
UNDERSTANDING THE ONE-WAY ANOVA 
The One-way Analysis of Variance (ANOVA) is a procedure for testing the hypothesis that K 
population means are equal, where K > 2. The One-way ANOVA compares the means of the 
samples or groups in order to make inferences about the population means. The One-way 
ANOVA is also called a single factor analysis of variance because there is only one independent 
variable or factor. The independent variable has nominal levels or a few ordered levels. 
 
PROBLEMS WITH USING MULTIPLE t TESTS 

To test whether pairs of sample means differ by more than would be expected due to chance, 
we might initially conduct a series of t tests on the K sample means – however, this approach 
has a major problem (i.e., inflating the Type I Error rate). 

The number of t tests needed to compare all possible pairs of means would be K(K – 1)/2, 
where K = number of means. 

When more than one t test is run, each at a specified level of significance (such as α = 
.05), the probability of making one or more Type I errors in the series of t tests is greater 
than α. 

The Type I Error Rate is determined as c)1(1 α−−  

Where  α = level of significance for each separate t test 

 c = number of independent t tests 

Sir Ronald A. Fisher developed the procedure known as analysis of variance (ANOVA), 
which allows us to test the hypothesis of equality of K population means while maintaining 
the Type I error rate at the pre-established (a priori) α level for the entire set of comparisons. 

 
THE VARIABLES IN THE ONE-WAY ANOVA 

In an ANOVA, there are two kinds of variables: independent and dependent. 

The independent variable is controlled or manipulated by the researcher. It is a 
categorical (discrete) variable used to form the groupings of observations. However, 
do not confuse the independent variable with the “levels of an independent variable.” 

In the One-way ANOVA, only one independent variable is considered, but there 
are two or more (theoretically any finite number) levels of the independent variable. 
The independent variable is typically a categorical variable. The independent variable 
(or factor) divides individuals into two or more groups or levels. The procedure is a 
One-way ANOVA, since there is only one independent variable. 

There are two types of independent variables: active and attribute. 

If the independent variable is an active variable then we manipulate the values of the 
variable to study its affect on another variable. For example, anxiety level is an active 
independent variable. 

An attribute independent variable is a variable where we do not alter the variable 
during the study. For example, we might want to study the effect of age on weight. 
We cannot change a person’s age, but we can study people of different ages and 
weights. 
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The (continuous) dependent variable is defined as the variable that is, or is 
presumed to be, the result of manipulating the independent variable. 

In the One-way ANOVA, there is only one dependent variable – and hypotheses are 
formulated about the means of the groups on that dependent variable. The dependent 
variable differentiates individuals on some quantitative (continuous) dimension. 

The ANOVA F test (named after Sir Ronald A. Fisher) evaluates whether the group 
means on the dependent variable differ significantly from each other. That is, an overall 
analysis-of-variance test is conducted to assess whether means on a dependent variable 
are significantly different among the groups. 

 
MODELS IN THE ONE-WAY ANOVA 

In an ANOVA, there are two specific types of models that describe how we choose the levels 
of our independent variable. We can obtain the levels of the treatment (independent) variable 
in at least two different ways: We could, and most often do, deliberately select them or we 
could sample them at random. The way in which the levels are derived has important 
implications for the generalization we might draw from our study. For a one-way analysis of 
variance, the distinction is not particularly critical, but it can become quite important when 
working with more complex designs such as the factorial analysis of variance. 

If the levels of an independent variable (factor) were selected by the researcher because they 
were of particular interest and/or were all possible levels, it is a fixed-model (fixed-factor 
or effect). In other words, the levels did not constitute random samples from some larger 
population of levels. The treatment levels are deliberately selected and will remain constant 
from one replication to another. Generalization of such a model can be made only to the 
levels tested. 

Although most designs used in behavioral science research are fixed, there is another model 
we can use in single-factor designs. If the levels of an independent variable (factor) are 
randomly selected from a larger population of levels, that variable is called a random-
model (random-factor or effect). The treatment levels are randomly selected and if we 
replicated the study we would again choose the levels randomly and would most likely have 
a whole new set of levels. Results can be generalized to the population levels from which the 
levels of the independent variable were randomly selected. 

 
HYPOTHESES FOR THE ONE-WAY ANOVA 

The null hypothesis (H0) tested in the One-way ANOVA is that the population means 
from which the K samples are selected are equal. Or that each of the group means is equal. 

H0: Kµµµ === ...21  Where K is the number of levels of the independent variable. 

For example: If the independent variable has three levels – we would write… 

H0: 321 µµµ ==  

If the independent variable has five levels – we would write… 

H0: 54321 µµµµµ ====  
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The subscripts could be replaced with group indicators. 

For example: H0: 321 MethodMethodMethod µµµ ==  

The alternative hypothesis (Ha) is that at least one group mean significantly differs from 
the other group means. Or – that at least two of the group means are significantly different. 

Ha: ki µµ ≠  for some i, k  Where i and k simply indicate unique groups. 
 
ASSUMPTIONS UNDERLYING THE ONE-WAY ANOVA 

1. The observations are random and independent samples from the populations. This is 
commonly referred to as the assumption of independence. 

The null hypothesis actually says that the samples come from populations that have the 
same mean. The samples must be random and independent if they are to be representative 
of the populations. The value of one observation is not related to any other observation. 
In other words, one person’s score should not provide any clue as to how any of the other 
people should score. That is, one event does not depend on another. 

2. The distributions of the populations from which the samples are selected are normal. This 
is commonly referred to as the assumption of normality. 

This assumption implies that the dependent variable is normally distributed (a theoretical 
requirement of the underlying distribution, the F distribution) in each of the groups. 

3. The variances of the distributions in the populations are equal. This is commonly referred 
to as the assumption of homogeneity of variance. 

This assumption (along with the normality assumption and the null hypothesis) provides 
that the distributions in the populations have the same shapes, means, and variances; that 
is, they are the same populations. In other words, the variances on the dependent variable 
are equal across the groups. 

Null Hypothesis: H0: 2
1σ  = 2

2σ  = … = 2
Kσ  (if retained = assumption met) 

(if rejected = assumption not met) 

Alternative Hypothesis: Ha: 2
iσ  ≠ 2

kσ  for some i, k 
 
TESTING THE ASSUMPTION OF INDEPENDENCE 

One of the first steps in using the One-way analysis of variance is to test the assumption of 
independence. Random sampling and independence are technical concerns related to the way 
the samples are selected. Independence is a methodological concern; which is dealt with (or 
should be dealt with) when a study is set up. Although the independence assumption can ruin 
a study if it is violated, there is no way to use the study’s sample data to test the validity of 
this prerequisite condition. It is assessed through an examination of the design of the study. 
That is, we confirm that the K groups are independent of each other? 
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The assumption of independence is commonly known as the unforgiving assumption (r.e., 
robustness), which simply means that if the K groups are not independent of each other, one 
cannot use the one-way analysis of variance. That is, if the groups (categories) are 
independent of each other, which is typically assessed through an examination of the research 
design, the assumption of independence has been met. If this assumption is not met, the one-
way ANOVA is an inappropriate statistic. 

 
TESTING THE ASSUMPTION OF NORMALITY 

Another of the first steps in using the One-way ANOVA test is to test the assumption of 
normality, where the Null Hypothesis is that there is no significant departure from normality 
for each of the groups/levels, as such; retaining the null hypothesis indicates that the 
assumption of normality has been met for the given samples. The Alternative Hypothesis is 
that there is a significant departure from normality, as such; rejecting the null hypothesis in 
favor of the alternative indicates that the assumption of normality has not been met for the 
given samples. 

The normality assumption can also be checked through an examination of the research 
design. It can be tested through supplemental statistical analyses, such as a “goodness-of-fit” 
test (e.g., Chi-Square), which tests whether the sample distributions are within random 
sampling fluctuation of normality. 

To test the assumption of normality, we can use the Shapiro-Wilks test, which is more 
commonly used by statisticians. The Shapiro-Wilks Test is a statistical test of the hypothesis 
that sample data have been drawn from a normally distributed population. From this test, the 
Sig. (p) value is compared to the a priori alpha level (level of significance for the statistic) – 
and a determination is made as to reject (p < α) or retain (p > α) the null hypothesis. 

Tests of Normality

.182 10 .200* .930 10 .445

.253 10 .068 .915 10 .314

.164 10 .200* .968 10 .876

style  Attachment Style
1  Secure
2  Anxious
3  Avoidant

delta  Delta Sleep
Statistic df Sig. Statistic df Sig.

Kolmogorov-Smirnova Shapiro-Wilk

This is a lower bound of the true significance.*. 

Lilliefors Significance Correctiona. 
 

For the above example, where α = .001, given that p = .445 for the Secure Group, p = .314 
for the Anxious Group, and p = .876 for the Avoidant Group – we would conclude that each 
of the levels of the Independent Variable (Attachment Style) are normally distributed. 
Therefore, the assumption of normality has been met for this sample. The a priori alpha level 
is based on sample size – where .05 and .01 are commonly used. Tabachnick and Fidell 
(2007) report that conventional but conservative (.01 and .001) alpha levels are commonly 
used to evaluate the assumption of normality. 

NOTE: Since the Shapiro-Wilks test is rather conservative, most statisticians will agree that 
the Shapiro-Wilks Test should not be the sole determination of normality. We typically 
supplement our assessment of normality with an examination of skewness (in excess of 
+3.29 is a concern), kurtosis (in excess of +3.29 is a concern), an examination of the 
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histogram graph (non-normal shape is a concern), an examination of box plots (extreme 
outliers is a concern), and an examination of the Normal Q-Q Plots (a non-linear relationship 
is a concern). These procedures are typically done during data screening. 

In examining skewness and kurtosis, we divide the skewness (kurtosis) statistic by its 
standard error. We want to know if this standard score value significantly departs from 
normality. Concern arises when the skewness (kurtosis) statistic divided by its standard 
error is greater than z +3.29 (p < .001, two-tailed test) (Tabachnick & Fidell, 2007). 

We have several options for handling non-normal data, such as deletion and data 
transformation (based on the type and degree of violation as well as the randomness of the 
missing data points). Any adjustment to the data should be justified (i.e., referenced) based 
on solid resources (e.g., prior research or statistical references). As a first step, data should be 
thoroughly screened to ensure that any issues are not a factor of missing data or data entry 
errors. Such errors should be resolved prior to any data analyses using acceptable procedures 
(see for example Howell, 2007 or Tabachnick & Fidell, 2007). 

 
TESTING THE ASSUMPTION OF HOMOGENEITY-OF-VARIANCE 

Another one of the first steps in the One-way ANOVA test is to test the assumption of 
homogeneity of variance, where the null hypothesis assumes no difference between the K 
group’s variances. One method is the Bartlett’s test for homogeneity of variance (this test is 
very sensitive to non-normality). 

The Levene’s F Test for Equality of Variances, which is the most commonly used statistic 
(and is provided in SPSS), is used to test the assumption of homogeneity of variance. 
Levene’s test uses the level of significance set a priori for the ANOVA (e.g., α = .05) to test 
the assumption of homogeneity of variance. 

Test of Homogeneity of Variances

SCORE

1.457 2 42 .244

Levene
Statistic df1 df2 Sig.

 

For Example: For the SCORE variable (shown above), the F value for Levene’s test is 
1.457 with a Sig. (p) value of .244. Because the Sig. value is greater than our alpha of .05 (p 
> .05), we retain the null hypothesis (no difference) for the assumption of homogeneity of 
variance and conclude that there is not a significant difference between the three group’s 
variances. That is, the assumption of homogeneity of variance is met. 

Test of Homogeneity of Variances

VISUAL

17.570 1 498 .000

Levene
Statistic df1 df2 Sig.
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For Example: For the VISUAL variable (shown above), the F value for Levene’s test is 
17.570 with a Sig. (p) value of .000 (< .001). Because the Sig. value is less than our alpha of 
.05 (p < .05), we reject the null hypothesis (no difference) for the assumption of homogeneity 
of variance and conclude that there is a significant difference between the two group’s 
variances. That is, the assumption of homogeneity of variance is not met. 

 
VIOLATION OF THE ASSUMPTIONS OF THE ONE-WAY ANALYSIS OF VARIANCE 

If a statistical procedure is little affected by violating an assumption, the procedure is said to 
be robust with respect to that assumption. The One-way ANOVA is robust with respect to 
violations of the assumptions, except in the case of unequal variances with unequal sample 
sizes. That is, the ANOVA can be used when variances are only approximately equal if the 
number of subjects in each group is equal (where equal can be defined as the larger group 
size not being more then 1½ times the size of the smaller group). ANOVA is also robust if 
the dependent variable data are even approximately normally distributed. Thus, if the 
assumption of homogeneity of variance (where the larger group variance is not more than 4 
or 5 times that of the smaller group variance), or even more so, the assumption of normality 
is not fully met, you may still use the One-way ANOVA. 

Generally, failure to meet these assumptions changes the Type I error rate. Instead of 
operating at the designated level of significance, the actual Type I error rate may be greater 
or less than α, depending on which assumptions are violated. 

When the population sampled are not normal, the effect on the Type I error rate is minimal. 

If the population variances differ, there may be a serious problem when sample sizes are 
unequal. 

If the larger variance is associated with the larger sample, the F test will be too 
conservative. 

If the smaller variance is associated with the larger sample, the F test will be too liberal. 
(If the α level is .05, “conservative” means that the actual rate is less than .05.) 

If the sample sizes are equal, the effect of heterogeneity of variances (i.e., violating the 
assumption of homogeneity of variance) on the Type I error is minimal. In other words, the 
effects of violating the assumptions vary somewhat with the specific assumptions violated. 

If there are extreme violations of these assumptions – with respect to normality and 
homogeneity of variance – an alternate test such as the Kruskal-Wallis test should be used 
instead of the one-way analysis of variance test. 

The Kruskal-Wallis test is a nonparametric test that is used with an independent groups 
design employing K groups. It is used as a substitute for the parametric one-way 
ANOVA, when the assumptions of that test are seriously violated. The Kruskal-Wallis 
test does not assume population normality nor homogeneity of variance, as does the 
parametric ANOVA, and only requires ordinal scaling of the dependent variable. It is 
used when violations of population normality and/or homogeneity of variance are 
extreme or when interval or ratio scaling are required and not met by the data. 
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THE WELCH AND BROWN-FORSYTHE STATISTIC 

If the equal variance assumption has been violated (e.g., if the significance for the Levene’s 
test is less than .05), we can use an adjusted F statistic. Two such types of adjustments are 
provided by the Welch statistic and the Brown-Forsythe statistic. The Welch test is more 
powerful and more conservative than the Brown-Forsythe test. 

If the F ratio is found to be significant with either the Welch statistic or the Brown-
Forsythe statistic, an appropriate post hoc test would be required. The Games-Howell 
post hoc test, for example, is appropriate when the equal variances assumption has been 
violated. This test is not appropriate if equal variance were assumed. 

 

Robust Tests of Equality of Means

Number of words recalled

9.037 4 21.814 .000
6.095 4 18.706 .003

Welch
Brown-Forsythe

Statistica df1 df2 Sig.

Asymptotically F distributed.a. 
 

 
The output from the above table is only valid if the equal variance assumption has been 
violated. From this example, using the Welch statistic, we find that F(4, 21.814) = 9.037, p < 
.001. If for example, our a priori alpha level were set at .05, we would conclude that the 
adjusted F ratio is significant. Since the p value is smaller than α we would reject the null 
hypothesis and we would have permission to proceed and compare the group means. 

The difference between the adjusted F ratio (devised by Welch and Brown and Forsythe) and 
the ordinary F ratio is quite similar to that of the adjusted t and ordinary t found in the 
independent-samples t test. In both cases it is only the denominator (i.e., error term) of the 
formula that changes. 

 
SUMMARY TABLE FOR THE ONE-WAY ANOVA 

Summary ANOVA 

Source Sum of Squares Degrees of 
Freedom 

Variance Estimate 
(Mean Square) F Ratio 

Between SSB K – 1 MSB = 
1−K

SSB  
W

B

MS
MS

 

Within SSW N – K MSW = 
KN

SSW

−
  

Total SST = SSB + SSW N – 1   
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THE ONE-WAY ANOVA F RATIO 

The analysis of variance partitions the total variability of the data (SST) into two sources: the 
variability that exists within each group, called the within-groups sum of squares (SSW), and 
the variability that exists between the groups, called the between-groups sum of squares 
(SSB). Each sum of squares is used to form an independent estimate of the H0 population 
variance. The estimate based on the within-groups variability is called the within-groups 
variance estimate (also known as Mean Square Within, MSW), and the estimate based on the 
between-group variability is called the between-groups variance estimate (also known as 
Mean Square Between, MSB). Finally, an F ratio (Fobt) is calculated where 

W

B
obt MS

MS
F =  

This first component (MSW) reflects the differences observed among subjects exposed to the 
same treatment. It is assumed that within-groups variation of a similar magnitude exists in 
each of the groups. This variation within any one group is a function of the specific subjects 
selected at random for the group or allocated at random to the group. Therefore, we can 
attribute variation within a group to random sampling fluctuation (i.e., sampling error – 
which is why MSW is also referred to as ERROR). 

The second component (MSB) has to do with the differences among group means. Even if 
there were absolutely no treatment effects, it would be unlikely that the sample means for the 
groups would be identical. A more reasonable expectation is that the group means will differ, 
even without treatment, simply as a function of the individual difference of the subjects. 
Thus, we would expect the group means to vary somewhat due to the random selection 
(assignment) process in the formation of the groups. If, in addition, different treatments that 
do have an effect on the dependent variable are applied to the different groups, we can expect 
even larger differences among the group means. Thus, the between-groups variation reflects 
variation due to the treatment plus variation attributable to the random process by which 
subjects are selected and assigned to groups. That is, the treatment effect of the independent 
variable plus error. 

Which means  
Error

Error Effect Treatment +=obtF  

When the null hypothesis is true (no difference between the group means – or – no treatment 
effect), we would expect F to be equal to 1. Note that the observed mean squares merely 
estimate the parameters and that these estimates may be larger or smaller than the 
corresponding parameters. Therefore, it is possible to have an observed F ratio less than 1.00, 
even though conceptually the ratio cannot be less than 1.00. F increases with the effect of the 
independent variable. Thus, the larger the F ratio is, the more reasonable it is that the 
independent variable has had a real effect. If the F ratio is less than 1.00, we don’t even need 
to compare it with the critical value of F (Fcrit). It is obvious that the treatment has not had a 
significant effect, and we can immediately conclude by retaining H0. 
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A MEASURE OF ASSOCIATION (ω2, OMEGA SQUARED) 

By rejecting the null hypothesis in ANOVA – this indicates that there are significant 
differences somewhere among the sample means, a greater difference than would be 
expected on the basis of chance alone. However, with large sample sizes, these statistically 
significant differences may have little practical significance. 

A measure of the strength of the association between the independent variable and the 
dependent variable in ANOVA is ω2, omega squared. Omega squared indicates the 
proportion of the total variance in the dependent variable that is accounted for by the levels 
of the independent variable. This is analogous to the coefficients of determination (r2). 

The formula for omega squared is: 

WT

WB

MSSS
MSKSS

+
−−

=
)1(2ω  

For example, if we calculated ω2 = .3928, this means that the independent variable in the 
ANOVA accounts for approximately 39.28% of the total variance in the dependent variable. 
 

POST HOC (MULTIPLE COMPARISON) PROCEDURES 

Post hoc comparisons (also called post hoc tests, multiple comparison tests, a posteriori 
comparisons, and follow-up test or comparisons) are tests of the statistical significance of 
differences between group means calculated after (“post”) having done an analysis of 
variance (ANOVA) that shows an overall difference. The F ratio of the ANOVA tells us that 
some sort of statistically significant differences exist somewhere among the groups being 
studied. Subsequent, post hoc, analyses are meant to specify what kind and where. 

Post hoc comparison is a generic term for several kinds of analyses. Tukey’s Honestly 
Significant Difference (HSD) test and the Scheffé method are the two best known. Others 
include the Newman-Keuls test and Duncan’s Multiple-Range test. Of the four, Duncan’s is 
the least conservative measure, and Scheffé’s is the most conservative. Tukey’s is more often 
associated with the ANOVA. Tukey’s is designed to make all pairwise comparisons while 
maintaining the experimentwise error rate (�E) at the pre-established � level. 

There are numerous post hoc (multiple comparisons) procedure tests available. Your decision 
should be based on prior experience, the research situation, and/or the literature. If the 
assumption of homogeneity of variance has been met (Equal Variances Assumed) – the most 
commonly used test is the Tukey (HSD) test. If the assumption of homogeneity of variance 
has been violated (Equal Variances Not Assumed) – the Games-Howell or the Dunnett’s C 
test are commonly used. Also keep in mind that if the equal variance assumption has not 
been met, we typically would adjust the F ratio using either the Welch statistic or the Brown-
Forsythe statistic. 

Note – when setting up the steps in our analysis – it is common to request either the 
Welch or Brown-Forsythe statistic and select at least one post hoc test for either 
situation… as a just-in-case (i.e., at the onset of our analysis – we do not know if the 
equal variance assumption has been met or violated). 
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EFFECT SIZE 

Effect size, broadly, is any of several measures of association or of the strength of a relation, 
such as Pearson’s r or eta (�). Effect size is thought of as a measure of practical significance. 
It is defined as the degree to which a phenomenon exists. Keep in mind that there are several 
acceptable measures of effect size. The choice should be made based on solid references 
based on the specific analysis being conducted. 

So why bother with effect size at all? Any observed difference between two sample means 
can be found to be statistically significant when the sample sizes are sufficiently large. In 
such a case, a small difference with little practical importance can be statistically significant. 
On the other hand, a large difference with apparent practical importance can be 
nonsignificant when the sample sizes are small. Effect sizes provide another measure of the 
magnitude of the difference expressed in standard deviation units in the original 
measurement. Thus, with the test of statistical significance (e.g., the F statistic) and the 
interpretation of the effect size (ES), the researcher can address issues of both statistical 
significance and practical importance. 

When we find significant pairwise differences – we will need to calculate an effect size for 
each of the significant pairs, which will need to be calculated by hand. An examination of the 
group means will tell us which group performed significantly higher than the other did. 

For example, using the following formula:  
W

ji

MS

XX
ES

−=  

Note that ji XX −  (which can also be written as ki XX − ) is the mean difference of the two 
groups (pairs) under consideration. This value can be calculated by hand or found in the 
Mean Difference (I-J) column on the Multiple Comparison table in SPSS. MSW is the 
Within Group’s Mean Square value (a.k.a. Mean Square Within or ERROR), which is found 
on the ANOVA Summary Table. 

Suppose that the mean for the Red Group = 16.60 and the mean for the Green Group = 11.10, 
and the Mean Square Within (MSW) found in the ANOVA table = 16.136, we would find that 
the ES = 1.37. That is, the mean difference of 5.50 is 1.37 standard deviation units away from 
the hypothesized mean difference of 0. Recall that H0: µ1 - µ2 = 0. 

For Red / Green, we find ES = 3691933.1
016964.4

50.5

136.16

10.1160.16 ==−
 = 1.37 
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TESTING THE NULL HYPOTHESIS FOR THE ONE-WAY ANOVA 

In testing the null hypothesis for the One-way ANOVA – we follow these steps: 

1. STATE THE HYPOTHESES 

• State the Null Hypothesis and Alternative Hypothesis 

2. SET THE CRITERION FOR REJECTING H0 

• Set the alpha level, which in turn identifies the critical values 

3. TEST THE ASSUMPTIONS FOR THE ONE-WAY ANOVA 

• Assumption of Independence (e.g., Research Design) 

• Assumption of Normality (e.g., Shaprio-Wilks) 

• Assumption of Homogeneity of Variance (e.g., Levene’s Test of Homogeneity) 

4. COMPUTE THE TEST STATISTIC 

• Calculate the F ratio (or adjusted F ratio using for example the Welch statistic) 

5. DECIDE WHETHER TO RETAIN OR REJECT H0 

• Using the obtained probability value (compared to the alpha level) 

• If p > α � Retain the null hypothesis 

• If p < α � Reject the null hypothesis 

• Using the obtained statistic value (compared to the critical value) 

• If Fobt < Fcrit � Retain the null hypothesis 

• If Fobt > Fcrit � Reject the null hypothesis 

6. CALCULATE MEASURE OF ASSOCIATION (ω2, OMEGA SQUARED) 
• If the null hypothesis is rejected, calculate omega squared to determine strength of 

the association between the independent variable and the dependent variable. 

7. DECIDE WHETHER TO RETAIN OR REJECT H0 FOR EACH OF THE PAIRWISE 
COMPARISONS (I.E., CONDUCT POST HOC PROCEDURES) 

• If the null hypothesis is rejected, use the appropriate post hoc procedure to 
determine whether unique pairwise comparisons are significant. 

• Choice of post hoc procedures is based on whether the assumption of 
homogeneity of variance was met (e.g., Tukey HSD) or not (e.g, Games-Howell). 

8. CALCULATE EFFECT SIZE 
• Calculate an effect size for each significant pairwise comparison 

9. INTERPRET THE RESULTS 

10. WRITE A RESULTS SECTION BASED ON THE FINDINGS 
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SAMPLE APA RESULTS 

 A One-way Analysis of Variance (ANOVA) was used to examine whether students’ 

scores on a standardized test is a function of the teaching method they received. The independent 

variable represented the three different types of teaching methods: 1) lecture only; 2) hands-on 

only; and 3) lecture and hands-on. The dependent variable was the students’ score on a 

standardized test. See Table 1 for the means and standard deviations for each of the three groups. 

Table 1 

Means and Standard Deviations of Standardized Test Scores 

Method n Mean SD 

Lecture Only 15 82.80 9.59 

Hands-On Only 15 88.53 8.73 

Lecture and Hands-On 15 92.67 6.22 

Total Group 45 88.00 9.09 

 

 An alpha level of .05 was used for all analyses. The test for homogeneity of variance was 

not significant [Levene F(2, 42) = 1.46, p > .05] indicating that this assumption underlying the 

application of ANOVA was met. The one-way ANOVA of standardized test score (see Table 2) 

revealed a statistically significant main effect [F(2, 42) = 5.34, p < .01] indicating that not all 

three groups of the teaching methods resulted in the same standardized test score. The ω2 = .162 

indicated that approximately 16% of the variation in standardized test score is attributable to 

differences between the three groups of teaching methods. 

Table 2 

Analysis of Variance for Standardized Test Scores 

Source SS df MS F p 

Between 736.53 2 368.27 5.34 .009 

Within 2895.47 42 68.94   

Total 3632.00 44    



THE ONE-WAY ANOVA 
PAGE 13 

 Post hoc comparisons using Tukey procedures were used to determine which pairs of the 

three group means differed. These results are given in Table 3 and indicate that students who had 

received the lecture and hands-on teaching method (M = 92.67) scored significantly higher on 

the standardized test than did students who had received the lecture only teaching method (M = 

82.80). The effect size for this significant pairwise difference was 1.19. 

Table 3 

Tukey Post Hoc Results and Effect Size of Standardized Test Scores by Teaching Method 
 

 Mean Differences ( ki XX − ) 
(Effect Size is indicated in parentheses) 

Group Mean 1. 2. 3. 

1. Lecture Only 82.80 0.00   

2. Hands-On Only 88.53 5.73 0.00  

3. Lecture and Hands-On 92.67 9.87** 
(1.19) 

4.13 0.00 

** p < .01 
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