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Abstract

For the purposes of automating the generation of textbook learning material, we
formulate a prediction algorithm to automatically answer analogy tasks in the con-
text of a biology textbook. Word embeddings have shown some success in solving
analogical tasks by using cosine similarity metrics, but often times the analogies
generated from word vectors, such as Glove vectors, face problems related to low
dimensionality in the vector space or inadequate representation of the context the
analogy was trying to show. In recent years, contextual word representations and
deep learning architectures have shown greater success in caputring semantics of
words given specific contexts. Hence, we present deep learning architectures includ-
ing ones based on ELMO and BERT to generate analogy (e.g. animal:mitochondria
:: plant:chloroplasts) in the context of the biology textbook. Since our analogies
also have variable length components, utilizing deep seq2seq or seq2vec models
are effective for predicting these analogies. Surprisingly ELMo models seemed to
have outperformed BERT and even BioBERT, (a pretrained biology corpus BERT
embedding) in this context, achieving 55% exact matches for unseen analogies.

1 Introduction

The task of analogy generation has been used in active research, in many different fields, such as
psychology and linguistics. Analogy generation has not only been considered as an end-goal in
itself but has also been used in evaluation tasks such as evaluating the performance of word vectors.
Currently, this general task has had varying degrees of success. Some approaches that made use of
word embeddings have faced problems related to representations being in too low dimensional space
or are not able to capture the context the analogy is trying to represent.

Analogy generation in the natural sciences, especially biology, has not been as actively researched
but is a beneficial space for analogy generation especially for educational purposes. In biology, there
are many relationships between different concepts represented by scientific terminologies. Analogy
generation can greatly assist the education of those who are starting to learn biology. Learning about
relationships between different words from the analogies can enhance a student’s understanding.
Currently, there are models that serve to do so using hand-built glossaries such as from the LIFE
biology textbook, but we are hoping to generate analogies in a more automated fashion.

Currently, most models use pure word embeddings or vanilla RNNs to generate these analogies. In
this paper, we dive deeper into these word embedding models, including but not limited to GloVe
and fastText. Furthermore, with the rise of transformers and contextual embeddings, we describe
techniques that make use of various different deep learning architectures including ELMo and BERT
to generate analogies. Finally, we also provide a dataset on the different analogies based on the LIFE
biology textbook.



Figure 1: Analogy example.

2 Related Work

Analogies have been used as evaluations for word vectors such as GloVe. Word embeddings such
as GloVe embeddings have often shown that the representation: “King - Man + Woman” results
in a vector very close to “Queen.” [7] However, the training of these word embeddings, including
word2vec and GloVe, are not based on learning these analogies. These analogies can be claimed to
by-products. Character embedding techniques were also explored in FastText [1] to allow for out of
vocabulary text to be generated and seems to be able to get relationships more closely related to word
forms.

More recent analogy generation that have been used is through the use of deep learning architectures
such as a vanilla RNN. One paper (Mikolov et.al, 2013) examines the vector-space word representa-
tions learned by the input-layer weights of an RNN [5]. In 2013, the model showed state-of-the-art
results in capturing syntactic and semantic regularities in language through the analogies. After it
generates the vectors for each word, it then captures analogies through the vector offset model.

In particular, recent models that have shown great successes in using pretrained modules such
as ELMo [8] and BERT [2]. ELMo has shown great success in improving upon existing word
embeddings by producing contextual representations of words. Many pretrained embeddings have
been embedded in existing models and have shwon great success in many general NLP tasks. BERT is
yet another of these models that have shown great successes. In fact, fine-tuned BERT representations
have produced state-of-the-art results for a wide range of tasks, such as question-answering and
language inference.

Additionally, given the challenges of biology vocabulary being very different from everyday language
and with nuances that are hard to capture, Korean researchers developed BioBERT [4] to boost
performance on biomedical text related tasks. Their paper showed performance improvements on
various tasks like NER (named entity recognition), biomedical relation extraction, and biomedical
question answering. While many of the tasks that these two pretrained modules have shown successes
are not directly related to analogies, they show great promises in our specific task of generating
analogies in the context of biology textbooks.

3 Approach

The task that we are looking to solve is, given the input (a,b,c) of the analogy a:b::c:d, where a, b,c
and d maybe either words or phrases, predict the missing word/phrase d in the analogy. The model
would either predict a sequence of words, which maybe in the vocabulary or UNK otherwise. We
approached this task using a unigram dataset, analogies containing only single word inputs and also
an n-gram dataset, analogies with multi-word phrases.
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3.1 Unigram Dataset

Our approaches on the unigram dataset largely drew from the vector offset model [5].

1. First we find the corresponding embedding vectors for each of the words a, b, c: xa, xb, xc

which are all normalized to unit norm

2. We then compute y = xb − xa + xc

3. Notice y is the continuous space representation of the word that is expected to be the best
answer. Of course, since there is a possibility that there is no word at that exact position,
the greatest cosine similarity is computed to find the closest word to y. We find the greatest
cosine similarity as w∗ = argmaxw

xwy
‖xw‖‖y‖

Based on the vector offset model, we built our word embedding models to generate analogies.
Utilizing our corpus, we built multiple types of word vector representations to see which one showed
the best initial results for our analogy detection algorithm.

GloVe

Our first choice of word embeddings was formed through running GloVe [7] directly on our biology
corpus. These embeddings had a much smaller vocabulary size and as a result also had a lot more
missing words when trying to generate the analogies. We trained this new word vector model from
scratch using the GloVe script (https://github.com/stanfordnlp/GloVe). We also tried using GloVe
vectors pretrained on the wikipedia corpus.

ELMo Pretrained

Afterwards, we experimented on a pretrained ELMO module [8]. We extracted the character-
based word representations outputted from the module. The pretrained module is based on deep
contextualized vectors paper which introduces a general approach for learning high-quality deep
contextualized vectors [9].

FastText

Our final model based on unigram the dataset was experimenting on pretrained FastText as well as
the biology corpus trained FastText vectors. We trained on the same biology corpus and evaluated in
similar ways to the other embeddings.

3.2 N-gram dataset

3.2.1 Vanilla Seq2seq Model

We also implemented a simple sequence to sequence model that would learn the analogy d, directly.
The vanilla seq2seq model is a simple Bidirectional LSTM Encoder, Unidirectional LSTM Decoder
and multiplicative attention. Since we wanted to implement the simplest seq2seq model we thought it
was best to concatenate A, B and C, as [A;B;C] with separation tokens ’<SEP>’ in between each of
them. Then this single concatenated string was fed into the model as the input. For the output we
expected the model to output a word or phrase that represented d.

The model was as follows:

1. The encoder was a bidirectional LSTM. While the decoder was a single LSTM cell.

2. In the decoding process we took a multiplicative attention with respect to each word in the
concatenated ABC sequence.

3. We thought it was best to treat the problem as a multi-class classification problem- so we
simply took the cross entropy loss between the predicted d and the ground truth d.

In our first experiment with this model we trained word embeddings from scratch. Then we also
trained the model with a set of GloV e vectors we trained from our biology text book data.
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3.2.2 Seq2seq Model and Char-based CNN

In this model we attempted to strengthen our word embedding layer by concatenating the pre-trained
word embedding with Char-based CNN word embedding. We also added a char-based greedy decoder
to our decoder to handle ’UNK’ tokens in output. This greedy decoder was based off the paper
’Character-Aware Neural Language Models’.[3]

We also trained a variant of this model where we didn’t include the greedy decoder and we trained the
model against ground truth converted into our pretrained word embeddings- instead of the char-based
cnn word embeddings (like in our vanilla model).

3.2.3 Seq2seq Model, Char-based CNN, TriDaF

Our final modification on to our seq2seq model was to replace our basic multiplicative attention with
a Tridirectional Attention Flow Layer (hence: TriDaF). This attention is a generalized version of the
Bidirectional Attention Flow Layer described by Minjoon et Al. [10].

Recall that our input data to our model is three strings, A,B and C. In all our previous Seq2Seq
models, we concatenated these three into a single string that we fed into our model. However in
this model we feed each of A,B and C into three different LSTM Encoders. Then we use the hidden
encodings we derive from each of them for our attention.

Our intention with the attention was to model a2c, c2a, a2b, b2a, b2c and c2b, to produce analogy
aware representations. Between two sequence inputs, like a and c, the attention was calculated as
described by BiDaF. a2c intends to model which words in c are important for a. c2a models vice
versa. We thought this was important because ultimately our analogies were meant to model the
relationship a : b :: c : d. We hypothesized the attention weights would be suitable in helping model
these relationships.

The specific implementation is as follows:
We modelled a2c, c2a, a2b, b2a, b2c and c2b, just as BiDaF modeled q2c, c2q. Then we produced
the following analogy aware encodings of A,B and C:

A = {A; a2b; a2c;A� a2b, A� a2c} ∈ R10h

B = {B; b2a; b2a;B � b2a,B � b2c} ∈ R10h

C = {C; c2a; c2b;C � c2a,C � c2b} ∈ R10h

Analogy Aware encoding A, is the concatenation of of the original encoding of A with a2b, a2c and
the element wise multiplication of A with a2b and a2c. Analogy Aware encodings of B and C follow
this same pattern.

3.2.4 ELMo and BERT models

The ELMo model uses pretrained ELMo[8] embeddings and is embedded in both seq2seq and seq2vec
models. For the seq2seq variant, the ELMo representations are embedded in a bi-LSTM encoder and
a linear layer to produce the output analogy. For the Seq2Vec, the ELMo embeddings are embedded
in a bi-LSTM encoder and a decoder with (dot-product) attention. This model was implemented
directly using AllenAI’s NLP 1 wrapper for Pytorch with the model architecture manually constructed
using this framework.

The BERT model swapped out the embeddings with a pretrained BERT [2] embeddings from the
pretrained "bert-large-uncased" model implemented through HuggingFace’s pytorch-pretrained-BERT
library. 2

We also proceeded with similar experimentation with the pretrained BioBERT [4] embeddings.

1 https://github.com/allenai/allennlp
2https://pypi.org/project/pytorch-pretrained-bert/

4



4 Experiments

4.1 Data

We were given raw text from a the Life Biology Textbook, which totaled around 30,000 lines, with
the textbook being around 1500 pages long. The raw text file being of size around 3.5MB. To extend
our corpus, we also incorporated a number of open source biology textbooks from OpenStax, scraped
by the help of another collaborator. [11]

We also have labeled analogies that are generated by the concept graphs and glossaries of the Life
Biology Textbook that are hand-built. Analogy of different relationships are captured. This can
be formulated as word a having a certain relation with word b. The relationships we capture are:
1) taxonomic relationships, 2) possesses, 3) is-inside, 4) has-region, 5) has-part, 6)function-of, 7)
encloses, 8) element-of. The total number of unigram analogy we can capture for all the relations
amount to 2154 analogies. The total number of analogies for our n-gram dataset (including unigram)
accumulates to 77,654 analogies.

4.2 Evaluation Method

4.2.1 Unigrams

For unigrams, we establish our own evaluation metrics, which parallel the metrics typically used for
analogy tasks to evaluate vector embeddings.

Given analogy (word1, word2) → (word3, word4), we fed in word1, word2, word3 and found
the top 10 words in our vocabulary that were outputted by our analogy detection algorithm. If word4
was included in that list of 10 words, then we counted the sample as a success. Otherwise, we
counted it as a failure. From this information, our goal was to simply maximize the accuracy of our
algorithm.

Another evaluation metric we are utilizing is the average cosine similarity between the vector
representation of b+ c− a and d for our unigram analogies.

4.2.2 N-grams

For our N-gram models, we had more flexibility since we sometimes had logits and variable length
sequences. As a result, we included exact-match to the top result and proportion of examples found
in the top-n results.

Some of our examples included multiple (a,b,c) that would map to multiple d values. To try to fit this
into our evaluation, we included top-n results, so that if those multiple d phrases were in the top-n
results, than it would still be counted. This also brought up the any match accuracy metric, which
given a certain tuple (a, b, c) would be a match if any of the resulting d values in our test set matched.

We also included corpus BLEU [6] score, a way of automatically calculating the similarity between
two phrases using n-gram similarities. BLEU score is calculated by taking an array of reference
sentences and a hypothesis. The reference sentences became any of the possible d values for a given
tuple (a, b, c) and the hypothesis was our predicted phrase.

Call ri the ith reference sentence.

pn =

∑
ngram min

(
Ch(ngram), max

i=1,...,k
Cri(ngram)

)
∑

ngram Ch(ngram)

pn denotes the score for respective ngrams of size n

Cx(ngram) is the number of times the ngram occurs in sentence x.
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Brevity Penalty = exp(min(0,
n− L

n
))

where n is the length of the hypothesis and L is the length of the phrase closest in length to the
hypothesis

BLEU = Brevity Penalty ∗ exp(
N∑

n=1

wn log pn)

where wn is the respective weight for the n-gram size. For our purposes, since most of our phrases
were either 1 or 2 length, we decided to put weights [.5, .5] as our n-grams, not utilizing anything
larger than 2-grams in our BLEU score calculation.

Corpus BLEU is the micro-average of the BLEU scores for each example. This differs from the
typical macro-average, in that it sums up the numerators and divides by the total denominators.
Corpus BLEU is typically used for evaluating across a dataset so that easy to calculate smaller length
phrases are weighted less in evaluation.

4.3 Results

Unigram dataset Our initial evaluations were on the set of all the unigram analogy examples, where
each part of the analogy was only one word. This subset had a size of 2154 analogies.

Correct / Total Top 10 Accuracy Avg Cosine Sim
ELMo pretrained 507/2154 .235 .54
Wikipedia GloVe 159/1510 .105 .42
Biology GLoVe 135/1203 .112 .424

Wikipedia FastText 330/1931 .171 .548
Biology FastText 181/1990 .0909 .658

Table 1: Unigram Vector Embedding scores

Because we had missing vocabulary for a number of these embeddings, the total number of evaluated
examples varied, with ELMo able to include the entire vocabulary and the other corpus trained vectors
with varying missing vocabulary errors.

N-gram dataset

ELMo BERT BioBERT
Top 1 Acc 0.507 .277 .320
Top 2 Acc 0.789 .454 .516
Top 3 Acc 0.930 .572 .647
Top 4 Acc 0.980 .649 .722
Any Match Acc 0.580 .332 .381
Corpus BLEU 56.35 34.19 38.63

Table 2: AllenNLP ELMo and BERT embedded model performance for Seq2Vec models

ELMo trained models outperformed BERT models by a large margin. BioBERT having inferior
performance, which was pretty surprising, given that BioBERT should’ve incorporated more domain
specific knowledge in its embeddings. The BioBERT model also took a significant amount of time
longer than it took to train ELMo, suggesting that the model was more complex to train. BioBERT
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did out perform BERT on all our evaluation metrics however, which was expected.

These results were also overall better than expected, especially as we look at top-n accuracy. It
suggested that even if we could not get exact matches, the next top n-1 candidate words can be
searched to find the true label, as ELMo achieved 98% accuracy for top 4 match.

The other Seq 2 Seq models performed as follows:

Vanilla Seq2Seq Char Encoder/Decoder Char Encoder Only TriDaF ELMo
Top 1 Acc 0.502 0.277 0.439 0.477 0.502
Top 2 Acc 0.788 0.426 0.710 0.727 0.784
Top 3 Acc 0.930 0.515 0.848 0.852 0.926
Top 4 Acc 0.980 0.547 0.895 0.893 0.968
Any Match Acc 0.580 .332 .332 .381 0.579
Corpus BLEU 49.873 27.072 45.381 47.456 54.08

Table 3: Vanilla Seq2Seq, Char Encoder/Decoder, Char Encoder only, TriDaF model and ELMo
Seq2Seq performance

Suprisingly, the best of these models was the vanilla Seq2Seq. The Char Encoder/Decoder had
considerably less accuracy and BLEU scores. Even the TriDaF performed poorly with respect to
the Vanilla Seq 2 Seq. The Vanilla Seq 2 Seq accuracy scores are surprisingly comparable to that of
ELMO.

5 Analysis

We discovered that the current best-performing model based on our evaluation metric of simply
accuracy(top 1) and BLEU score is the ELMo model embedded in the Seq2Vec model. In fact, this
model takes about an hour to train to converge in about 20 epochs. This again supports the speed and
performance of general pretrained embeddings for more specific tasks.

5.1 Analysis of vector offset models

The vector offset model provides a reasonable framework and evaluation of our analogies. On unigram
dataset, ELMo embeddings based on the character CNN performs best in accuracy, outperforming
pure word embeddings, be it pretrained or trained on biology corpus. Furthermore, pretrained
FastText character embeddings, also outperforms the word embeddings’ counterparts on all metrics.
Performance of solely training on the biology corpus is generally lower than the Wikipedia pretrained
counterparts. This is probably caused by the relatively small data size from the biology corpus.
However, the superior performance of ELMo and FastText shows promise in using more complex
embeddings instead of pure word embeddings.

5.2 Analysis of Seq2Vec models

Seq2Vec models, which incorporate the pretrained embeddings, perform relatively well whether the
inputs are ELMo, BERT or BioBERT. One surprising factor is that ELMo outperforms BERT by
a huge margin, which may indicate that a reasonable convergence may not have been reached for
BERT based models due to its complexity. Despite high performance of Seq2Vec, Seq2Vec models
can suffer from OOV issues especially if the analogy that we are trying to predict is not in the corpus.

5.3 Analysis of Seq2Seq Models

Our class of Seq2Seq models proved to be quite a challenge to both design and evaluate. Our primary
metric to evaluate them was the corpus BLEU score, where as above, we only weighted the one and
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(a) Training loss curve (b) Accuracy curve

Figure 2: Loss and Accuracy of ELMo for Seq2Vec

two grams. We also report ’Exact Match’ between the ground truth and the d outputs, with respect to
the top 4 outputs of our model.

Our Vanilla Se2Seq model performed really well and outperformed our approach with the Char-CNN
based Encoder and Decoder. The difference is in performance was in the order of thousands more
examples correctly outputted. We think this is because our Char-CNN based approaches had to train
the Char-CNN from scratch, during training. While the concatenation of our pre-trained vector and
the char embedding did provide prior meanings about the input words, it was not adequate.

It was also surprising that our vanilla Seq2Seq also fared better than our TriDaF Model. We think
this was because TriDaf had more weights to train and we did not have sufficient training data.
The relationships between each of A,B and C which was modeled by the attention must have also
either not helped or been weak relationships. Since the maximum length of each of A,B and C’s
components was around 5 words, a complicated attention did more harm than good. Empirically our
simple multiplicative attention in our Vanilla mode fares far better. In fact, the vanilla Seq2Seq also
outperforms the ELMo counterpart in a couple of our evaluation metrics.

The results of the Char Encoder Only model shows that training with pre-trained biology corpus
vectors as opposed to a char CNN based word embedding performs better in this model.

6 Conclusion

There were some surprising results with less powerful deep learning models performing better than
more complex architecture. However, overall, deep learning models, especially ones including ELMo
embeddings, show powerful performance compared to regular word embeddings. To extend upon
the analogy performance for improving the models themselves, one future potential direction is to
research the interpretability of these models to provide an explanation to the output. Interpretability
of neural networks has been a recent research interest in the NLP world, so it would be interesting to
apply some of those methods to our context. Including the rationale for the output of the analogies
will not only enhances the theoretical understanding of the underlying model but also increases
students’ understanding of how different concepts represented by these phrases are linked from the
analogies generated.

Future work for this project would include incorporating more pipeline related functionality to our
project. Given that our model can learn a good model to solve analogies given previous data, we’d
like to extend this use case to be able to generalize to creating analogies from a textbook. Some kind
of RNN related network could be utilized to generate analogies from the weights we have learned and
the embeddings we used. To generalize to textbooks, it would also be interesting to allow for these
weights to be learned through a corpus. This way, we can generalize to other subjects or possibly
more specialized subjects.
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