ∈ R such that x ≥ β for all

x ∈ S. Any such β is called a lower bound of S.

• The set S is said to be bounded if it is bounded above as well as bounded below;

otherwise, S is said to be unbounded.

Example 2. (1) N is bounded below, and any real number β ≤ 1 is a lower bound of

N.

(2) The set S = { 1
n

: n ∈ N} is bounded. Indeed, any real number α ≥ 1 is an upper

bound of S, whereas any real number β ≤ 0 is a lower bound of S.

(3) The set S = {x ∈ Q : x2 < 2} is bounded. Here, 2 is an upper bound, while −2 is

a lower bound.
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Exercise 3. When do you say a real number is not a lower bound of S? When do you

say S is not bounded below? Express these in terms of quantifiers.

Definition 4. Let S be a nonempty subset of R.

• An element M ∈ R is a supremum or a least upper bound of S if

(i) M is an upper bound of S, and

(ii) If α is an upper bound of S, then M ≤ α.

The symbol LUB is a shorthand notation for least upper bound. We denote the

supremum of S by supS or lubS.

• An element m ∈ R is a infimum or a greatest lower bound of S if

(i) m is a lower bound of S, and

(ii) If β is a lower bound of S, then m ≥ β.

The symbol GLB is a shorthand notation for greatest lower bound. We denote the

infimum of S by inf S or glbS.

• supS and inf S may belong to the set S. If supS ∈ S, it is called the maximum

of S, and denoted by maxS; likewise, if inf S ∈ S, it is called the minimum of S,

and denoted by minS.

Exercise 5. Prove that if S has a supremum, it must be unique. The same assertion

holds for infimum as well.

Example 6. Find the supremum and infimum of the set S = {x+ x−1 : x > 0}.

Solution. First observe that if x > 0, x+ 1
x
> x. Hence, S is not bounded above.

On the other hand, if x > 0, (x − 1)2 ≥ 0 =⇒ x2 − 2x + 1 ≥ 0. Dividing by x we

get, x − 2 + 1
x
≥ 0 or 2 ≤ x + 1

x
. Thus, 2 is a lower bound of S. Further, note that

2 = 1 + 1
1
∈ S. This implies that inf S = 2.

The following characterization of the LUB will be very useful.

Proposition 7. Let S be a nonempty subset of R. Then M = supS if and only if

(1) M is an upper bound of S,

(2) If β < M , then β is not an upper bound of S.

Proof. The direct part is clear. For the converse part, let α be an upper bound of S. We

claim that M ≤ α. If not, then M > α. So, by the hypothesis (2), α is not an upper

bound, contradicting our assumption. Therefore, M ≤ α, and M = supS. �

Exercise 8. State and prove an analogous to the above Proposition for GLB.

It is time to state the most important property of R which is called the completeness

property or the LUB property. It says that
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“Every nonempty subset of R that is bounded above has a LUB”.

Theorem 9. Let S be a nonempty subset of R that is bounded below. Then S has an

infimum.

Proof. Let A = {α ∈ R : α ≤ x, ∀ x ∈ S}. Since S is bounded below, A 6= ∅. Let x ∈ S.

By definition of the set A, β ≤ x for all β ∈ A. Then, x is an upper bound of A. This

implies that supA ≤ x (supA exists because A is bounded above). Thus, supA is a lower

bound of S. We claim that supA = inf S. Indeed, if α is any lower bound of S, then

α ∈ A. Therefore, α ≤ supA, which completes the proof. �

The following theorem is an important consequence of the completeness property of R.

Theorem 10 (Archimedean property (AP)). Given x, y ∈ R with x > 0, there exists

n ∈ N such that nx > y.

Proof. Proof by contradiction. If false, then nx ≤ y for every n ∈ N. Thus, y is an upper

bound of the set S = {nx : n ∈ N}. Let M = supS. Now for all n, (n + 1)x ≤ M or

nx ≤M − x < M . Hence, M − x is an upper bound of S, a contradiction. �

Corollary 11. N is not bounded above in R, that is, for any x ∈ R, there exists n ∈ N

such that n > x.

Example 12. Find the supremum and infimum of the set S =
{

m
|m|+n

: m ∈ Z, n ∈ N
}

.

Solution. Observe that −1 < m
|m|+n

< 1, and for m ∈ Z, m
|m|+1

∈ S. For m > 0, m
m+1

approaches 1 (whatever that means! We will see the precise definition in the next lecture),

and m < 0, m
−m+1

approaches −1. Hence, we guess that supS = 1 and inf S = −1. Let’s

prove this.

If β < 1, 1− β > 0. By AP (take x = 1− β, y = β), ∃ n ∈ N such that n(1− β) > β

⇒ β < n
n+1
∈ S. Thus, supS = 1.

If α > −1, 1 + α > 0. By AP (take x = 1 + α, y = −α), ∃ n ∈ N such that

n(1 + α) > −α ⇒ −n
n+1

< α. Hence, inf S = −1.
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