THE SUPREMUM AXIOM FOR THE REAL NUMBERS
Definitions. A nonempty subset A C R is bounded above if:
(IM e R)(Vz € A)(x < M).

Any such M is an upper bound for A. A real number L is a least upper
bound for A (or a supremum for A) if: L is an upper bound for A and
(VM € R)(M is an upper bound for A — L < M). Notation: L = sup(A).

Similar definitions apply to subsets of R which are bounded from below:
any real number M with the property (Vo € A)(z > M) is a lower bound
for A and a real number L which is a lower bound for A and, in addition,
satisfies: (VM € R)(M is a lower bound for A — L > M) is a greatest lower
bound for A, or an infimum for A. Notation: L = inf(A).

SUPREMUM AXIOM: Any nonempty subset A C R which is bounded
above has a supremum L € R.

It is not hard to see that the supremum of A is unique. sup(A) is not
necessarily an element of A; when it is, we say it is the mazimum of A.

It follows from the supremum axiom that any nonempty subset A C R
which is bounded from below has an infimum. The infimum of a set is also
unique, and inf(A) may fail to be an element of A. When it is in A, we say
it is the minimum of A.

Remark: AXIOMS FOR THE REAL NUMBERS. There are three groups

of axioms:

1) Algebraic axioms: (R,+,-,0,1) is a field. This means:

la) (R,+,0): addition (+) is an associative, commutative operation with
neutral element 0; any = € R has a unique additive inverse —z (meaning
z+ (—z) =0).

1b) (R,-,1): multiplication (-) is an associative, commutative operation,
with neutral element 1. Any « € R, x # 0 has a unique multiplicative inverse
7! (meaning z -z~ = 1).

1c) multiplication distributes over addition: z - (y +2) =z -y+x - 2.

1d) Nontriviality: 1 # 0.

2) Order azioms. There exists a subset R, C R with the following proper-
ties:
2a) defining z < y <» y — x € R establishes a total order relation in R.



2b) x <yand z <w—zx+2<y+w.
2)z<yand z>0—z-2<y-z

3) The supremum axiom.

Note that the set of rational numbers QQ also satisfies the algebraic and
order axioms. What distinguishes R from Q is the fact that Q does not
satisfy the supremum axiom. That is, a non-empty subset of Q which is
bounded above may fail to have a supremum in Q.

Ezample. Let A = {z € Q|2? < 2}. Clearly A is nonempty and bounded
above (say, 2 is an upper bound, since z > 2 — 12 > 4 — x # A). However,
we’ll see shortly that if L = sup(A) exists (and, regarding A as a subset of
R, it does) we must have L? = 2, and hence L can’t be an element of Q.

Theorem (Characterization of the supremum). Let A C R be nonempty
and bounded above. Then L = sup(A) if and only if L is an upper bound
for A and:

(Ve >0)(Fac A)(L—e<a< ).

Analogously, if A C R is nonempty and bounded below, L = inf(A) if, and
only if, L is a lower bound for A and:

(Ve >0)(Fae€ A)(L—€e>a>L).
This isn’t hard to prove.

Ezample/Theorem. Let A = {z € Rlz > 0 and 2> < 2}. Then L =
sup(A) satisfies L? = 2. (Note that A is nonempty and bounded above, and
that clearly L > 0; thus this theorem establishes the existence of the positive
square root of 2, as a real number.)

Proof. By contradiction. If L? # 2, either L? < 2 or L? > 2. Assume
first L? < 2. Let:
1 2-17
€= mln{§, m}
Note 0 < € < 1,50 € <e€. Let a =L + € > L. Note:
> =L*+2Le+E <L+ 2L+ 1)e <L+ (2- L% =2.

So a? < 2. This means a € A, and yet a > L, contradicting the fact L is an
upper bound for A.

Now suppose L? > 2. Thenx:L—% < L, and:
L2_22
x2:L2—(L2—2)+!>2.
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Let a € A be arbitrary. Since a > 0, a®> < 2 and z? > 2, it follows that
a®? < 22, s0 a < . This shows z is an upper bound for A. Since z < L, this
contradicts the fact that L is the least upper bound for A. Thus we must
have L? = 2, ending the proof.

Functions. If ACR, f: A— Ris a function and E C A, E # (), the
following are standard definitions:

If f(E) C Ris bounded above: supy f = sup f(F); maxg f = max f(F).

If f(E) C R is bounded below: infg f = inf f(E); ming f = min f(E).

PROBLEMS.

1. Find the supremum and the infimum of the following sets (when they
exist.)

(a) A= {xER\O<x—3:U—5<1}

(b) A={z € R|En eN)(z = — (-1)")}.

(@©A={1+5Vnen).

2n

2. Let A, B be nonempty subsets of R, both bounded above.

(a) Prove that if A C B, then sup(A) < sup(B).

(b) Prove that if AN B # (), then sup(4 N B) < min{sup(A),sup(B)}.

(c) Give an example where the inequality in (b) is strict: sup(AN B) <
min{sup(A),sup(B)}

(d) Prove that sup(A U B) = max{sup(A),sup(B)}.

Remark: analogous results apply to the infimum.

3. Let ACR,A#0. Let f,g: A—R.

(a) Show that if f(A), g(A) are bounded above, sup(f+g¢)(A) < sup f(A)+
sup g(A).

(b) Show that if f(A), g(A) are bounded below, inf(f+g)(A) > inf f(A)+
inf g(A).

4. For each of the following functions f and sets A, find sup, f and
inf4 f (if they exist), and indicate if they are also a maximum (resp. a
minimum.)

(a) f(z) =52, A=[-1,1]\ {0}
(b) flz) = 55 A= (—1,1)

(C) f(]]) 2+§inx’ =R

(d) f(x) = 7, A=N.

(e) f(z) = ii;,A {zr e Rz >0}



