
ANALYSIS I

1 The real number system

1.1 What are the reals?

What are the real numbers? For the moment this is too hard a question!
We can give various answers, but for the moment we prefer just to agree a set of axioms—
statements we will assume are true about real numbers. We will base all our arguments on
these axioms and on nothing else, and develop all the mathematics we’ve learned before from
these axioms alone.

1.2 Axioms

Naively, then we assume we’ve got a set R which we call the real numbers which satisfies the
axioms we’re going to list.

1.3 Addition

(i) For every ordered pair of real numbers a, b we can associate a third one written a + b
called their sum

(ii) To every real number a we can associate an other one written −a called its negative

(iii) There is a special real number 0 called zero

such that

a + b = b + a (A1)
a + (b + c) = (a + b) + c (A2)

a + 0 = a (A3)
a + (−a) = 0 (A4)

1.4 Easy properties of A1—A4

1.4.1. If a + x = 0 and a + y = 0 then x = y

Proof.
y = y + 0 (A3)

= y + (a + x) Assumption
= (y + a) + x (A2)
= (a + y) + x (A1)
= 0 + x Assumption
= x + 0 (A1)
= x (A3)

1.4.2. −(−a) = a
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Proof.
(−a) + a = a + (−a) (A1)

= 0 (A4)
(−a) + (−(−a)) = 0 (A4)

a = (−(−a)) by (1.4.1)

1.4.3. −(a + b) = (−a) + (−b)

Proof.
(a + b) + ((−a) + (−b)) = ((a + b) + (−a)) + (−b) (A2)

= ((b + a) + (−a)) + (−b) (A1)
= (b + (a + (−a))) + (−b) (A2)
= (b + 0) + (−b) (A4)
= b + (−b) (A3)
= 0 (A4)

Also (a + b) + (−(a + b)) = 0 by (A4). So by (1.4.1)

−(a + b) = (−a) + (−b).

1.4.4. −0 = 0

Proof.
0 + 0 = 0 (A3)

0 + (−0) = 0 (A4)

therefore 0 = −0 by (1.4.1).

1.5 Multiplication

(i) To every ordered pairs of real numbers a, b we can associate a third one written a · b
called their product

(ii) To every real number except 0 we can associate an other one written 1/a called its
reciprocal

(iii) There is a special real number 1

such that

a · b = b · a (M1)
a · (b · c) = (a · b) · c (M2)

a · 1 = a (M3)

a · 1
a

= 1 if a 6= 0 (M4)
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1.6 Easy Consequences of M1—M4

1.6.1. If a 6= 0 and a · x/a · y then x = y.

1.6.2. If a 6= 0 then 1/(1/a)) = a.

1.6.3. If a 6= 0 and b 6= 0 then

Note that as M1—M4 say the same things about · as A1—A4 say about + we can just
translate the proofs.

1.7 The Distributive Law

For all a, b, c numbers
a · (b + c) = a · b + a · c (D)

1.8 More Consequences

1.8.1. (a + b) · c = a · c + b · c

Proof.
(a + b) · c = c · (a + b) (M1)

= c · a + c · b (D)
= a · c + b · c (M1)2

1.8.2. a · 0 = 0

Proof.

a
(M3)
= a · 1 (A3)

= a · (1 + 0)
(D)
= a · 1 + a · 0 (M3)

= a + (a · 0)

Therefore a = (a · 0) + a. Now

a + (−a) = ((a · 0) + a) + (−a)

and so 0 = a by an earlier result.

1.8.3. a · (−b) = −(a · b)

Proof.
(a · b) + (a · (−b)) = a · (b + (−b)) (D)

= a · 0 (A4)
= 0

(a · b) + (−(a · b)) = 0

So by (1.4.1)
a · (−b) = −(a · b).

1.8.4. (−1) · (−1) = 1

Proof.
(−1) · (−1) = (−(−1)·)1))

= (−(−1)) (M3)
= 1 by (1.4.1)
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1.9 Avoiding Collapse

If 1 = 0 we would have
x = x · 1 = x · 0 = 0 for all x

We must assume
0 6= 1 (Z)

Note. This is the only “safe” contradiction in mathematics.

1.10 Notation

We write
ab for a · b

a− b for a + (−b)
a/b for a · (1/b)
a−1 for 1/a

Also we write
a0 = 1

ak+1 = ak · a for all k ∈ N
a−l = 1/al for all l ∈ N

1.11 Other systems

Note. Other systems also satisfy (A1)-(A4), (M1)-(M4),(D), (Z). They are called fields.

Example. Q, R, C, but more exciting ones exist.

Secret. All that you do in Linear Algebra uses only these axioms.
Fact. All the arithmetic properties of R can be easily deduced from those we have done. We
cease to labour this point.
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2 Putting order on R

2.1 The number ‘line’

We want to capture the idea that the real numbers are ‘ordered’ in an axiom. It is easier
just to give axioms for being positive.
There is a subset P of R called the positive real numbers satisfying:

a, b ∈ P −→ a + b ∈ P (P1)
a, b ∈ P −→ ab ∈ P (P2)

Exactly one of a ∈ P, a = 0, −a ∈ P (P3)

2.2 Easy consequences

2.2.1. 1 ∈ P

Proof. By (P3) one of one of

1 ∈ P ⇒ n ∈ P
1 = 0 contradicts to (Z)

−1 ∈ P ? Well, let’s see . . .

If so, by (P1), (−1)(−1) ∈ P. By (1.8.4), 1 ∈ P. Now 1 ∈ P and (−1) ∈ P which contradicts
to (P3).

2.2.2. For all x, (x + 1)− x ∈ P.

Proof. By the arithmetic axioms, LHS = 1.

2.3 Notation

We write

a > b for a− b ∈ P
a < b for b− a ∈ P
a > b for a− b ∈ P or a− b = 0
a 6 b for b− a ∈ P or b− a = 0

2.4 Easy consequences

For all x, y, z

2.4.1. x 6 x

2.4.2. x 6 y and y 6 x =⇒ x = y

2.4.3. x 6 y and y 6 z =⇒ x 6 z

Proof.

(2.4.1) By (A4) x− x = 0 so x 6 x
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(2.4.2) Given

x− y ∈ P or x− y = 0
y − x ∈ P or y − x = 0

Note, −(x− y) = −x +−− y = −x + y = y − x.

So by (P3) not x− y ∈ P and y − x ∈ P. So either x− y = 0 or y − x = 0 so x = y.

(2.4.3) Given

y − x ∈ P or y − x = 0
z − y ∈ P or z − y = 0

Cases

y − x ∈ P and z − y ∈ P =⇒ (y − x) + (z − y) ∈ P by (P1), i.e. z − x ∈ P
√√

y − x ∈ P and z − y = 0 =⇒ (y − x) + (z − y) = (y − x) ∈ P
√√

y − x = 0 and z − y ∈ P =⇒ (y − x) + (z − y) = (z − y) ∈ P
√√

y − x = 0 and z − y = 0 =⇒ (y − x) + (z − y) = 0 + 0 = 0
√√

2.5 Inequalities shift

2.5.1. x > y =⇒ x + z > y + z

Proof. (x + z)− (y + z) = x− y.

2.6 Two important functions: max, min

Define max : R× R → R by

max(x, y) =
{

x if x > y
y if y > x

By trichotomy =⇒ well defined function.
And then min by

min(x, y) =
{

y if x > y
x if y > x

Note. We can extend it to a function of many variables:

max(a1, a2, . . . , an+1) = max(max(a1, . . . , an), an+1)

but we will let you do that yourself.

Exercise. max(x, y) = −min(−x,−y), because

max(x, y) −min(−x,−y)
x > y x −x < −y −− x = x
x = y x x = y
x < y y −y < −x
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2.7 An important function—Modulus

We define | | : R → R by

|x| =


x if x > 0
0 if x = 0
−x if x < 0

These cases are distinct and cover all possibilities by (P3), so we get a well-defined function.

2.8 An easy consequence

2.8.1. | − x| = |x|

Proof.

• If x > 0 then x 6= 0 so −x 6= 0. By (P3) then (−x) < 0. So | − x| = −(−x) = x = |x|.

• If x = 0 then −x = −0 = 0 (1.4.4). So | − x| = 0 = |x|.

• If x < 0 then −x > 0. So | − x| = −x = |x|.

2.9 The Triangle Law (∆ )

For all a, b
|a + b| 6 |a|+ |b|

Proof. There are possible 8 cases

a b a + b

(A) > 0 > 0 > 0
> 0 > 0 < 0 Forbidden by (P1)

(B) > 0 < 0 > 0
(C) > 0 < 0 < 0
(B′) < 0 > 0 > 0
(C ′) < 0 > 0 < 0

< 0 < 0 > 0 Forbidden by (P1)
(D) < 0 < 0 < 0

(A) |a| = a, |b| = b, |a + b| = a + b

(D) |a| = −a, |b| = −b, |a + b| = −(a + b)

(B) |a| = a, |b| = −b, |a + b| = a + b

Is (a− b) > (a + b)? ie Is (−b) + (−b) > 0? Yes, as (−b) ∈ P by (P1).

(C) |a| = a, |b| = −b, |a + b| = −(a + b)

Is −(a + b) 6 a− b? I.e. is 0 6 a + a? Yes, a ∈ P by (P1).

(B’) , (C’) got by swapping a and b
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2.10 The modulus of a product

|ab| = |a||b|

Proof. For you to do; see Exercise Sheets.

2.11 Arguing with Inequalities

The rules we use in practice are

• 2.4.1, 2.4.2, 2.4.3;

• |ab| = |a||b|;

• the ∆ Law.
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