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SUMMARY

The problem of discrimination when all or most of the observations are qualitative is
discussed. The method of logistic discrimination introduced by Cox (1966) and Day &
Kerridge (1967) is extended to the situation where separate samples are taken from each
population, using the results of Aitchison & Silvey (1958) on constrained maximum likeli-
hood estimation. The method is further extended to discrimination between three or more
populations. The properties of logistic discrimination are investigated by simulation and the
method is applied to the differential diagnosis of herato-conjunctivitis sicca.

Some key words: Discrimination with qualitative observations; Logistic discrimination; Constrained
maximum likelihood; Simulation study; Application to medical diagnosis.

1. INTRODUCTION

Cox (1966) and Day & Kerridge (1967) both suggested the logistic form for posterior
probabilities as a basis for discrimination between two populations. Day and Kerridge
specifically considered estimating the allocation rule when sampling was from the mixture
of populations, while Cox was not concerned with discriminant estimation. However, a
discriminant function is often required when samples are taken from each population sepa-
rately, perhaps to allocate further sample points from the mixture of populations in known
or estimable proportions. In this case the allocation rule would be based on posterior proba-
bilities. Alternatively, if the proportions cannot be specified, the rule would depend on likeli-
hood ratios. It is intended to extend the application of logistic discrimination to these two
situations and to more than two populations.

The techniques of this paper were developed for use with data that include polychotomous
observations. In particular it is thought that applications to medical diagnosis are relevant
and an example of this is given in § 6.

2. FORMULATION OF THE PROBLEM

Suppose that sample points x r = (xv ..., xp) are available from the population Hs and that
the likelihood of x given Hs is/s(x) (s = 1,..., k). All the components of x are real but some are
continuous and some are polychotomous. The discrimination problem is to find a rule for
allocating further points x of unknown origin to populations.

If it is known that the points to be allocated are from a mixture of the distributions
H1,...,Hhin the proportion TLT = (n i } . . . , IIfc), where

2 n8 = i,
8=1
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20 J. A. ANDERSON

then the simplest optimizing method of discrimination is to maximize the probability of
correct allocation. This is achieved by allocating the sample point x to Hs if

n,/8(x) > n t/ t(x) (t = i,...,k;t*a), (i)
or

(<=1, . . . ,M=M) (2)

(Rao, 1965). Attention will be directed towards this allocation rule because it is the simplest
and perhaps the most general. However, the method developed in this paper can be used to
advantage with other optimizing techniques. This point is discussed in §7.

The Cox-Day-Kerridge approach was to postulate the logistic form for the posterior
probabilities when k = 2;

pretax) = exp(cto + a1x1+...+apxp)-pT(H2\-x.), (3)

pr(#2|x) = ll{l + exp(ao + alzl + ...+apxp)}. (4)

There is an obvious extension of this to h populations (Cox, 1970, p. 104):

8 = 1

where af = (asOjasl,..., asp) (s = 1,, ...k— 1). The next step of their procedure was to esti-
mate the as directly from sample points of the mixture. Only the parameters that are
specifically required for the discrimination rule are estimated and, further, the method is
exactly the same for all/s(x) satisfying (5). By contrast, the classical approach is to derive
the allocation rule from estimates of all the parameters postulated in each distribution with
the result that, first, many more parameters have to be estimated and, secondly, different
methods are required for different assumed families of distributions {/s(x)}. The advantages
of the Cox-Day-Kerridge approach are clearer when it is realized that equation (5) is satis-
fied by many of the families commonly postulated in discrimination. These include:

(i) multivariate normal with equal dispersion matrices;
(ii) multivariate independent dichotomous, 0 or 1, variables;
(iii) multivariate dichotomous variates following the log linear model (Birch, 1963)

with second and higher order effects the same in each population;
(iv) a combination of (i) and (iii).
Model (5) can be given even greater generality by including extra terms to allow for dif-

ferent second order interactions; for example, different dispersion matrices in (i). However,
this is at the cost of introducing more parameters which all have to be estimated. It is clear,
then, that (5) will be true or approximately true, in a number of practical applications.

The Cox-Day-Kerridge formulation was to assume that sample points x were available
from the mixture of two populations in unknown proportions. Generalizing this to k
populations, suppose that nOT sample points are observed from Hs at the point x (s = 1 ,...,&).
Usually most of the n^ will be zero and the rest unity. Let ns = Sw^. Thus ns (s = 1,..., k)
is the total sample from Hs and is a random variable. The likelihood of the observations
is
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Separate sample logistic discrimination 21

where ̂ x is the probability or probability density of the mixture distribution at x. It follows,
after some reduction, that the maximum likelihood equations for the matrix of coefficients,

^ = S ( " * - " r f J * , « 0 (S = l , . . . ,*-l ; j = 0,...,H (6)
fas] x

where ns = S n^ for all x. The solution of these equations is dealt with in some detail for
k = 2 by Cox (1970, p. 87).

The problem to be considered in this paper is to estimate logistic posterior probabilities
of the type (5) but now where samples are available from each population separately, so the
ns are fixed. To define the mixture of populations to which the posterior probabilities refer,
it is necessary to specify the mixing proportions

s-1

of Hv ...,Hk. These can be either given or estimated from other data. The situation where
this is not possible is discussed in §3-4, using likelihood ratios.

With the above notation, the joint likelihood of the separate samples from Hlt ...,Hk

can be written

{

Suppose further that x^(j = 0,1, ...,p) is dichotomous, with values 0 or 1, enabling likeli-
hoods to be regarded as probabilities. This condition will be relaxed in §3-3. Then,

As before, let <fix = pr(x); then
\ I l s (8)

and when substituted into (7) this gives
k

log L = const + £ £ {TCCT log {pa fa)}, (9)
s = l x

where the constant includes all terms independent of the as's and (pz's. This likelihood is the
same as that of the Cox-Day-Kerridge formulation but it must be remembered that as's
and 0x's are related by the functionally independent conditions

Z & = i , S i>«k = n , ( s = i , . . . , k - i ) , (10)
X X

where the summations are over all possible x values. Thus the problems of estimating
A = (a1;..., aA._1) in the two sampling situations are not the same.

The estimation of A when the log likelihood is given by (9) subject to the conditions (10)
is the central problem of the paper. A fairly obvious approach is to take as estimators those
values of the parameters that maximize the likelihood subject to the constraints. Aitchison
& Silvey (1958) showed that this method of constrained maximum likelihood has similar
properties to ordinary maximum likelihood estimation.

The expression (9) for log L can be maximized subject to the conditions (10) quite straight-
forwardly but the algebra is heavy and the asymptotic dispersion matrix D has a very un-
wieldy form. However, an easier solution exists with a much more manageable expression
for D. This will be given in the next section.
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22 J. A. ANDEBSON

3. THE MAXIMUM LIKELIHOOD ESTIMATION OF SEPARATE SAMPLE LOGISTIC

DISCRIMINATORS: THEORETICAL CONSIDERATIONS

I t is required to maximize logL given by (9) subject to the constraints (10). It must be
remembered that the samples are taken from L(x\H3)(s = 1, ...,k) and that II is fixed
separately. For the same set of k samples different logistic functions (5) can be estimated
corresponding to different values of II; moreover, there is a very simple relationship between
them.

Suppose then that there is one set of proportions II to which all the foregoing equations
refer and another set II', so that

^ ( , , ) ,

pr' (x) = <px all x.

The samples from L(x\Hs) do not depend on the choice of II or II', so

L{3L\Hl) = Pat4jn. = p'gtt'jn'a (s=i,...,k). (12)

Dividing through these equations by the kth, we find that

or

2>j3>ta = e x p { A + ( l , x 2 W («= l , . . . , f c - l ) , (14)

where fia = log (nfcn«)— log {Wk IIg). Using 2 ^ = 1, we obtain
T)a's}p'kz ( «= l , . . . , f c - l ) , (15)

where

Note that this does not imply that <j>x = <p'x. From (15) and (16), it can be seen that the maxi-
mum likelihood estimates of the parameters A = [av..., afc_x] with II can be obtained
directly from those of A' = [c^,..., a^_x] with II', and vice versa.

In particular, it became apparent when working on the maximization of the likelihood
function (9) subject to the conditions (10) that a simplification would be achieved by esti-
mating the logistic functions appropriate to the proportions II* = njn {s = 1,..., k), where
n = Titis, and deriving the logistic functions for any other II subsequently.

3-1. The maximum likelihood equations when H = II*

Lagrange multipliers will now be used to maximize the likelihood function (9) subject to
the conditions (10) with II = II*. For ease of notation, x0 is defined to be 1 at each sample
point. Then

%?=PS*V-PJ*, (s = l,...,k-l;j = O,l,...,p),

J (17)
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Separate sample logistic discrimination 23

and it follows after some reduction that

where nx = 'Ensx, for all x; 8 log £/90x = nj<f>z, so that the equations that give a stationary
point are

( = 1 X Z

( « = l , . . . , i - l ; j = 0,l p), (18)

x + fi+ 2 Atpt, = 0 (for all x) (19)
<i

and equations (10), where /i, Alt..., Afc-1 are the undetermined multipliers corresponding, in
order, to the k conditions in (10). Equations (18) and (19) can be written as

fc-i \
J 1 - j ) a i ; A ( j ) 1 I ( J I h ; . = 0 ( s = l,...,k-l\j = O,l,...,p),

t=l 1

fc-i

(20)

nx+/i<fix+ 2 \Ptzfix = 0 (f°r a u x)- (21)

Substituting 2 ^-tPtx^x from (21) into (20), we obtain

S Kx ~ x̂&at + ̂ ^ <t>* + Psx ( ̂ x + /*&)} ̂  = 0,

*, = 0 (« = l , . . . , f t - l ; j = 0,l,...>3>). (22)
X

In this equation, choose j = 0 and x0 = 1 for all x, so that

or
ns + n*0» + A,) = O, /i + As = - n (s = 1, ...,k-l), (23)

since FI* = njn. Summing (21) over all x gives

kj:\tnt = o

or
&-i

n+/i + (l/n) 2 At»t = 0.
t=i

Together with (23), this implies that fi = —n and Aj = 0 for t = 1,.. . ,&-1. Thus (21) be-
comes

0x = n j » (24)
and (22) becomes

= 0 (a = l , . . . , * - l ; j = O,l>...>p). (25)
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24 J . A. ANDERSON

There are (k— 1) (p+ 1) equations in (25), none of which involves any of the 0x's. Thus the
large number of nuisance parameters that were included in the likelihood function (9) have
now been eliminated, resulting in equations (25) which are formally identical to the maxi-
mum likelihood equations (6) for the logistic parameters in the Cox-Day-Kerridge formula-
tion. There is thus a close relationship between the two estimation systems. Indeed, the
use of equations (6) for estimating A with fixed (ns) first suggested itself to the author as an
approximation, the idea being to adjust (a^) afterwards to give the desired proportions.
However, it can be seen that this is a constrained maximum likelihood solution with
corresponding desirable properties (Aitchison & Silvey, 1958).

3-2. The asymptotic dispersion matrix of the estimators

Although the properties of constrained and ordinary maximum likelihood estimators
are very similar, the forms of the asymptotic dispersion matrices are quite different, since
the constrained matrix has to take account of the functional dependence between the para-
meters. Although the general result has a fearsome appearance, drastic simplifications are
obtained when II = II*. For the moment suppose tha t the parameters to be estimated are
BT = (6V ...,dw) with k conditions hs{6) = 0 (s = 1,...,k). The wxw matrix

/aiogL£log_L\

here. The wxk matrix H = {dhjdd^. Then Aitchison & Silvey's (1958) result for the
wxw asymptotic dispersion matrix D of the constrained maximum likelihood estimators of

D = B-i-B-^H^B-iH^H^B-1. (26)

There are (k— 1) (p+ 1) a-parameters to estimate and, say, a 0x-type parameters so that D
can be partitioned as

D-P-
l

where, for example Da a is the (k— 1) (p + I) x (k— 1) (p +1) dispersion matrix of the ag's,
which is the only part of D that is of interest here. The matrix B can be partitioned in ex-
actly the same way as D. The order in which the parameters are to be taken is a10, an , . . . , alp;
• • • = afc-i, o> afc-i, I. • • • >aA-i,P> &!> • • •. 0xa> which corresponds to the above partitioning. Suppose
that

<PI-ns* = 0 ( « = ! , . . . , 4 - 1 ) ,

then H can be partitioned as
TH<z<x

where, for example, the (k— l)(p+l)x(k— 1) matrix,

H, =aa doc.

It is easy to show that all the elements in H^ are zero; H ^ B ^ H ^ = l/?i; ^ ^ ^
(l/») (n*...., nj_!) r; and that the (k- 1) x (k- 1) matrix, H&B^H^ = {Sl>«ft»&}- How-

 at Penn State U
niversity (Paterno L

ib) on Septem
ber 16, 2016

http://biom
et.oxfordjournals.org/

D
ow

nloaded from
 

http://biomet.oxfordjournals.org/


Separate sample logistic discrimination 25

ever the matrix H j a B ^ H a a is more difficult until it is realized that the ith. column of Ha a

is equal to the {l + (i— l){p+l)}th row, and column, of (1 fn) Baa . I t follows that

Then

where Zx = diag(II*,..., n*.^) and Zf = (II*,..., Ul_x), and

.., - l /nj)andY a is the(*-l)x(f t - l )
matrix with all its elements equal to l/II*. It follows that

D« = B-i-»*1Eaa,
where Eaa is a (& — 1) (p+ 1) square matrix with all elements zero except for terms in the
{1 + (s — l)(p+ l)}th row: the diagonal element is 1 + njns; that in the {1 + (t — l)(p + l)}th
column is 1 (j = 1, ...,&— 1); the other elements are zero again. Thus the only elements
where Daa and B~a

x differs are concerned with the variances and covariances of the terms
Ko}-

I t follows from the equation (16) that the maximum likelihood estimators of the para-
meters of the logistic functions for any given choice of II are immediately obtainable from
those with II*. In fact, all except as0 (s = 1,..., k— 1) which varies by an additive constant
are the same irrespective of the choice of II. Hence the dispersion matrix of the estimators
also remains the same whatever the choice of II.

There is a close relationship between Daa, derived above, and the equivalent matrix
in the Cox-Day-Kerridge model. Let

then D ^ ' = B~^, where Z^ i s as given in the discussion of the Cox-Day-Kerridge formula-
tion in §2. It follows from equation (6) that

W = 0,

Since log IP® and logL given by (9) are formally equal, these equations are also true for L.
However, in the Cox—Day-Kerridge model E(nx) = nfa, while in the situation introduced
in this paper, from (12),

8=1 8 = 1 l l s

If II = II*, nJTls = n and E(nx) = n<f>x. For no other choice of II is this expression so simple
and this is one of the reasons why the expression for Daix with II = II* is so convenient. Thus
by choosing II = II* and B<£P = Baa, it can be seen that Daa = D /̂> - (1/%.) Eaa. Thus, it
follows from this result and that at the end of § 3-1 that the estimates of the logistic discrimi-
nation rule from a given set of data using the Cox-Day-Kerridge formulation and the one
introduced here differ only in the estimates of the a^ and their variances and covariances.
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26 J . A. ANDERSON

3-3. Continuous and polychotomous observations

The discussion of the estimation of logistic discriminators has been restricted, so far,
to dichotomous variates. Suppose now that the observations are continuous with a mixture
density fa at the point x. The expression (9) for log-L is unchanged, but the conditions (10)
become

nfadx^Tlg (s = 1,..., k— 1). (26)

The maximization of logL subject to (26) cannot proceed unless assumptions about the
functional form of fa are made. In general, this will entail postulating extra parameters 0
for fa and the ensuing maximum likelihood equations will not reduce to two sets for
A = [av ..., otft_J and 0 separately. This is almost equivalent to the classical approach of
§2 with all its drawbacks. However, if one is prepared to make the continuous distribution
discrete and estimate fa Ax solution (25) can be used.

Let
fa = faAx (for all x); (27)

then the conditions (26) become, approximately,

or
S ^ = l , S ^ , 3 » « = n , ( « = 1 , . . . , * -1 ) . (28)
z z

Putting the differential elements into the likelihood, we obtain

8 = 1 Z

= 'n'„&&)"«. (29)
8 = 1 Z V ^ 8 /

The problem of maximizing (29) subject to the conditions (28) is then identical to that
considered in §3-1. Situations where continuous and dichotomous data both occur, can be
dealt with in a similar way, putting in differential elements for all the continuous variables.
I t should be noted that this method of making continuous variables discrete is not as drastic
as it appears because it is not necessary to divide the range of each variable into predeter-
mined classes. In fact, it can be seen in § 5 that the above approach gives good estimators of
the true discriminant function when k = 2 and the underlying distributions are multivariate
normal.

I t remains to consider observations that belong to one of three or more distinct categories.
The most common situation is trichotomous, say a; = 0,1,2. Sometimes these values will
correspond to a true linear ordering and (25) can be used without further justification. More
often, the alternatives for a; will refer to some qualitative observation, say, hair colour: fair,
dark or red. Suppose that k — 2 and there is one trichotomous observation as above, then a
reasonable model is

pr (H]\x = 0) = e»/(l + e«), pr {Hx\x = 1) = e«+*/(l + e»+'),

1|a; = 2) =
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Separate sample logistic discrimination 27

This can be put in the framework of model (5) for posterior probabilities by transforming x
into two variables y and z, i.e. x = 0 if and only if y = 0 and z = 0; x = 1 if and only if y = 1
and z = 0, and x = 2 if and only if y = 0 and z = 1, and

With the assumption of equal second order effects in the log linear models for all k popula-
tions (Birch, 1963), this result can be generalized to p observations. Each of those with more
than r ̂  2 levels is replaced by r— 1 variables analogous to y and z above. Equation (25)
can then be used with the transformed data to estimate the logistic discriminators.

3-4. Estimation of log likelihood ratios

There are some discrimination situations where posterior probabilities cannot be used.
It may be that there is an underlying mixture but II is not known nor can it be estimated,
or the consideration of posterior probabilities may be excluded on logical grounds. Perhaps
the obvious criterion for discrimination in this case is the likelihood ratio or its logarithm
and it is pleasing that the logistic function approach of §3-1 can still be used, provided as
always with this technique that samples are available from all the populations separately.
Cox (1966) would seem to disagree with this approach but perhaps he had not considered the
separate sampling scheme.

From equations (5) and (8), assuming a hypothetical mixture in proportions II,

Psxiis

L&ffiKTrt
 (30)

so that
logi?st = [l,xn(as-ot)-rst (M=l,...,fc-1)

* l )= [l,x*]a,-r,fc (s = 1, . . . ,* - l ) ,
where rst = log(ns/IIt) (s, t = 1, ...,k). Thus the joint likelihood of the separate samples
from each population has been reparameterized in terms of the a's, the 0x's and an arbitrary
set of proportions II, to yield expression (9) for logi. Having estimated the a's using the
maximum likelihood equations (25), we find the log likelihood ratios are recovered from (31),
using the selected value of II. From what has gone before, there are considerable advantages
in choosing II = II*.

4. THE MAXIMUM LIKELIHOOD ESTIMATION OF LOGISTIC DISCRIMINATORS :

PRACTICAL CONSIDERATIONS

4-1. Iterative solution of the maximum likelihood equations

Since equations (6) and (25) are identical, there is no point in distinguishing between the
two sampling situations in the solution of the maximum likelihood equations. Both Cox
(1970, p. 87) and Day & Kerridge (1967) discuss the solution of these equations for k = 2.
Cox (1970) suggested using least squares on a linear approximation to the logistic function
to give starting values for the Newton—Raphson procedure and this could be extended to
the case where k > 2. However, the method does not work well, as Cox noted, when the
samples are well separated. In the author's experience, Newton-Raphson with starting
values of zero for all the parameters has usually worked well. In a few cases, one restart from
an intermediate set of coefficients has been necessary.
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28 J . A. ANDERSON

The Newton-Raphson method is easy to apply in this context. Equations (6) and (25)
can be written

= 2 1WPaPtt*i*l (s * 0. (32)

Let F denote the (k — 1) (p +1) square matrix with elements

where the order of the pairs (s,j) and (t,l) is (1,0) (1,1)..., (l,p), (2,0),..., (2,p), (3,0),...,
(3,p), ...,(&—1,0),..., (& — l,p), and letf denote the column vector with (k- 1) (p+l)rows,
f = {/ĝ } with the same ordering as above. Let fa and Fa denote the values of the above when
Oi,..., (tk_1 take on the values indicated by the column vector a, where SLT = [ctf,..., a^Lj.
Then starting from the set of values a0, the next value of a is given by

ai = a0-F-ifao. (33)

The next value of a, a2, is obtained from a1 in the same way and the process is repeated until
it converges or until it is clear that convergence will not be reached quickly, if at all, from
that particular starting value.

Very often F - 1 changes in value slowly in comparison with f so that it need not be recalcu-
lated at each step of the iteration. In the present context, changing F~x at every tenth step
seemed to be satisfactory.

The asymptotic dispersion matrix can be estimated from F - 1 . I t was shown in §3-2 that
B a a = B*̂ P for II = II*. So if there is separate sampling from each population, take II = II*,
then, in addition, E(nx) = n<fix for both sampling schemes. From equation (24) the maximum
likelihood estimate of <px is njn and the value of B",,1 with the maximum likelihood estimates
of the unknown parameters substituted is just the final value of F - 1 . Hence this is the esti-
mate of the asymptotic dispersion matrix if sampling from the mixture, otherwise the
adjustments noted in §3-2 are required.

From now on the difference between the two sampling schemes will be largely ignored
since there is so little difference between the methods of estimation.

4- 2 Complete separation of the sample points

A major difficulty in the maximum likelihood estimation of A = [ax,..., aA._1] is that
in certain situations there is a non-unique maximum of L for infinite values of A. To see this,
at each sample point x, which is [1,0^, ...,xp] since §3, let

zs = x2as ( s = l , . . . , * -1 ) , Zft = 0. (34)

The estimate of A, A+ = [aj1",..., aJ_J, with corresponding zf (s = 1,..., k), is said to give
complete separation of the sample points if

zt>4 (« = !,...,*;<*«) (35)
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Separate sample logistic discrimination 29

for each x from Hs(s = l,...,k). Then with A = A+, the likelihood of the ns sample points
from Ha is

£ exp(4)
(36)

<i

where 2^ is given by (34) with A = A+ for the ith point from Ha (s = 1,...,lc). If r\+ is
chosen instead of A+, the Kkelihood is

L'sccU-k , (37)
i 1

where z^ — z^i > 0, for t = 1,..., &, by (35). Hence as r -> 00, all such ig terms in the likeli-
hood function tend to 1. Given one A+ with the property (35), there will generally be others,
giving a non-unique maximum of the Kkelihood function at infinity. In these circumstances,
any of the maximum Kkelihood estimates of A should give a reasonably good discrimination
rule, particularly if all the ns are large, since all the given sample points are correctly allo-
cated. However, the estimate of A may not be very reKable.

Fortunately, it can be proved that any convergent method of maximizing the Kkelihood
function (9), in particular that part of it depending on A, must yield an A+ giving complete
separation if such an A+ exists. For suppose that the sample point x from Hs has pu > p^
for some value of A. Now p^+pu ^ 1, so pa < £. The part of the likeKhood function that
depends on A is a constant plus L', where

L' = fl n Per
s = l xeH,

If separation is possible the maximum value of L' is 1 but if any sample point does not satisfy
(35), at least one term in L' is less than or equal to \, so L' ^ 1. A convergent procedure for
A must give A+ with L' > \ at some stage and this A+ must give complete separation. This
incidentally gives a conservative test for separation that can be built into the maximum
likelihood procedure. Day & Kerridge (1967) gave these results for k = 2.

5. A SIMULATION STUDY OF THE PROPERTIES OF MAXIMUM LIKELIHOOD

ESTIMATION OF LOGISTIC DISCRIMINATORS

Sample points were generated from two multivariate normal distributions with equal
dispersion matrices to investigate the separate sample logistic discrimination method de-
veloped in §3. The values nx = n2 = 50 and p = 10 were chosen. Since the functions
Pst (s = 1, ...,fc) are invariant under translations and rotations of the axes in the a;-space,
the common dispersion matrix was taken to be the identity and the means were given by
^f = (d, 0,..., 0) and |if = ( - 6,0,..., 0). Three values were taken for 0, 0-5,1-0 and 1-5, and
twenty sets of values were simulated with each of these. With the above parameter values
and II = II*, the true value of the logistic parameter, <xf = (0, (if — ji^) = (0,20, 0,..., 0).
For each simulation, the estimated value, alf was calculated using the method of §§3
and 4 with the true value as starting value. Convergence was obtained directly in all but
two cases where restarting from the intermediate 'best' point, with the correct F-1 at
that point, gave convergence. Complete separation only occurred with 6=1-5 and then in
6 out of 20 simulations.
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Table 1. The simulation of misdassification probabilities for logistic discriminators

Estimated discriminators

0

0-5
1-0
1-5

1-5
(no separation)

1-5
(separation)

Number of
simulations

20
20
20

14

6

pr

True

Mean S.D.

0-34 0-05
0-18 0-03
0-09 003

0-08 0-03

012 003

•H2)

Observed

Mean S.D.

0-25 0-05
0-13 0-04
0-04 0-03

0-05 0-03

0-00 0-00

True

Mean S.D.

0-35
0-19
0-10

0-10

0-98

0-04
0-03
0-02

0-02

0-02

Observed
A

Mean

0-27
0-14
0-04

0-06

0-00

S.D.

0-06
0-05
0-03

003

0-00

Theoretical best
misdassification

probabilities

0-31
0-16
0-07

—

Table 2. Estimation of logistic parameters

|

of r

0

0-5

1-0

1-5

1-5
(no separation)

1-5
(separation)

simulations Moan S.D.

20

20

20

14

6

-0-00 0-14
(0-00)
0-08 0-39

(000)
-0-85 3-79

(0-00)

0-40 1-14

-3-76 6-05

Mean S.D.

1-27 0-32
(1-00)
2-71 0-30

(2-00)
35-50 3511
(3-00)

6-35 5-29

103-5 1971

Mean S.D.

0-02 0-31
(0-00)

-0-04 0-42
(0-00)

-6-72 29-13
(0-00)

Mean S.D. Mean S.D.

-0-28 0-27 0-67 0-30
(0-00) (0-00)
0-10 0-48 -0-05 0-43

(0-00) (0-00)
-17-14 24-95 9-67 41-27

(0-00) (0-00)

-0-34 1-07 0-70 1-36 -0-19 1-12

-21-6 53-31 -58-76 143-8 32-69 74-7

Moan S.D.

-0-85 0-26
(0-00)

-0-15 0-47
(0-00)
1-97 3-67

(0-00)

0-84 2-15

4-02 5-54

Mean S.D.

-0-41 0-33
(0-00)
000 0-09

(0-00)
-6-14 28-95

(0-00)

0-50 1-02

-21-65 52-6

The true values of the coefficients a,u are shown in parentheses beneath the sample means.
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Separate sample logistic discrimination 31

The efficacy of the method for discrimination purposes can be judged by examining the
probabilities of misclassification. Each estimate of the logistic discriminant function defines
an allocation rule with true probabilities of misallocation, pr {Hx -> H2) and pr (H2 ->• HJ,
and their observed values, that is the actual proportion of sample cases incorrectly assigned.
The means and standard deviations of the 20 values of these parameters for each 6 are noted
in the first half of Table 1, together with the theoretical optimum misallocation probabilities,
taking af = (0,20, 0,..., 0), as above.

It had been thought that the occurrence of sample points with complete separation would
lead to poorer estimates of the discriminant function. This point is investigated in the second
half of Table 1 where the results for 6 = 1-5 are divided into the two groups: separation and
no separation.

I t can be seen in Table 1 that the method of estimating rules for discrimination introduced
in §3 works well in this context. The mean true misallocation probabilities are reasonably
close to the optimum and the variability is not too large. As expected, the observed values
of these probabilities are too optimistic to give anything but a rough guide. The effect of
complete separation is less marked than anticipated, so that the allocation rule based on
samples with this property is still useful.

Quite a different issue is whether good estimates of the coefficients ax are provided by the
separate sample logistic discrimination method. Twenty estimated values of ax were available
for each value of 8, so the sample means and dispersion matrices of these were calculated.
The means and standard deviations are shown in the first half of Table 2. Since the sampling
distributions of the estimates of a^(j = 2,..., 10) are all the same, only a selection of
these values is given. This shows that the estimated sampling distribution is reasonable for
6 = 0-5 and 1-0, although perhaps a little biased in the latter case. However, for 6 = 1-5, it is
clear that the estimates are wild. In the second half of Table 2 these results are divided
according to whether or not there was separation. As expected, the results with no separa-
tion are far better, although still not very good. Cox (1970) pointed out that with k = 2 and
sampling from the mixture, the estimates of ax are not very good if

|of x| > 3 (38)

for a substantial proportion of the sampled points. The same is true of the situation here,
and as 6 goes from 0-5 to 1-5 the separation between the populations increases with the
result that (38) is true for more and more of the sample points. Day & Kerridge (1967) also
drew attention to this problem and suggested a two-tier sampling scheme from the mixture,
the first being as before but the second being effectively from that part of the sample space
where |af x| < 3. Where feasible, this should be very effective and applicable to separate
sampling.

The conclusion is that the method introduced in this paper is a good general method of
discrimination but that the estimated values of the logistic coefficients are not reliable
unless the condition (38) or its equivalent for k > 2 is untrue at a number of sample points.

6. THE DIFFERENTIAL DIAGNOSIS OF KERATO-CONJTJNCTIVITIS SICCA

There is a risk that people suffering from rheumatoid arthritis will also contract kerato-
conjunctivitis sicca. This disease can be diagnosed reliably by an ophthalmic specialist but his
services are not available to screen all rheumatoid arthritic patients. The question is whether

3 B I M 5 9
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32 J. A. ANDEBSON

a simple screening system can be devised to enable the medical staff of a rheumatic centre,
who are not ophthalmic specialists, to decide which rheumatoid arthritic patients to refer to
the eye hospital. I t was thought that logistic discriminators might be useful in this context.

The diagnostic system was to be based on 10 symptoms of the presence or absence type.
The ith. observation, art, was taken to be 0 if the symptom was absent; otherwise it was taken
to be 1. These observations were available on 40 rheumatoid arthritic patients with kerato-
conjunctivitis sicca and 37 rheumatoid arthritic patients without kerato-conjunctivitis sicca
'normals'. This set of patients will be called Series I. The maximum likelihood estimate of
ax, a1} was found iteratively using the approach of §4 with starting values given by Cox's
(1970, p. 70) method. Let z = (l,-KT)av then

z = 4-0-4-4a;1-2-la;2-l-la;3-4-7a;4-3-5a;5-0-8a;6 + 0-8a;7-2-4a;8+l-8a;9-0-9a;10. (39)

The scores of all patients in Series I were calculated using equation (39) and are shown in
Fig. 1 (a). I t is clear that complete separation did not occur.

Score
- 1 2 - 1 0 - 8 - 6 - 4 - 2 0 2 4 6

00 O O 6 O O O O 0 0 0 0 0 0 0 0 0 0 O O OO OOO O+++O +++

(b)

o& 80S 80 0W0S0 oo°ood

I I I

-12 •10 - 6 - 4 - 2

Score

Fig. 1. The distribution of scores of kerato-conjunctivitis sicca patients (O) and normals (+) :
(a) Series I patients estimated from Series I; (6) Series II patients estimated from Series I I ;
(c) Series I + II patients estimated from series I + II.

Doubts about diagnosis occur when a patient's score is small so it was decided to give a
patient a queried diagnosis if his score was in the range — 2 to 2. This corresponds approxi-
mately to odds between 9:1 in favour of kerato-conjunctivitis sicca and 9:1 against kerato-
conjunctivitis sicca. This results in the following diagnostic system. Calculate z, then if

z > 2: call patient normal,
— 2 < z < 2: query diagnosis,
— 2 < z: diagnose kerato-conjunctivitis sicca.

(40)
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Separate sample logistic discrimination 33

To test the diagnostic method estimated from the Series I patients, the ten symptoms
were observed on a further set of 41 patients, Series II, which included 17 normals and
24 cases of Icerato-conjunctivitis sicca. The scores of all these patients were calculated using
equation (39) and are shown in Fig. 1 (6). I t can be seen that the results in the two series are
quite comparable.

For applications of this diagnostic method to further patients, the coefficients c^ must be
estimated from the largest possible sample. Thus, Series I and I I were combined and the
maximum likelihood estimate of alt af>, was found using the same method as before on the
larger sample. Let z2 = (1, x r ) af, then

z2 = 4-7-5-2a;1-3-0a;2-l-3a;3-5-4a;4-4-0a;5+l-la;6 + 0-8a;7-l-9a;8 + 2-la;9-2-0a;10. (41)

The scores of all patients in Series I and II were calculated using equation (41) and these
are shown in Fig. 1 (c). Again complete separation did not occur. A summary of all the results
illustrated in Fig. 1, categorized as correct, query or wrong, is given in Table 3. It is concluded
from Fig. 1 (a, 6, c) and Table 3 that the results of diagnosing Series I and II patients using
(41) are very similar. In addition, (39) and (41) are very much alike. Thus the diagnostic
system given by (39), (40) and (41) is stable and repeatable. Moreover, the error and query
rates are acceptable so the system is satisfactory from many points of view. Full details
of this study are given by Anderson, Whaley, Williamson & Buchanan (1972).

Table 3. Evaluation of the logistic discrimination method of the diagnosis of
Icerato-conjunctivitis sicca in rheumatoid arthritis

Discriminator estimated from Series I

Kerato-conjunctivitis sicca No kerato -conjunctivitis sicca

Series I
Series II

Series I + II

t

Correct
36
24

Query

3
0

Wrong

1*
0

Discriminator estimated from Series

Kerato-conjunctivitis sicca
A

Correct

60

Query

3

Wrong

1*

Correct

30
13

Query

7
4

I and II

No kerato-conjunctivitis
f

Correct

47

Query

7

Wrong

0
0

sicca

Wrong

0

* This patient had no symptoms.

7. DISCUSSION

As mentioned in §2, the chief advantage of the logistic approach to discrimination is
that the same technique can be used under many different assumptions about the under-
lying distributions. I t is perhaps most useful when the observations are wholly or partly
polychotomous. In the weakness of assumptions made about the /8(x), the method ap-
proaches the distribution-free techniques, for example, Fisher's linear discriminant func-
tion. However, unlike these, it also gives estimates of likelihood ratios and posterior proba-
bilities. In some circumstances this could be the major objective of an investigation. If so,
care must be taken if complete separation is thought possible as poor estimates of the ag

3-2
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34 J. A. ANDEESON

and hence of the posterior probabilities or likelihood ratios would be likely. As mentioned in
§ 5, a two-stage sampling plan could mitigate these effects.

Given that the logistic discrimination approach is to be taken, sometimes both mixture
and separate sampling are possible. The asymptotic properties of the two dispersion mat-
rices do not help to make the choice since they are so similar (§3-2). However, it is the
author's opinion that separate sampling should be chosen, provided that the ns can be
pre-selected to be approximately equal, because then balance between the ns is guaranteed.
I t is conjectured that for a given total sample size n, samples with this balance give better
estimates, on average, than those with imbalance. The latter is almost certain to occur with
mixture sampling if one or more of the populations has low incidence. Unfortunately since
the small-sample properties of maximum likelihood estimators are intractable, the above
conjecture must remain as such.

To take a concrete example, suppose that retrospective sampling is planned from two
diseases, Dx and D2, with relative incidences known to be 10 % and 90 %. Case histories are
available, classified by diagnosis, and there is an annual total of about 100 cases. If resources
only permit 100 histories to be examined, the mixture approach would take the last available
year and find, say, 102^ and 90 D2 cases. However, the separate sampling plan would take
10 Dx and 10 D2 cases from each of the last 5 years, the X>2 cases selected randomly from the
total in each year. This gives good balance between the populations and between the years.

Although the logistic model (5) has been related to simple allocation rules, using the pos-
terior probability or likelihood ratio directly (§ 2), it can also be used with more complex tech-
niques. For example, if it is required to maximize the expected utility, then x is allocated to
action At (of Ax, ...,AV) if

Uj >Ut (t = l,...,v;t + s), (42)

where

8 = 1

and Ugt is the utility of At with H3 (Rao, 1965). I t is clear that condition (42) can easily be
written in terms of the {p^}- Thus, given the {u^}, the method of logistic discrimination,
which yields estimates of the {jp^, can be used to implement a decision-making system.
Similarly the methods of §3 can be used to furnish estimates of posterior probabilities
required in constrained decision systems (Marshall & Olkin, 1968; Anderson, 1969). It is
concluded that methods of estimating the logistic form of posterior probabilities (5) furnish
a potentially valuable tool for a wide range of discrimination and decision problems.

The author is very grateful to Dr W. W. Buchanan of the Centre for Rheumatic Diseases,
Glasgow, and Dr K. Whaley and Dr J. Williamson of the Western Infirmary, Glasgow, for
providing the dataon rheumatic patients for the application of logistic discrimination in § 6.
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