
Math 2505 - Introductory Analysis

Representing Real Numbers With Respect to a Base

In times past, various notational systems were developed for representing numbers. Roman
numerals are still used in many special situations where one knows that only positive integers,
and relatively small ones at that, will arise. One of the most significant advances in the
history of science and technology was the development of the place-value, base ten, system
of representing numbers. With the rise of modern digital computation, base two and base
sixteen systems have been widely used. There is a special subset of the real numbers called
the Cantor ternary set whose properties can be explored by representing numbers in base
three. It makes sense to explain how real numbers can be represented using an arbitrary
base. To start with, we only have afixed symbol for two real numbers, 0 and 1.

Our first step is to introduce exponential notation. Let a ∈ R, a 6= 0. We define a0 to
be equal to 1 and a1 = a. For n ∈ N, if an has been defined, then an+1 = (an)a. By
induction then, an is defined for all n ∈ N. Since a 6= 0, an induction argument shows that
an 6= 0, for n ∈ N. For any n ∈ N, define a−n = (an)−1. An inductive argument shows that
(a−1)n = a−n, for all n ∈ N. Thus, if a 6= 0, then aj is defined for all j ∈ Z. The reader
should prove the properties of exponents below. In most cases, an induction argument works.

• aj+k = (aj)(ak), ∀j, k ∈ Z.
• (aj)k = ajk, ∀j, k ∈ Z.
• (ab)j = ajbj, ∀ j ∈ Z, a 6= 0, b 6= 0.
• If 1 + 1 ≤ a, then n < an, ∀n ∈ N.

We will describe base beta representation, where beta refers to some fixed β ∈ N, β > 1.
The set of base beta digits is

Dβ = {d ∈ N ∪ {0} : d < β}.

Each base beta digit larger than 1 is given its own symbol. Since 0 and 1 are already named
real numbers, we stick with those symbols for these first members of every digit set. The
symbols for the base two digits are just 0 and 1. The base three digits are traditionally
written {0, 1, 2}, where 2 = 1 + 1. The base ten digits are {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}. Base
sixteen is used for specifying levels of Red, Green, and Blue in the RGB system for colours.
The base sixteen digits are {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A,B,C,D,E, F}

Before showing how to represent integers in base beta, let N0 = N ∪ {0}, the set of non-
negative integers. We also note that any nonempty subset of N has a smallest element. That
is, if A ⊆ N and A 6= ∅, then there exists m ∈ A satisfying m ≤ a, for all a ∈ A. The point
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m is called the minimum of A and is denoted min(A).This is known as the well-ordered
property of N and is easily proved by induction. Try it!

Now, let M ∈ N.

Let A = {k ∈ N : M < βk}. Since M < βM , we have M ∈ A. So A 6= ∅. Let k0 = min(A)
and let n = k0 − 1 ∈ N0. Then n is the unique non-negative integer satisfying

βn ≤M < βn+1.

Since 1 · βn = βn and β · βn = βn+1, there is a unique digit an ∈ Dβ such that

anβ
n ≤M < (an + 1)βn.

If n = 0, then M = a0 = a0β
0 and we stop. If 1 ≤ n, consider βn−1. As a runs through

Dβ, anβ
n + aβn−1 steps from anβ

n + 0 · βn−1 up to anβ
n + (β − 1)βn−1. There is a unique

an−1 ∈ Dβ such that

anβ
n + an−1β

n−1 ≤M < anβ
n + (an−1 + 1)βn−1

Continuing this process exactly n+ 1 times, we obtain unique digits an, an−1, · · · , a1, a0 such
that

anβ
n + an−1β

n−1 + · · ·+ a1β + a0 ≤M < anβ
n + an−1β

n−1 + · · ·+ a1β + a0 + 1

Since M ∈ N, we conclude that M = anβ
n + an−1β

n−1 + · · ·+ a1β + a0 =
∑n

j=0 ajβ
j. Using

place-value to represent the respective powers of β, one can denote M in the compact form
anan−1 · · · a1a0. For example, the natural numbers written in base two start out

1, 10, 11, 100, 101, 110, 111, 1000, 1001, · · ·
In base three, we count

1, 2, 10, 11, 12, 20, 21, 22, 100, · · ·

We write −M = −anan−1 · · · a1a0 when M = anan−1 · · · a1a0. Of course, 0 is just 0. So all
members of Z have an unambiguous representation in base beta. How does this extend to
representing non-integer real numbers?

Fix x ∈ R, x > 0. Let A = {n ∈ N : x < n}. By the Archimedean Property, A 6= ∅. Let
n0 = min(A). Define bxc = n0 − 1. Then bxc ∈ N0 and it is the largest integer less than or
equal to x. It is sometimes called the floor of x. Let 〈x〉 = x − bxc. Then 〈x〉 ∈ [0, 1) and
x = bxc + 〈x〉. We have a way of representing bxc in base beta. If bxc = 0, we take n = 0
and a0 = 0. If bxc > 0, we have some n ∈ N and digits a0, a1, · · · , an so that in base beta
place-value representation, we have

bxc = anan−1 · · · a1a0. (∗)
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The representation (∗) works whether bxc is 0 or a larger integer.

Since β > 1, we have 0 < β−1 < 1. Indeed,

0 =
0

β
<

1

β
< · · · < β − 1

β
<
β

β
= 1.

Therefore, the interval [0, 1) is partitioned into β non-overlapping intervals as follows:

[0, 1) = [0, 1β−1) ∪ [1β−1, 2β−1) ∪ · · · ∪ [(β − 1)β−1, 1).

On the section of the number line from 0 to 1 with beta being six, it looks like the following:

[
0

)[
1β−1

)[
2β−1

)[
3β−1

)[
4β−1

)[
5β−1

)
1

〈x〉
Sample location of 〈x〉 illustrated in base six.

There is a unique digit b1 ∈ Dβ so that b1β
−1 ≤ 〈x〉 < (b1 + 1)β−1. Let’s zoom in on the

interval [b1β
−1, (b1 + 1)β−1) by a factor of β as illustrated below with beta being six.

[
0

)[
1β−1

)[
2β−1

)[
3β−1

)[
4β−1

)[
5β−1

)
1

〈x〉

[
1β−1 + 0β−2

)[
1β−1 + 1β−2

)[
1β−1 + 2β−2

)[
1β−1 + 3β−2

)[
1β−1 + 4β−2

)[
1β−1 + 5β−2

)
1β−1 + ββ−2

〈x〉

There is a unique digit b2 ∈ Dβ satisfying b1β
−1 + b2β

−2 ≤ 〈x〉 < b1β
−1 + (b2 + 1)β−2. We

continue inductively.

Suppose k ∈ N and digits b1, · · · , bk ∈ Dβ have been found so that

k∑
j=1

bjβ
−j ≤ 〈x〉 <

k∑
j=1

bjβ
−j + β−k.
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Then the interval
[∑k

j=1 bjβ
−j,
∑k

j=1 bjβ
−j + β−k

)
is the disjoint union

β−1⋃
b=0

[
k∑
j=1

bjβ
−j + bβ−(k+1),

k∑
j=1

bjβ
−j + (b+ 1)β−(k+1)

)
.

The point 〈x〉 lies in exactly one of these intervals. Thus, there exists a unique digit bk+1 ∈ Dβ

such that
k+1∑
j=1

bjβ
−j ≤ 〈x〉 <

k+1∑
j=1

bjβ
−j + β−(k+1).

This inductively defines a sequence of digits (bj)
∞
j=1 so that

k∑
j=1

bjβ
−j ≤ 〈x〉 <

k∑
j=1

bjβ
−j + β−k, ∀ k ∈ N (∗∗)

When (∗∗) holds, we use the place-value notation again and write

〈x〉 = .
β
b1b2b3 · · · .

The .
β

reminds us that it is a base beta representation. Combining this with (∗), it is
reasonable to write

x = bxc+ 〈x〉 = anan−1 · · · a1a0.βb1b2b3 · · · .
Finally, if y ∈ R, y < 0, let x = −y and write x = anan−1 · · · a1a0.βb1b2b3 · · · . Then denote
y = −x by −anan−1 · · · a1a0.βb1b2b3 · · · . This gives the base beta place-value method of
expressing any real number.

As an example, consider one of the most important real numbers, the ratio of the circum-
ference of a circle to its diameter. This number is denoted π. Here are the first few digits of
π represented in various bases.

Base beta = two: π = 11.β0010010000111111011010101 · · ·

Base beta = three: π = 10.β0102110122220102110021111 · · ·

Base beta = ten: π = 3.β1415926535897932384626433 · · ·

Base beta = sixteen: π = 3.β243F6A8885A308D313198A2E0 · · ·

“Counting on fingers” must have been done by homo sapiens for at least one hundred
millenia. It is not surprising that the most common base for representing numbers is ten.
We usually call this the decimal representation of numbers.


