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Section 27 – Using Torque and Rotational Kinetic Energy 
 
We intend to understand why objects rotate like they do using the Laws of Rotational Motion, so we 
better apply them a few times to get s sense of how they work.  In addition, we’ll examine rotational 
kinetic energy, which will allow us to use the Law of Conservation of Energy for rotating objects. 
 
Section Outline 

1. Using the Laws of Rotational Motion 
2. Rotational Kinetic Energy 

 
1. Using the Laws of Rotational Motion 
As a reminder, here are the laws again. 
 

Newton’s First Law for Rotation 
“Every object will move with a constant angular velocity unless a torque acts on it.” 
 
This led us to the definition of torque  


τ = r ×


F . 

 
Newton’s Second Law for Rotation 
“Angular acceleration of an object is directly proportional to the net torque acting on it 
and inversely proportional to its rotational inertia.” 
 
Written mathematically as Στ = Iα , leading us to the definition of rotational inertia 
I ≡ r2 dm∫ . 

 
Now let’s build our understanding by applying these laws. 
 

Example 27.1:  A 500g mass hangs from a string that is wrapped 
around a 2.00kg solid cylinder 10.0cm in diameter as shown at the 
right.  Find the acceleration of the hanging mass. 
 
Given: m = 0.500kg, M = 2.00kg, and r = 0.0500m. 
Find: a = ? 
 
It is best to attack these types of problems by looking at separate parts of the system.  
Considering just the forces on the hanging weight and applying Newton’s Second Law, 
 

ΣF = ma⇒ Fg − Ft = ma⇒mg − Ft =ma . 
 
We have chosen the coordinates so down is positive, since that is the 
way things are moving. 
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Now consider the forces acting on the cylinder.  Earth pulls 
downward as does the tension in the string.  The pivot must exert an 
upward force to keep the disk from translating.  To keep the 
coordinate systems consistent, all torques causing the hanging mass 
to drop are considered positive. 
 
Note that the only force causing a torque about the center of the 
pulley is the tension.  Applying the Second Law for Rotation, 

Στ = Iα⇒ rFt = Iα⇒ Ft =
Iα
r

. 

Substituting into the equation for the hanging mass, 
mg − Iα

r
= ma . 

The rotational inertia of a disk is Idisk = 1
2 MR2  and since the edge of the cylinder has a tangential 

acceleration of a which is related to the angular acceleration by at = rα , 

mg −
1
2 Mr2 a

r( )
r

= ma⇒mg − 1
2 Ma = ma⇒ m + 1

2 M( )a = mg⇒ a = m
m + 1

2 M
g . 

Putting the numbers in, 

a = 0.500
0.500 + 1

2 (2.00)
9.80( )⇒ a = 3.27m / s2 . 

 
Objects that roll without slipping have a special relationship between the motion of their center of mass 
and the motion of the edge.  Think back to our proverbial bike wheel. 

 
The distance traveled by the center of the rolling wheel, x, must be exactly equal to the arc length 
covered by the edge, s.  After all, if a wheel rolls through one complete rotation, it must have moved 
forward a distance equal to its circumference.  Since both things happen in the same amount of time, the 
tangential velocity must equal the velocity of the center-of-mass and the tangential acceleration must 
equal the acceleration of the center-of-mass.  Mathematically, the derivation goes like this, 

x = s = rθ ⇒
dx
dt

= r dθ
dt

⇒ vcm = rω . 
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Continuing on to the acceleration, 

vcm = rω ⇒
dvcm
dt

= r dω
dt

⇒ acm = rα . 

In summary, objects that roll without slipping have a special relationship between the motion of their 
center of mass and their rotational motion. 
 
Rolling without slipping requires xcm = rθ , vcm = rω , and acm = rα . 
 

Example 27.2: Find the acceleration of an object with mass, m, radius, r, and rotational inertia, 
I, rolls along an incline.  
 
Given: m, r, and I. 
Find: a = ? and v = ? 
 
The sketch at the right shows the forces 
acting on the object and the free body 
diagram.  Note the frictional force must 
be up the hill so it provides the correct torque to speed up the rotation if the object if it is going 
downward and to slow the rotation if it is going upward.  Applying the Second Laws for 
Translation and Rotation, 

ΣFx = max ⇒ Fg sinθ − Ffr = ma⇒ mgsinθ − Ffr = ma    (1) 
ΣFy = may ⇒ Fn − Fg cosθ = 0⇒ Fn = mgcosθ    (2) 

Στ = Iα⇒ Ffrr = Iα ⇒ Ffr =
Iα
r

   (3) 

Substituting eq. 3 into eq. 1, 

mgsinθ −
Iα
r

= ma . 

Since the object rolls without slipping a = rα ⇒α =
a
r

.  Substituting, 

mgsinθ −
I a
r( )
r

= ma⇒ mgsin θ− Ia
r2

= ma⇒mr2g sinθ = Ia +mr2a = a I +mr2( ) ⇒  

a = mr2

I +mr 2
gsinθ . 

Note that if the object doesn’t roll (I = 0), then the answer is a = gsin θ  which is the answer we 
got for a block sliding down a plane without friction.  The equation for the acceleration shows us 
that the larger the rotational inertia, the smaller the acceleration.  This must be true because the 
harder an object is to rotate the less rapidly it should speed up. 

 
Let’s continue on to find the resulting motion given these forces and torques. 
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Example 27.3: An object with mass, m, radius, r, and rotational inertia, I, rolls along horizontal 
ground with a speed, v, when it reaches the incline of the previous example.  Find (a)the distance 
along the incline, and (b) the height it reaches when it momentarily comes to rest.  
 
Given: xo = 0, vo = v, v = 0, and 

a = −
mr2

I + mr2
gsinθ . 

Find: x = ? and h = ? 
 
 
Note, we have switched coordinates from the last example because we can keep the position and 
velocities positive, although the acceleration is now negative. 
(a)Since this acceleration is constant, the speed at the bottom can be found using the kinematic  
without the time, 

v2 = vo
2 + 2a(x − xo )⇒ 0 = v2 − 2 mr2

I +mr2
gsinθ( )(x − 0)⇒ x = v2

2g sinθ
I +mr2

mr2( ) . 
(b)Using trigonometry,  
h = x sinθ = v2

2g sinθ
I +mr2

mr2( )sinθ ⇒ h = v2
2g

I +mr2

mr2( ) . 

Again, note that if the object doesn’t roll, then the answer is the expected result, h = v2
2g . 

 
To summarize, torques can be used to explain the rotation about the center of mass, while forces 
describe the translation of the center of mass. 
 
2. Rotational Kinetic Energy 
 
As with many problems, like the last one, using the Law of Conservation of 
Energy is easier than using forces and torques.  The trouble is that we have to 
have a way of keeping track on the kinetic energy associated with the rotation 
of the object.  Basically, all that needs to be done is to add up the kinetic 
energy, dK, of each mass element, dm, 

dK = 1
2 (dm)v2 = 1

2 v2dm . 
This velocity is tangential so it is related to the angular velocity by v = rω .  Now, 

dK = 1
2 ω

2r2dm⇒ dK∫ = 1
2 ω

2 r2dm∫ . 
The left hand side is the total rotational kinetic energy and the integral on the right hand side is the 
rotational inertia.   
 

The Rotational Kinetic Energy K = 1
2 Iω

2  
 
Since the translational kinetic energy is one-half the inertia times the translational velocity squared, we 
might have guessed the rotational kinetic energy is one-half the rotational inertia times the rotational 
velocity squared. 
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Example 27.4:  Repeat the last example using energy conservation to find the maximum height of 
the rolling object. 
 
Given: m, I, r, and v. 
Find: h = ? 
 
There are two terms in the 
initial kinetic energy.  The 
first term is the kinetic energy 
of the center of mass and the 
second term is the kinetic 
energy of rotation about the 
center of mass.  Using the 
Law of Conservation of Energy,  

ΔU + ΔK = 0⇒ mgh − 0[ ] + 0 − ( 12 mv
2 + 1

2 Iω
2 )⎡⎣ ⎤⎦ ⇒ mgh = 1

2 mv
2 + 1

2 Iω
2 . 

The velocity of the center of mass is related to the angular velocity because the object rolls 
without slipping, 

mgh = 1
2 mv

2 + 1
2 I

v
r( )2 ⇒ mr2gh = 1

2 mr
2v2 + 1

2 Iv
2 = 1

2 mr
2 + 1

2 I( )v2 ⇒ h = v2

2g
I +mr2

mr2( ) . 

We get the same result as before but using conservation of energy is much easier than working 
through the forces and torques. 

 
When objects move due to the gravitational force, the mass almost never matter.  What’s going on here. 
 

Example 27.4: The height in the last two examples appears to depend on the mass of the object.  
Show that the mass actually cancels out. 
 
Recall that the rotational inertia is always some fraction times the quantity mr 2 .  Using f to 
represent the fraction, I = fmr2 .  Substituting into the equation for the velocity, 

h = v2

2g
fmr2 +mr2

mr2( ) = v2

2g
f +1
1( )⇒ h = v2

2g
f +1( ) . 

The mass and the radius cancel out.  So, as we suspected, the final speed doesn’t depend upon 
the mass.  It does depend upon the shape because f is determined by the fraction in the equation 
for rotational inertia.  Note that objects with a bigger value of f go higher up the incline as they 
must since they have more rotational kinetic energy at the bottom. 
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Section Summary 
We built our understanding of the Laws of Rotational Motion by apply them to some examples.  The 
forces explain the motion of the center-of-mass while the torques explain the rotational motion. 
 
When an object rolls without slipping there are special relationships between the motion of the center-
of-mass and the rotational motion summarized by xcm = rθ , vcm = rω , and acm = rα . 
 
Finally, recalling energy is often easier to deal with than forces and torques, we established the equation 
for, 
 

The Rotational Kinetic Energy K = 1
2 Iω

2 . 
 
Now we can use the Law of Conservation of Energy by including the rotational kinetic energy. 
 
To complete our understanding of rotational motion, we need to continue to build upon our 
understanding of translational motion by looking into the rotational analog of linear momentum.  In the 
process, we will need to look into the vector nature of torque. 


