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Abstract

A notion of completeness and completion suitable for use in the
absence of countable choice is developed. This encompasses the con-
struction of the real numbers as well as the completion of an arbi-
trary metric space. The real numbers are characterized as a com-
plete archimedean Heyting �eld, a terminal object in the category of
archimedean Heyting �elds.

1 Introduction

I want to address two topics in constructive mathematics without countable
choice:

� completeness of metric spaces,

� axioms for the real numbers, and a construction of the real numbers
that is appropriate for those axioms.

The two topics are related because completeness is a key axiom for the real
numbers.
How are we to de�ne completeness? Sequential completeness is natural if

one de�nes the real numbers, as Bishop does in [2], to be regular sequences
of rational numbers: jqm � qnj � 1=m + 1=n. However, without countable
choice, one cannot even show that these regular Cauchy reals are sequentially
complete (see [8]). So sequential completeness is probably the wrong notion.
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We will want a stronger notion of completeness both to develop the real
numbers and to complete a metric space.
To construct an element r of the completion of a space X, it should

su¢ ce to show how, for each n, to construct an element x in X that is within
1=n of r. Symbolically, d (x; r) � 1=n. Countable choice would then let you
construct a sequence xn in X such that d (xn; r) � 1=n for all n. The triangle
inequality implies that d (xm; xn) � 1=m+ 1=n for all m and n, so we arrive
at the idea of a regular sequence. The set of regular sequences that converge
to a �xed r is exactly an equivalence class of regular sequences under the
equivalence x � y de�ned by d (xm; yn) � 1=m+ 1=n for all m and n.
Bishop used regular sequences both to de�ne a real number and to de�ne

an element in the completion of a metric space. Actually, Bishop used the
equivalence d (xn; yn) � 2=n, rather than d (xm; yn) � 1=m + 1=n, but these
are the same for regular sequences. In fact, all that is needed is that d (xn; yn)
converge to zero, even unmodulated convergence. Thus a regular sequence
that converges to r is simply a choice function for the sequence of sets

Sn = fx 2 X : d (x; r) � 1=ng

When operating without choice, it is natural to focus on the sequence Sn
itself, which has the property that if x 2 Sm and y 2 Sn, then d (x; y) �
1=m+1=n. (In the spirit of Heyting and Brouwer, we could think of a regular
sequence x not as speci�ed by a rule but as an in�nitely proceeding sequence,
or a choice sequence, such that xn 2 Sn.) This idea of using regular sequences
of subsets to construct completions was sketched in a short paragraph in [10],
with an additional reference to [12]. Part of the purpose of this paper is to
expand on that short paragraph. The detailed development of the completion
of a metric space X in [10] was based on the notion of a location, a certain
kind of continuous function on X that ends up being the distance from x in
X to the point r in the completion of X. This idea seems of only academic
interest because, in practice, one constructs approximations to r, not the
distance function to r.
In his axiomatic treatment of the real numbers in [3, Axiom sets R1

and R2], Bridges uses a least upper bound principle for his completeness
axiom� essentially Dedekind completeness. Unlike sequential completeness,
it is quite adequate for a choiceless development of the real numbers. It is
also quite elegant. However, it cannot be used to de�ne completeness in
arbitrary metric spaces. Partly for this reason, I don�t think it is the right
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condition to impose. Another reason is that constructivists don�t seem to
use the (constructive) least upper bound principle a lot. To be sure, it is a
substitute for the classical least upper bound principle, but it doesn�t come
up often in constructive practice. In classical mathematics, you can use the
least upper bound principle to prove that a series converges without having
to �gure out how far out you have to go to get a good approximation, or you
can use it to de�ne the lower integral of a continuous function. We don�t
have any similar uses for the constructive least upper bound principle. We
normally show directly how to compute good approximations.

2 Premetric spaces and completions

Metric spaces presuppose the real numbers, so if we want a notion of com-
pleteness that will apply to the construction of the real numbers as well as
to metric spaces, we need a more general concept. What exactly is the right
level of generality? Uniform spaces seem a little too general to me, so I have
settled on the notion of what I will call a premetric space.
The data needed to turn a set X into a premetric space is a family Eq

of symmetric subsets of X � X indexed by nonnegative rational numbers
q. These are the entourages of a uniform structure on X. We will mostly
use the more suggestive notation d (x; y) � q to stand for (x; y) 2 Eq with-
out committing ourselves to any entity d (x; y). We impose the following
conditions:

� d (x; y) � 0 if and only if x = y (separated)

� for all x; y, there exists q such that d (x; y) � q (no points at in�nity)

� d (x; y) � p if and only if d (x; y) � q for all q > p (upper continuous)

� if d (x; y) � p and d (y; z) � q, then d (x; y) � p+ q (triangle)

Classically this allows us to de�ne a metric onX by letting d (x; y) be the real
number inf fq 2 Q : d (x; y) � qg. For this to de�ne a �nite-valued metric
we need the condition that there be no points at in�nity, a condition that
otherwise seems unimportant. If we impose the classically trivial condition

� if p < q then either d (x; y) � q or not d (x; y) � p (located points)

3



(see [6]), then we get a metric, provided, of course, that we have already
constructed the real numbers. Without located points we can think of d (x; y)
as a generalized real number (an uppercut) [9]. If we do this, then a premetric
is simply a metric where the distances are generalized real numbers. Any
metric space is a premetric space with located points in the obvious way.
The rational numbers are a premetric space with located points if we de�ne
d (x; y) � q to mean jx� yj � q. So we�ve covered our two fundamental
examples.
We don�t need located points for most of the theory, although it�s not

clear how interesting premetric spaces without located points are. Here�s an
example of one. Let P be a proposition and X = f0; 1; xg. De�ne

d (0; x) � q if q � 1 or P
d (1; x) � q if q � 1 or :P
d (0; 1) � q if q � 1

If d (0; x) � 1=2, then P , while if not d (0; x) � 0, then :P , so this space has
located points only if P or not P . (We will consider the point 1 2 X below.)
A natural inequality on a premetric space is obtained by setting x 6= y if

:d (x; y) � " for some " > 0. Note that x = y if d (x; y) � " for all " > 0,
so this is a stronger inequality than simply :x = y because we require a
witnessing ". If points are located, then x 6= y if and only if d (x; y) > 0,
where d is a metric, so the inequality is a tight apartness.
In the above example, P is equivalent to x = 0 and :P is equivalent to

x = 1. If the inequality were tight, then x = 0 would be :x 6= 0, so we would
get P � ::P . If the inequality were cotransitive (a 6= c implies a 6= b or
b 6= c), then we would have :P _ ::P , weak LEM. Later we will be able to
observe that this premetric space is complete.
What are the maps between premetric spaces? It depends on what we

want, just like for metric spaces. For our purposes, the right de�nition seems
to be that a map is a function that is uniformly continuous on bounded
subsets, where a subset S is bounded if S � S � Eq for some q. A function
f is uniformly continuous on a set S if for each " > 0 there exists � > 0 such
that d (s1; s2) � � implies d (f (s1) ; f (s2)) � ". Of course.
The natural premetric on X�Y is the sup premetric: d ((x; y) ; (x0; y0)) �

q if d (x; x0) � q and d (y; y0) � q. This is the categorical product in the
category of premetric spaces with the maps being the functions that are
uniformly continuous on bounded subsets. It is also the categorical product
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if we take the maps to be weak contractions, that is, if d (x1; x2) � q, then
d (f (x1) ; f (x2)) � q. In the latter category, isomorphism is isometry.
The closure of a subset S of a premetric space X is

�S = fx 2 X : for each q > 0 there is s 2 S such that d (x; s) � qg

We say that S is closed if �S = S, dense if �S = X. The subsets Eq are closed
in the space X �X because of the triangle inequality and upper continuity.
If f is uniformly continuous on bounded subsets, then f

�
�S
�
� f (S). The

subspace premetric on a subset S of X is given by restricting the relations
d (x; y) � q to S.
A regular family of subsets of X is a family of nonempty subsets Sq

indexed by positive rational numbers q with the property that d (x; y) � p+q
for all x 2 Sp and y 2 Sq. The idea is that Sq will consist of some of the
elements ofX that are within q of a point in the completion ofX. In practice,
what happens is that we show how to construct an element ofX that is within
q of an element of the completion of X. There are typically some choices
involved in this construction, so that we are actually constructing a nonempty
set of approximations.
Two regular families S and T are equivalent if d (x; y) � p + q for

all x 2 Sp and y 2 Tq. That is, Sp � Tq � Ep+q. Re�exivity follows by
de�nition and symmetry by the symmetry of d (x; y) � q. For transitivity, if
Sp � Tq � Ep+q and Tq � Ur � Eq+r, then Sp � Ur � Ep+q �Eq+r � Ep+r+2q.
This holds for all q > 0 so Sp � Ur � Ep+r.
We will let Q+ = fq 2 Q : q > 0g and Q� = fq 2 Q : q < 0g.
De�ne the elements of the completion X̂ of X to be the equivalence

classes of regular families of subsets. The premetric structure on X̂ is de�ned
by d (S; T ) � q if for all " > 0, there exist a; b; c 2 Q+ and elements s 2 Sa
and t 2 Tb such that a+ b+ c < q+" and d (s; t) � c. There is a natural map
from X to X̂ that takes x 2 X to the regular family Sx de�ned by Sxq = fxg
for all q. We say that X is complete if this natural map is onto. By upper
continuity, this says that if T is a regular family, then there exists x 2 X
such that d (x; t) � q for all t 2 Tq.

Lemma 1 If T is regular family and x 2 Tq, then d (Sx; T ) � q.

Proof. This is an exercise in using the de�nitions. For " 2 Q+, let a = b =
"=4 and c = q + b. If x 2 Tq and t 2 Tb, then d (x; t) � q + b = c. Moreover
a+ b+ c = q + 3"=4 < q + ".
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Theorem 2 The completion X̂ of a premetric space X is a premetric space.
The natural map of X into X̂ is a dense embedding and the premetric struc-
ture on X̂ extends the premetric structure on X. Moreover, if X has located
points, then so does X̂.

Proof. Clearly symmetry and upper continuity hold. To verify separation,
suppose d (S; T ) � 0. Then for each " 2 Q+, there exist a; b; c 2 Q+ and
elements s 2 Sa and t 2 Tb such that a + b + c < " and d (s; t) � c. We will
show that Sp � Tq � Ep+q+" for each " 2 Q+, whence Sp � Tq � Ep+q. Thus
S is equivalent to T . Suppose u 2 Tq and v 2 Sp. Then d (u; t) � q + b and
d (s; v) � p+ a. So d (u; v) � p+ q + a+ b+ c < p+ q + ".
For the triangle inequality, suppose d (S; T ) � p and d (T; U) � q. We

want to show that d (S; U) � p+ q. For each " 2 Q+ there exist a; b; c 2 Q+

and elements s 2 Sa and t 2 Tb such that a+ b+ c < p+ "=2 and d (s; t) � c.
Also there exist a0; b0; c0 2 Q+ and elements t0 2 Ta0 and u 2 Ub0 such that
a0 + b0 + c0 < q + "=2 and d (t0; u) � c0. So a+ a0 + b+ b0 + c+ c0 < p+ q + "
and s 2 Sa and u 2 Ub0 with d (s; u) � c+ b+ a0+ c0. Let c00 = c+ b+ a0+ c0.
Then a+ b0 + c00 < p+ q + " and s 2 Sa and u 2 Ub0 with d (s; u) � c00.
To show that the premetric structure on X̂ extends that on X, we must

show that d (Sx; Sy) � q exactly when d (x; y) � q. Note that d (Sx; Sy) � q
exactly when for all " 2 Q+, there exist a; b; c such that a + b + c < q + "
and d (x; y) � c. If d (x; y) � q, then we can choose a = b = "=3 and c = q
to show that d (Sx; Sy) � q. Conversely, suppose d (Sx; Sy) � q. To show
that d (x; y) � q, it su¢ ces to show that d (x; y) � q + " for all ". But
d (x; y) � q + "� a� b.
That X is embedded densely in X̂ is immediate from Lemma 1.
Finally, we show that if X has located points, then so does X̂. In fact, we

will show that if X is a dense subset of Y , and X has located points, then Y
has located points. Suppose p < q and y1; y2 2 Y . Choose x1; x2 2 X such
that d (xi; yi) � a < (q � p) =4. If d (x1; x2) � q � 2a, then d (y1; y2) � q. If
d (y1; y2) � p, then d (x1; x2) � p + 2a. But if X has located points, then
either d (x1; x2) � q � 2a or not d (x1; x1) � p+ 2a.
Each regular family T gives rise to a largest equivalent family C de�ned

by
Cq = fx 2 X : d (Sx; T ) � qg

Lemma 1 shows Tq � Cq. It remains to show that C is a regular family, that
is, if x 2 Cp and y 2 Cq, then d (x; y) � p + q. This is immediate from the
triangle inequality in X̂. So each element of X̂ has a canonical representative.
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Theorem 3 If X is a dense subset of a premetric space Y , and Z is a
complete premetric space, then any (uniformly continuous) map from X to
Z extends uniquely to a (uniformly continuous) map from Y to Z.

Proof. Let f : X ! Z be uniformly continuous on bounded subsets. We
will extend f to g : Y ! Z. It su¢ ces to look at f on bounded subsets of
X, so we may assume that f is uniformly continuous. For each y 2 Y , de�ne
a regular family of subsets of Z by

Sq (y) =
�
f (x) : d (x; y) � p and f (Ep+") � Eq for some p; " 2 Q+

	
In a typical proof we might say, or hint at, something like this: To de�ne
g (y) in the complete space Z, we need to approximate g (y) within q. Choose
p and " so that f (Ep+") � Eq. Choose x so that d (x; y) � p. Then f (x) is
a q-approximation to g (y). Here we will �ll in the details.
To show that S (y) is a regular family, suppose f (x) 2 Sq (y) and f (x0) 2

Sq0 (y) with the corresponding witnessing p; "; p0; "0. Choose x00 so that d (x00; y) �
min ("; "0). Then d (x; x00) � p+" and d (x0; x00) � p0+"0, so d (f (x) ; f (x00)) �
q and d (f (x0) ; f (x00)) � q0, whence d (f (x) ; f (x0)) � q + q0. So the family
S (y) is regular. Because Z is complete, there exists a unique z 2 Z so that
d (s; z) � q for each s 2 Sq (y). De�ne g (y) = z.
To show that g extends f , suppose y 2 X and s 2 Sq (y). Then s = f (x)

where d (x; y) � p and f (Ep+") � Eq. Thus d (s; f (y)) � q for each s 2 Sq (y)
so g (y) = f (y) by the de�nition of g (y).
We will show that g is uniformly continuous by showing that if f (Ep) �

Eq, then g (Ep�") � Eq for any " > 0. It su¢ ces to show that g (Ep�") � Eq+�
for any � > 0. There is positive � � "=2 so that f (E2�) � E�=2. Suppose
d (y; y0) � p� ". There exist x; x0 2 X so that d (x; y) � � and d (x0; y0) � �
because X is dense in Y . So f (x) 2 S�=2 (y) and f (x0) 2 S�=2 (y0) whence
d (f (x) ; g (y)) � �=2 and d (f (x0) ; g (y0)) � �=2. Note that d (x; x0) � p
because � � "=2, so d (f (x) ; f (x0)) � q whence d (g (y) ; g (y0)) � q + �,
which is what we wanted to show.

3 Archimedean ordered Heyting �elds

To axiomatize the real numbers, we start with the notion of an ordered Heyt-
ing �eld. The de�nition is fairly routine: simply write down the arithmetic

7



and order properties of sub�elds of the real numbers. It appears essentially
in [3, Axiom sets R1 and R2]. We want to use a slight variant of the usual
axioms. First de�ne an ordered abelian group to be an abelian group A
together with a subset P � A, the (strictly) positive elements satisfying

� P + P � P

� A � P � P (directed)

� P \ �P = ;

� If a =2 P [ �P , then a = 0 (tight)

� If a+ b 2 P , then a 2 P or b 2 P (cotransitive)

The strict order on an ordered abelian group is obtained by setting x < y if
y � x 2 P ; the weak order by setting x � y if x � y =2 P . The subset P is
reconstructed as fx 2 A : x > 0g. Note that 0 =2 P because P \ �P = ;. If
tightness is replaced by its classical equivalent, A = P [ f0g [ �P , then A
is totally ordered by x � y in the usual sense, and x � y if and only if x < y
or x = y. In any event, A is partially ordered by x � y, the strict order
x < y is transitive, cotransitive, and asymmetric, and both x � y and x < y
are translation invariant. We de�ne an inequality on A by x 6= y if x < y or
y < x, that is, x� y 2 P [ �P . This inequality is a (tight) apartness.
The condition that A � P � P implies that P is nonempty. So this is

really a de�nition of a nontrivial ordered abelian group, the only kind we are
interested in here. An ordered abelian group is said to be archimedean if
whenever x; y 2 P , then there exists a positive integer n such that x < ny.
Note that we need not assume that x 2 P in this de�nition because A �
P � P .
An ordered Heyting �eld is a commutative ring k whose additive group

is an ordered abelian group and whose positive elements form a group under
multiplication.

Proposition 4 Let k be an ordered Heyting �eld and P its group of positive
elements. Then the identity of the group P is the multiplicative identity of
k, and the invertible elements of k are exactly the elements of P [ �P .

Proof. That the identity of P is the identity of k follows from k � P � P .
Clearly P [ �P consists of invertible elements of k. Conversely, suppose
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ab = 1. Then a 2 P or 1 � a 2 P , by cotransitivity, and the same for b.
So either a 2 P or 1 � a and 1 � b are in P . Replacing a by �a and b by
�b, we see that either a 2 �P or 1 + a and 1 + b are in P . Thus either
a 2 P [ �P or b� a = (1� a) (1 + b) 2 P and a� b = (1 + a) (1� b) 2 P ,
which contradicts P \ �P = ;.
There is a natural map of the ring Z of integers into any ordered Heyting

�eld k that takes m 2 Z to m � 1 2 k. This map is order preserving because
0 < 1 and if x > 0 and y > 0, then x + y > 0. As m � 1 is invertible for
nonzerom, this map extends to a map of the �eld Q of rational numbers into
k. This map preserves order because x > 0 if and only if nx > 0. Indeed, by
cotransitivity either nx > 0 or nx < x in which case (n� 1)x < 0 which is
impossible. We will identifyQ with its image in k so we consider any ordered
Heyting �eld to contain Q.
We need more axioms to characterize the real numbers. The �rst one,

which essentially appears in [3], has two aspects. An ordered Heyting �eld
is archimedean if its additive group is archimedean.

Theorem 5 Let k be an ordered Heyting �eld. Then the following two con-
ditions are equivalent

� k is archimedean.

� Q is dense in k: If x < y, then there exists a rational number q such
that x < q < y.

Proof. Suppose k is archimedean and x < y. Then n (y � x) > 1 for some
positive integer n. We can �nd integers m < nx and M > ny. Consider the
integers m;m + 1;m + 2; : : : ;M . For each integer i such that m � i � M
we have either i > nx or i < ny. As m < nx and M > ny, we can �nd an
integer i so that i < ny and i+1 > nx. As ny > nx+1, either i+1 > nx+1
or i + 1 < ny. In the latter case, nx < i + 1 < ny; in the former case
nx < i < ny. In either case we have found we have found an integer j so
that nx < j < ny and so x < j=n < y.
Conversely, supposeQ is dense in k and x > 0. There is a rational number

q such that y=x < q < y=x+1, hence a positive integer n such that y=x < n.
So nx > y because PP � P
The standard example of a countable discrete Heyting �eld that is not

archimedean is the �eld Q (X) of rational functions over the rational num-
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bers, ordered by setting f (X) =g (X) > 0 if limx!+1 f (x) =g (x) > 0. Here
1=X > 0 but nX < 1 for every positive integer n.
Any sub�eld of R is an archimedean ordered Heyting �eld, for example,

Q or Q
�p
2
�
or the �eld of all algebraic real numbers. By a sub�eld of R

we mean a subring R such that if x 2 R and x 6= 0 in R, then x�1 2 R.
Archimedean ordered Heyting �elds need not have �nite in�ma. For a 2 R,
the sub�eld Q (a) of R consists of all quotients of polynomials p (a) =q (a)
where q (a) > 0. Suppose a ^ 0 is in Q (a). So a ^ 0 = p (a) =q (a) with
q (a) > 0. So a � 0 if and only if p (a) = 0. If p = 0, then a � 0. Otherwise
either a > 0 or a < r for each of the �nite number of positive roots r of p.
But if a < r for every positive root r of p, then a � 0 because if a > 0, then
a is a positive root of p. So if a ^ 0 is in Q (a), then either a � 0 or a � 0.
For a a Cauchy real, that�s Bishop�s LLPO. Of course, conversely, if a � 0
or a � 0 for all real numbers a, then �nite in�ma exist in any sub�eld of R.
We will need the following technical lemma about archimedean Heyting

�elds.

Lemma 6 Let k be an archimedean Heyting �eld.

1. If a1; a2 2 k, and q is a rational number such that q < a1 + a2, then
there exist rational numbers q1 and q2 such that q1 < a1 and q2 < a2
and q = q1 + q2.

2. If a1; a2 are positive elements of k, and q 2 Q+ such that q < a1a2,
then there exist q1; q2 2 Q+ such that q1 < a1 and q2 < a2 and q = q1q2.

3. If x; y 2 k, and q < x implies q < y for each rational number q, then
x � y.

4. For p; q 2 Q+ and x; y 2 k, if �p � x � p and �q � y � q, then
�pq � xy � pq.

Proof. Suppose q < a1 + a2. Choose q1 so that q � a2 < q1 < a1 and set
q2 = q � q1. For 2, suppose q < a1a2. Choose q1 so that q=a2 < q1 < a1 and
set q2 = q=q1. For the third claim we must show that the assumption that
y < x leads to a contradiction. But if y < x, then there exists a rational
number q such that y < q < x, and this rational number is less than x but
not less than y.
To prove 4, we will prove the precontrapositive that if pq < xy, then

p < x or p < �x or q < y or q < �y. Replacing x by �x we get the same
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conclusion from xy < �pq. So suppose pq < xy. Then xy > 0 so either
x > 0 and y > 0, or x < 0 and y < 0. Replacing x by �x and y by �y, if
necessary, we may assume that we are in the �rst case. From 2 there exist
p0; q0 2 Q+ such that p0q0 = pq and p0 < x and q0 < y. Either p � p0 or q � q0,
so either p < x or q < y.

Part 4 of the lemma says essentially that multiplication is continuous.
The statement corresponding to 4 for addition is obviously true.
We will characterize R as a terminal object in the category of all archi-

medean ordered Heyting �elds. We need to say what a map in this category
is. A map should respect all the structure, so it should be a homomorphism
of rings, and it should preserve the relation x < y. But what does it mean
to preserve the relation x < y? It could mean that if x < y, then 'x < 'y,
or it could mean the converse. We will show that these two conditions are
equivalent. Note that any ring homomorphism ' between rings containing
Q is the identity map on Q. That�s because in the category of rings with 1,
every homomorphism takes 1 to 1.

Theorem 7 Let k0 and k1 be archimedean ordered Heyting �elds, and ' :
k0 ! k1 a function that is the identity on Q. Then the following two condi-
tions are equivalent:

1. For all x and y in k0, if x < y, then 'x < 'y.

2. For all x and y in k0, if 'x < 'y, then x < y.

If these conditions are met, then ' is a ring homomorphism.

Proof. Suppose 1 and 'x < 'y. There exist rational numbers q, q0, and q00

such that 'x < q < q0 < q00 < 'y. Now either x < q0 or x > q. In the latter
case, 'x > q by 1, a contradiction. So x < q0. Similarly q0 < y, so x < y.
Now suppose 2 and x < y. There exist rational numbers q, q0, and q00 such
that x < q < q0 < q00 < y. Either 'x < q0 or 'x > q. In the latter case,
x > q by 2, a contradiction. So 'x < q0. Similarly q0 < 'y so 'x < 'y.
To show that ' (x+ y) = ' (x)+' (y), it su¢ ces to show weak inequality

in each direction. Suppose that q < ' (x+ y) for some rational number q.
Then q < x+ y so from Lemma 6 part 1 there exist rational numbers q1 < x
and q2 < y such that q = q1 + q2. Then q1 < ' (x) and q2 < ' (y) so
q < ' (x) + ' (y). Thus Lemma 6 part 3 says that ' (x+ y) � ' (x) + ' (y).
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For the other inequality, suppose q < ' (x) + ' (y). Then q = q1 + q2 where
q1 < ' (x) and q2 < ' (y). So q1 < x and q2 < y whence q < x + y so
q < ' (x+ y). Hence ' (x) + ' (y) � ' (x+ y).
The same argument shows that if x and y are positive, then ' (xy) =

' (x)' (y). Now ' (�a) = �' (a) because ' is a homomorphism of additive
groups. So ' is a ring homomorphism because every element of k is a dif-
ference of positive elements and ' is a homomorphism of additive groups.

By a map in the category of archimedean ordered Heyting �elds, we mean
a ring homomorphism that satis�es either of the equivalent conditions in the
preceding theorem (order preserving). We want to de�ne the real numbers
to be a terminal object in this category. That is to say, for each archimedean
ordered Heyting �eld k, there is a unique map k ! R. Such an object
is clearly unique up to isomorphism. Because maps between archimedean
Heyting �elds are one-to-one (in a strong sense), the fact that R is terminal
can be viewed as saying that R is as big as possible, hence complete� indeed
this is the sense in which Hilbert meant that R was a complete archimedean
�eld, see [7] and [1].
So we need to construct a terminal archimedean ordered Heyting �eld.

The premetric structure on any archimedean Heyting �eld, in particular on
Q, is obtained by setting d (x; y) � q if �q � x� y � q. We will show that
a complete archimedean Heyting �eld is a terminal object in the category of
archimedean Heyting �elds (Corollary 11), and construct one by completing
Q (Theorem 14).

Theorem 8 In any archimedean Heyting �eld, addition is uniformly contin-
uous and multiplication is uniformly continuous on bounded subsets.

Proof. Addition is uniformly continuous because if d (x; x0) � p and d (y; y0) �
q, then d (x+ y; x0 + y0) � p + q. Multiplication is uniformly continuous on
bounded subsets because if d (s; 0) � b for all s 2 S, and if x; y; x0; y0 2 S
with d (x; x0) � p and d (y; y0) � q, then d (xy; x0y0) � b (p+ q) because
d (xy; x0y) � bp and d (x0y; x0y0) � bq from Lemma 6, part 4.

We will need the following fact relating the positive elements of an archimedean
Heyting �eld to Q+.

Theorem 9 Let k be an archimedean Heyting �eld and x 2 k. Then x > 0
if and only if there exists q 2 Q+ such that x is in the closure of [q;1) =
fq0 2 Q : q0 � qg in k.

12



Proof. Suppose x is in the closure of [q;1). Then x can be approximated
within q=2 by an element r 2 [q;1). Either x > 0 or x < r � q=2, by
cotransitivity, but the latter alternative is ruled out because �q=2 � x� r �
q=2.
Conversely, suppose x > 0. As k is archimedean, we can �nd q in Q such

that 0 < q < x. We will show that x is in the closure of [q;1). Suppose
" 2 Q+. As k is archimedean, there exists m � 2 such that x < m"=2. Let
ak = q + k"=2 for k = 0; : : : ;m. Then a0 < x < am, so, by cotransitivity,
there exists k such that ak < x < ak+2. Then �" < x� ak � ak+2 � ak < "
and ak 2 [q;1).

Corollary 10 If k and k0 are archimedean Heyting �elds, and ' : k ! k0 is
a uniformly continuous homomorphism of rings, then ' preserves order, so
is a map of archimedean Heyting �elds.

Proof. It su¢ ces to show that if x > 0, then ' (x) > 0. Because ' is a ring
homomorphism, it takes [q;1) in k to [q;1) in k to [q;1) in k0. Because '
is uniformly continuous, it takes the closure of [q;1) in k into the closure of
[q;1) in k0. Therefore, by Theorem 9, if x > 0, then ' (x) > 0.

Corollary 11 Any complete archimedean Heyting �eld is a terminal object
in the category of archimedean Heyting �elds.

Proof. IfK is a complete archimedean Heyting �eld, and k is an archimedean
Heyting �eld, then the identity map from Q � k to Q � K extends uniquely
to a uniformly continuous map from k to K by Theorem 3. Because the ring
operations are continuous (Theorem 8), this map is a ring homomorphism,
so is a map of archimedean Heyting �elds by Corollary 10.

Finally, we need to construct a complete archimedean Heyting �eld. We
do that by completing Q. Addition is uniformly continuous on Q and multi-
plication is uniformly continuous on bounded subsets of Q. So these opera-
tions extend uniquely to the completion R of Q, by Theorem 3, where they
continue to satisfy the axioms for a commutative ring with identity. The
distance �function�on R is translation invariant in the sense that

Lemma 12 Let r1; r2; r3 2 R, and " 2 Q+. Then

d (r1; r2) � ", d (r1 + r3; r2 + r3) � ":
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Proof. It su¢ ces to show that d (r1 + r3; r2 + r3) � " + � for all � 2 Q+.
Choose q1; q2; q3 2 Q such that d (qi; ri) � �=4 and d (ri + rj; qi + qj) � �=4.
This is possible becauseQ is dense inR and addition is uniformly continuous
on R. So d (q1; q2) � " + �=2 whence d (q1 + q3; q2 + q3) � " + �=2 and so
d (r1 + r3; r2 + r3) � ".
We could write d (s; t) = d (u; v) to mean that d (s; t) � " if and only if

d (u; v) � ". So Lemma 12 could be written as

d (r1; r2) = d (r1 + r3; r2 + r3) = d (�r1;�r2)

the latter equation coming from the former by taking r3 = �r1 � r2.
To de�ne the order on R we characterize the positive elements of R.

Lemma 13 For r 2 R, the following are equivalent:

� There is p 2 Q+ such that d (r; p) � p=2,

� There is q 2 Q+ such that r is in the closure of [q;1) = fq0 2 Q : q0 � qg.

Proof. If d (r; p) � p=2, let q = p=4. We can approximate r arbitrarily
closely with elements q0 2 Q, and if d (r; q0) � p=4, then d (p; q0) � 3p=4 so
q0 � q.
Conversely, if r is in the closure of [q;1), then we can �nd p � q so that

d (p; r) � q=2 � p=2.
De�ne the set P of (strictly) positive elements ofR to be those r inR that

satisfy the two equivalent conditions of Lemma 13. Note that P \Q = Q+.
The second condition of Lemma 13 seems more natural to me, but the �rst
condition has a much simpler logical form, which can come in handy.

Theorem 14 With P de�ned as above, R is an archimedean Heyting �eld.

Proof. We �rst show that R is an ordered abelian group. To show that
P + P � P , suppose that r1; r2 2 P . There exist q1; q2 2 Q+ such that ri is
in the closure of [qi;1), so r1 + r2 is in the closure of [q1 + q2;1).
To see that R � P � P , let r 2 R and choose q 2 Q such r is in the

closure of [q;1). Choose p 2 Q+ so that p + q > 0. Then p + r is in the
closure of [p+ q;1), hence in P , so r = (p+ r)� p 2 P � P .
If r 2 P \�P , elements in Q that are close enough to r are both positive

and negative, so P \ �P = ;.
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Suppose r =2 P [ �P . For p 2 Q+, choose q 2 Q so that d (q; r) � p
and thus d (�q;�r) � p. Suppose q � 3p. If d (q0; r) � p, then d (q; q0) � 2p
whence q0 � p. So r is in the closure of [p;1) whence r 2 P , a contradiction.
Thus q < 3p. Now suppose �q � 3p. If d (q0;�r) � p, then d (q0;�q) �
2p whence q0 � p. So �r is in the closure of [p;1)whence r 2 �P , a
contradiction. So jqj < 3p whence d (0; r) � 4p for any p > 0. Thus r = 0.
Finally, suppose r1 + r2 2 P so there is p 2 Q+ such that d (r1 + r2; p) �

p=2. Choose qi 2 Q so that d (ri; qi) � p=16. Then d (q1 + q2; p) � p=2 +
p=8 � 3p=4, so qi0 � p=8 for some i0 2 f1; 2g. So d (ri0 ; qi0) � p=16 � qi0=2
whence ri0 2 P .
To show that R is a Heyting �eld, we must show that P is a group under

multiplication. First we need to show that PP � P , so suppose r1; r2 2 P .
Then there exists qi 2 Q+ such that ri is in the closure of [qi;1). Then
r1r2 is in the closure of [q1q2;1). What about inverses? Suppose r is in
the closure of [q;1). We may assume q < 1. The function x�1 is uniformly
continuous from [q;1) to itself, so extends to the closure (completion) of
[q;1). Thus there exists s in the closure of [q;1), hence in P , such that
rs = 1.
Finally we want to show that R is archimedean. Suppose x; y 2 P . Then

x is in the closure of [q;1). Let p 2 Q approximate y to within 1=2 and
choose n so that nq � p + 1. We want to show that nq � y 2 P . But
d (nq � p; nq � y) � 1=2, because of translation invariance, and nq � p � 1.

4 Remarks on Dedekind reals

A standard way to construct the real numbers is via Dedekind cuts. I like
this construction, and I think I have something to say about it, so despite the
fact that we can take the real numbers to be the completion of the premetric
space of rational numbers, I want to look a little bit at cuts.
In what follows, when we say that a set S is nonempty, or write S 6= ;,

we mean S is inhabited, that is, there is an element in S.
A Dedekind cut (in Q) is a pair (L;U) of open subsets of Q such that

1. L is a nonempty lower set, U is a nonempty upper set, and L\U = ;.

2. For all " 2 Q+ there exist a 2 L and b 2 U such that b� a < ".
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Some remarks on this de�nition. Note that 1 implies that if a 2 L and
b 2 U , then a < b. We could replace b � a < " in 2 by b � a = ". We
could reformulate 2 as (L+ ") \ U 6= ; for all " 2 Q+. We can reconstruct
U from L (and vice versa) because U is the interior of the complement of
L. However, the symmetric de�nition is often more convenient. We identify
the rational number q with the cut (fx 2 Q : x < qg ; fx 2 Q : x > qg). In
particular, the rational number 0 is identi�ed with the cut (Q�;Q+).
Condition 2 is equivalent, given 1, to the property that if a < b are in

Q, then a 2 L or b 2 U . That is essentially the property used by Bishop
[2, Chapter 2, Problem 6 ] and Bridges [3]. However 2 is often handier than
that property and more suggestive of the idea of a completion because a and
b in 2 are both "-approximations to the number represented by the cut.
Notice that 2 is very close to the idea of de�ning a real number as a set

of pairs of rational numbers, as is done in [4], because the pair of rational
numbers (a; b) gives a small open interval that contains the real number.
This is an idea that can be generalized to metric spaces, or premetric spaces:
the intervals (a; b), or [a; b], can be replaced by balls.
If x is an element of an archimedean Heyting �eld k, then

(fq 2 Q : q < xg ; fq 2 Q : q > xg)

is a Dedekind cut. The two sets are nonempty because k is archimedean.
They are open because Q is dense in k, another aspect of being archimedean.
They satisfy 2 because if a < b are in Q, then either a < x or x < b because
the order on k is cotransitive.
The set of Dedekind cuts is turned into an abelian group by the de�nitions

� (L;U) + (L0; U 0) = (L+ L0; U + U 0)

� 0 = (Q�;Q+)

� � (L;U) = (�U;�L)

This is easily veri�ed. Note that showing that 2 is inherited by sums is easier
than showing that the alternative equivalent property is inherited by sums.
To get an ordered abelian group we de�ne the set of positive cuts to be

� P = f(L;U) : L \Q+ 6= ;g
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To write an arbitrary cut (L;U) as a di¤erence of positive cuts, choose a 2 L
and let p = max (�a; 1). Then p > 0 and (L;U)+p > 0. To verify tightness,
we must show that if L contains no positive elements and U contains no
negative elements, then L = Q�. Clearly L � Q�. Conversely, if q 2 Q�,
then there exist a 2 L and b 2 U such that q + b � a 2 Q�. But b � 0, so
q < a� b � a is in L.
What about archimedean? Note that n (L;U) = (nL; nU). If (L;U)

is positive, and (L0; U 0) is arbitrary, then there exists a positive rational
number q in L, and a positive integer n such that nq 2 U 0, so n (L;U) is
greater than (L0; U 0). Indeed, n (L;U) + (�U 0;�L0) = (nL� U 0; nU � L0)
and (nq � U 0) \Q+ 6= ; because U 0 is open.
Nobody ever wants to go through all the details of the development of the

real numbers via Dedekind cuts. Even classically, which is a bit easier, Rudin
[11] doesn�t prove anything about multiplication of cuts. He says he did
enough with addition, and the proofs for multiplication are quite analogous
except you sometimes have to divide into cases depending on the signs of the
factors involved. Conway [5] says �there is a really big problem with signs
here, that actually makes it quite hard to de�ne multiplication. Most authors
split the argument into cases, which I think is morally wrong�. Of course
we cannot split into cases constructively whatever our moral compunctions.
Troelstra and van Dalen [13] show that any locally uniformly continuous
operation on Q can be extended uniquely to Rd and then leave the details
of arithmetic on Rd to the reader.
The following algebraic theorem is convenient for de�ning multiplication

of Dedekind cuts. It is a partial adoption of Conway�s suggestion in [5]
that one should construct the positive reals before constructing any negative
numbers (which is what happened historically). More precisely, it allows you
to de�ne multiplication at �rst only on positive numbers, yet still avoid cases
and maintain the traditional development.

Theorem 15 Let A be an ordered abelian group. Suppose there is a multi-
plicative abelian group structure on the set P of positive elements of A that
is distributive over addition in P . Then there is a unique commutative ring
structure on A that extends the multiplication on P .

Proof. For x; y 2 A, let a; b; c; d 2 P so that x = a� b and y = c�d. De�ne

xy = ac+ bd� (ad+ bc)
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Clearly any ring structure on A extending the multiplication on P must
satisfy this equation. We need to show that the product xy is well de�ned,
that is, that it depends only on x and y and not on the particular choices of
a; b; c; d. It su¢ ces to show that if a� b = a0 � b0 with a0; b0 2 P , then

ac+ bd� (ad+ bc) = a0c+ b0d� (a0d+ b0c)

that is
(a+ b0) c+ (a0 + b) d = (a0 + b) c+ (a+ b0) d

which holds because a+ b0 = a0 + b.
Having shown that the product is well de�ned, it�s clear that the multi-

plication is commutative and distributes over addition, and that the multi-
plicative identity of P is a multiplicative identity on A. To show that multi-
plication is associative, let x; y; z be elements of A. We can �nd a; b; c; d 2 P
so that x = a� d, y = b� d, and z = c� d. Then

(xy) z = (abc+ (a+ b+ c) d)� (ab+ ac+ bc+ d) d2

which is clearly symmetric in a; b; c, so (xy) z = (yz)x = x (yz).

The positive cuts can be thought of as cuts in Q+, identifying the cut
(L;U) in Q with the cut (L \Q+; U) in Q+, and the cut (L;U) in Q+ with
the cut (L0; U) in Q, where L0 is the lower set generated by L. This is in line
with Conway�s suggestion. For cuts in Q+, addition is the same as before
and we can de�ne multiplication simply by

(L;U) (L0; U 0) = (LL0; UU 0)

Rather than prove that the Dedekind reals are complete, it seems more
natural to prove that they constitute a terminal object in the category of
archimedean Heyting �elds. I won�t give the rest of the details as to why
the Dedekind reals are an archimedean Heyting �eld, but I will mention why
they are terminal. Recall that if k is an archimedean Heyting �eld, then
each element x 2 k gives rise to a cut by setting L = fq 2 Q : q < xg and
U = fq 2 Q : x < qg. The map taking x to this cut is the unique map from
k to the Dedekind reals.
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