
RECURSIVE REAL NUMBERS

H. G. RICE1

A basic step in applying a new concept such as recursive functions

to analysis should be an investigation of its application to the num-

ber system. We present here some of the elementary properties of

recursive real numbers, as defined below.

A recursive real number may be described intuitively as one for

which we can effectively generate as long a decimal expansion as we

wish [S], or equivalently, to which we can effectively find as close a

rational approximation as we wish. Accepting the thesis of Church

[l, pp. 317-323], we interpret "effectiveness" (or the lack of it) as

meaning the existence (or nonexistence) of certain recursive functions.

1. Definitions. The positive, zero, and negative rational numbers

can be recursively enumerated by any constructive procedure for

proving them denumerable.2 A rational number is then considered

"given" if a corresponding integer is given. So to every sequence of

non-negative integers corresponds a sequence of rational numbers,

and conversely. We say that an infinite sequence of rational numbers

is recursively enumerable (r.e.) if the corresponding sequence of

integers is the sequence of values g(0), g(l), g(2), • • • of a general

recursive function g(x).

Definition. A r.e. sequence of rational numbers a0, ai, a2, ■ ■ ■ is

recursively convergent ir.c.) when there exists a general recursive

function g(x) such that \an — am\ <l/N for g(N) <n, m} g(x) will be

called a convergence function for the sequence.

Definition A. A real number a is a recursive real number when it is

the limit of a r.e., r.e. sequence of rational numbers.

We mention three other definitions.

Definition B. a is a recursive real number when the sign and the

integral part of a are given explicitly, and the digits of a binary

expansion of the fractional part of a are the sequence g(0), g(l),

g(2), • • • of values of a general recursive function g(x). g(x) is then

the characteristic function of a recursive set.
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Definition C. a is a recursive real number when the Dedekind sets

of rational numbers associated with a are recursive sets (i.e., the cor-

responding sets of integers are recursive).

Definition D. a is a recursive real number when a is contained in

each of a r.e. sequence of nested intervals with rational end points,

where the length of the intervals approaches zero.

All four definitions are equivalent. They were first mentioned by

Specker [4], with the restriction that all pertinent functions be

primitive recursive. Under this restriction they are not equivalent.

However, Robinson [2] stated and outlined a proof of their equiva-

lence where general recursive functions are allowed.4 The proof, ex-

cept for A and B, will not be included here; the reader will not find

it difficult to complete with the help of Theorem 1.

2. Order.

Theorem 1. Let a0, ah a2, • • ■ and b0, h, b2, ■ ■ ■ be r.e., r.c. se-

quences oj rational numbers with limits a and b respectively, ay^b. There

exists an effective general method jor deciding whether a<b or b<a.

Proof. Since a^b, there exists an integer rei such that | <x — &|

>4/«i. Let j(x) and g(x) be recursive convergence functions for

do, cti, a2, • • • and bo, h, b2, • ■ • respectively. Then nx has the prop-

erty that 2/»i < I %(ni) — &e(ni) I. For

4/»i < I a — b I S I a — af(ni) | + [ o/(ni) — bg{ni) | + | &„<„,) — b \

and |o —a/(Bl)|, \bg{ni)—b\ |l/«i, so

4/wi < I ff/(Bl) — &„(„,) I + 2/wi.

Define n2=py[\af{V)— beM\ >2/y]. n2 exists and n2^ni. Now a — b

= a — a/(B2)+a/(B2)— bHnil-\-ba{ni>— b, and since

I a ~ 0/Cn„) I  + I bg(n2)  — b I   g  2/»2 < I 0/(BJ) — &„(„2> I,

then a <b if and only if a/(n2) <&C(B2).

In the case where ai and &; (hence a and b) are non-negative, sup-

pose ai = pa(i)/qa(i) and bi = pb(i)lqb(i), with the £'s and q's recursive

functions of i. The function

1 ^ (pa(f(n2))-qb(g(n2)) ■*■ pi(g(n2)) -qa(j(n2)))

equals 1 when a<b and 0 when b<a. Similar functions can be con-

structed for the cases involving negative values.

Theorem 2. Definitions A and B are equivalent.

1 See also Myhill, J. Symbolic Logic vol. 18 (1953) pp. 7-10.
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Proof. Given a recursive binary expansion b0.bib2 • • • (&o an

integer, bi+i = 0, 1) of a, the sequence

bo, bo + h/2, b0 + bi/2 + b2/4, ■ ■ ■

is of the desired kind. Given the r.e., r.e. sequence of rational numbers

flo, ffli, a2, ■ ■ • approaching a, the function

6(0) = py[a < y] -*- 1,

ft(» + 1) = 1 ■*■ ipo-qaifin2)) - qb-paifin2))),

where pb = l + X^=o 2i+1~"-b(y) and q0 = 2i+1, gives a binary expan-

sion of a if a is irrational and non-negative. A similar function can

be defined if a is negative.

If a = b the proof of Theorem 1 fails, since rai will not exist and the

function giving ra2 will be undefined. This case is in fact undecidable.

Theorem 3. There exists no effective general method for deciding

whether or not the limit a of a r.e., r.e. sequence of rational numbers

a0, Ci, a2, • • ■ is equal to zero.

Proof. If such a general method existed, it would enable us to solve

the following problem. If fix) is a general recursive function whose

range is known to be included in the set {0, 1}, is {o} the range of

f(x)} For the sequence/(0),/(0)+/(l)/2,/(0)+/(l)/2+/(2)/4, • • •
is a r.e., r.e. sequence of rational numbers whose limit is 0 if and only

if the range of fix) is {0}.

However, such a decision procedure for/(x) cannot exist, as is well

known. For let hix) be any general recursive function whose range is a

r.e. set 0. Then 1 — \k — A(x)| is a general recursive function whose

range is included in JO, 1}, and whose range is {0} if and only if

k(£0. So a decision procedure for our problem would give a decision

procedure for every r.e. set.

Corollary. There exists no effective general method for deciding,

given two recursive real numbers a and b by r.e., r.e. sequences, whether

or not a = b.

For otherwise we could solve the problem of the theorem by com-

paring the sequence /(0), /(0)+/(l)/2, /(0)+/(l)/2+/(2)/4, • • •

with the sequence 0, 0, 0, • • • . The corollary thus holds even if, say,

b is rational and given explicitly.

3. The field of recursive real numbers.

Lemma A. Every recursive real number a which is non-negative is the

limit of a r.e., r.e. sequence of positive rational numbers, and every
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negative a is the limit oj such a sequence oj negative rational numbers.

Proof. If a=0, then 1/2, 1/3, 1/4, • • • is a sequence with the de-

sired property.

If 0<a, then the sequence obtained from any r.e., r.e. sequence

approaching a by dropping all nonpositive terms is a sequence with

the desired property. Similarly for a<0.

We shall assume in this section that all sequences given are of the

type of Lemma A.

Lemma B. Let a0, ai, a2, ■ ■ ■ be a r.e., r.e. sequence oj rational num-

bers. A rational number b can be effectively jound such that \ai\ <b jor

all i. Ij the limit oj ao, fli, a2, ■ ■ ■ is not zero, a positive rational number

c can be effectively jound such that c < | a, | jor all i.

Proof. If /(x) is a convergence function for a0, ffli, o-i, • • • , set

(0    if    x - | anv) | ^ l/y,
u(x, y) =  <

U    if    x - | af{y) I > l/y.

u(x, y) can be defined recursively in two cases (0 <a; and at <0). Now

b = max [ | a0 |, | <*i|, • • • , | afiVl) \, xi],

where Xi = K(pz[u(K(z),L(z)) = l]),yi = L(pz[u(K(z),L(z)) = l]) and

K(z), L(z) are the Cantor pairing functions:

z 01234567---

K(z)        00    10    120    l---

L(z) 01021032---.

The existence of Xi and yx is guaranteed by the boundedness of any

Cauchy sequence.

Suppose the limit of o0, Gi, a2, • • ■ is not zero. Set

(0    if    | a/(„ | - 1/x £ l/y,
v(x, y) =  <

(.1     if     | a/(y) | — 1/x > l/y.

Then c = min   [|a0|,   |«i|, • • • ,   |a/(1/2)|,  l/x2], where

X2 = K(uz[v(K(z), L(s)) = l]) and y2=L(pz[v(K(z), L(z))=l]).

Theorem 4. The recursive real numbers jorm a field.

Proof. Suppose recursive real numbers a, b, c, with cj^O, given by

r.e., r.e. sequences a0, au a2, ■ • • , b0, bh b2, ■ ■ ■ , c0, cu c2, ■ ■ • re-

spectively. Then evidently the r.e. sequences
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ao + bo, «i + bi, a2 + b2, • • ■ ,

a0-b0, ai-bi, a2b2, • • • ,

— ao, — ai, — a2, • • • ,

l/co, 1/ci, \/c2, • ■ ■

have the limits a+b, ab, —a, and \[c respectively. The only problem

we need to consider is the recursive convergence. But with the

bounds supplied by Lemma B, the standard proofs5 for the con-

vergence of these sequences require no essential alteration for our

purposes, and new convergence functions are readily defined recur-

sively in terms of the bounds and the old convergence functions.

We shall designate the field of recursive real numbers by £.

4. Sequences.

Definition. A sequence of recursive real numbers ao, d, a2, ■ • •

is a r.e. sequence of recursive real numbers when there exist general

recursive functions/(x, y) and g(x, y) such that/(i, y) enumerates a

r.e. sequence of rational numbers aj,0, a,-,i, ail2, ■ • ■ with a,- as limit

and gii, y) as convergence function.

The concept of recursive convergence can be extended without

change to r.e. sequences of numbers of £.

Theorem 5. Every r.e., r.e. sequence of numbers of £ has a limit in £.

Proof. To the notation of the above definition add &(x) as a re-

cursive convergence function for the sequence ao, ffli, a2, ■ ■ • , and a

as its limit. Consider the sequence a0,o, «i,o(i,d, ^2,0(2,2), • • • . We have

\ai.od.i) ~ ai.aU.i) I  = I ai,g(i.i) ~ ai \ + \ ai ~ ai \ + \ ai ~ ai.a(i,i) ]•

If ij^max [H3N), 3N], then |a,--ay| <1 /37V and

I <**,,(*.*) - a* I ̂  l/k ;g 1/3N

for k = i, j. So max [hi3N), 3N] is a recursive convergence function

for the sequence, and similar consideration of | ak,olk,k) —a\ will show

that a is its limit. Hence <zG£-

5. Algebraic closure.

Theorem 6. £(i) is algebraically closed.

Proof. We do not give a complete formal proof of this theorem. It

would be a lengthy adaptation of the proof of Rosenbloom [3 ] of the

fundamental theorem  of algebra, with  Rosenbloom's constructive

6 See, e.g., MacDuffee, Introduction to abstract algebra, New York, 1940, Chap. VI.
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procedures formalized as recursive functions. We content ourselves

with indicating what adjustments must be made where other than

rational operations are to be performed.

We suppose a polynomial P(z) given by its degree and by r.e., r.e.

sequences of rational numbers converging to the real and imaginary

parts of its coefficients. For a value of z similarly given, Theorem 4

asserts that we can obtain r.e., r.e. sequences approaching the real

and imaginary parts of P(z).

The first point in Rosenbloom's proof which needs discussion is in

the definition preceding Lemma 1. We must find the largest of a finite

set of non-negative recursive real numbers. Let {a0, fli, ■ ■ • , a^} be

the set, with each fly given by a r.e. sequence fly.o, fly,i, fly,2, • • • of

rational numbers and a recursive convergence function /y(x). Then

the r.e. sequence bk = max [a0,k, fli.t, • • ■ , fflw,*] converges to

max [fl0, fli, • • ■ , fljv] with convergence function /(x)=max [/o(x),

fi(x), ■ ■ ■ ,Jn(x)]. For if r is given, let M = max [jo(r), ji(r), ■ ■ ■ ,

/j(r)]. Then if M^k, m we must show that \bk — bm\ <l/r. Let

bk=aik,k and bm = aJm,m. If bm^bk, we have

I 0k        0m I    —Ok        Om ~ flj&,fc        ^ik>m   '    ®ik>m        ^?wt'm

^ a-ih.k ~ ah,m (since aik,m — aim,m ^ 0)

< 1/r (since jit(r) ^ M g k, m),

and similarly if bk<bm.

An analogous construction gives a sequence ck with the same con-

vergence function and min [a0, fli, • • • , a^} as limit. This we can

use after Corollary 1, where we must find, out of a finite set of non-

negative recursive real numbers, one which satisfies an inequality.

Because of the possibility that \P((k-\-il)a/n)\ =e (we may take e

rational) for some members of the set, we cannot follow Rosenbloom's

suggestion and simply check the numbers in order. If, however, we

select the smallest of the set, clearly it will serve as ze.

Next in Lemma 3 we must define recursively functions

j(N, a0, fli, • • • , ctN, €, x) which, considered as functions of x, have as

range the numbers Z\, z2, ■ ■ ■ , zn of the lemma. Since the a/s (the

coefficients of P(z)) need not be rational, we must extend the con-

cept of recursiveness to functions of recursive complex numbers. (The

extension to functions of rational numbers has already been tacitly

made.) We can say that/(a) is recursive if, when a0, fli, o,2, • ■ ■ is a

r.e., r.e. sequence of rational numbers converging to a, the sequence

J(ao), j(ai), j(a2), • • • is a r.e., r.e. sequence of numbers of £ converg-

ing to/(fl). For functions of complex numbers, we apply this to the
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real and imaginary parts. Now the argument of the preceding para-

graph was to the effect that

giN, fl0, «i, • • • i aN, t) = zf

is recursive. Set

/(l, a0, ah e, x) = — aQ/au

fiN + 1, a0, ai, • • • , «if+i, e, 0) = giN + 1, a0, ax, • • • , aN+i, e),

f(7V + 1, a0, ai, • • • , aN+h e, x + 1) = f(N, b0, bu ■ ■ ■ , btf, e/C, x),

where bm and C are defined by Rosenbloom.

The final remark concerns the choice of sequence elements z„ in

Theorem 3. The situation is similar to that of Corollary 1, and a

similar method handles it. This gives us the recursive enumerability

of the sequence; Rosenbloom provides its recursive convergence.

Hence the limit of the sequence (a root of the polynomial) has re-

cursive real and imaginary parts, by our Theorem 5.

6. Remarks. Theorem 6 is an illustration of the application of

Theorem 5 in adapting the more constructive classical proofs to our

purposes. It seems probable that another such adaptation6 would give

ab in £ (a, b in £, 0 <a). If this is the case, it is unlikely that £ will

be criticized for the lack of any particular useful number. In fact, to

"find" the value of a number (e.g., w, or Euler's constant) appears to

be equivalent to giving a constructive proof that it is in £, by Defini-

tion B.

On the other hand, from the point of view of theoretical analysis,

£ is not very satisfactory. Aside from its denumerability, which may

or may not be a liability, we find, for example, that the following

form of the Bolzano-Weierstrass theorem:

Every bounded, r.e. set of numbers of £ has a limit point in £.

does not hold. For consider a r.e. but not recursive set 0. Its character-

istic function will correspond to a nonrecursive real number b. If

fix) is a univalent general recursive function with 0 as range, the se-

quence

111111
-,-(.-,    .-^-1--,...
2/(0)      2/(0)      2/(1)      2/(0)      2/(1)      2/(2)

is a bounded, r.e. set of rational numbers with b as its only limit

point.7 The sequence is of course not recursively convergent.

61 have not carried out any formal work on this.

7 For a related result (differently interpreted) see [4].
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A THEOREM ON HYPERSIMPLE SETS

J. C. E. DEKKER

Introduction. E. L. Post proved in his paper Recursively enumerable

sets oj positive integers and their decision problems1 that a creative set

cannot be reducible to a hypersimple set by truth tables (pp. SOS-

SI 0). The present paper is concerned with the question whether a

creative set can be Turing reducible to a hypersimple set. It will be

shown that the answer to this question is affirmative. In fact, we shall

establish the following more general statement: jor every recursively

enumerable, but not recursive, set a, a hypersimple set (3 can be effec-

tively jound such that a and @ are Turing reducible to each other.

Preliminaries. A non-negative integer is called a number, a collec-

tion of numbers is called a set and a collection of sets a class. A set is

immune, if it is infinite, but has no infinite recursively enumerable

subset. For the definitions of a discrete array and a hypersimple set

we refer to our paper Two notes on recursively enumerable sets2 (p.

497). We shall use the following notations: "p(j)n for the range of the

function j(n), "E" for the class of all recursive sets, "F" for the class

of all recursively enumerable (r.e.) sets, "a t-red /3" for a is reducible

to /? by truth tables, and "a red /3" for a is Turing reducible to j3. If

fl(/i) and a(t2) are elements of the sequence {a(n)}, we say that a(t2)

succeeds a(ti) in {a(rc)| if t2>ti.

Definition. Let a(n) be a 1-1 function. The element a(t) of the

Presented to the Society, November 27, 1953; received by the editors November 5,

1953.
1 Bull. Amer. Math. Soc. vol. 50 (1944) pp. 284-316.
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