
THE SUPREMUM AXIOM FOR THE REAL NUMBERS

Definitions. A nonempty subset A ⊂ R is bounded above if:

(∃M ∈ R)(∀x ∈ A)(x ≤M).

Any such M is an upper bound for A. A real number L is a least upper
bound for A (or a supremum for A) if: L is an upper bound for A and
(∀M ∈ R)(M is an upper bound for A→ L ≤M). Notation: L = sup(A).

Similar definitions apply to subsets of R which are bounded from below:
any real number M with the property (∀x ∈ A)(x ≥ M) is a lower bound
for A and a real number L which is a lower bound for A and, in addition,
satisfies: (∀M ∈ R)(M is a lower bound for A→ L ≥M) is a greatest lower
bound for A, or an infimum for A. Notation: L = inf(A).

SUPREMUM AXIOM: Any nonempty subset A ⊂ R which is bounded
above has a supremum L ∈ R.

It is not hard to see that the supremum of A is unique. sup(A) is not
necessarily an element of A; when it is, we say it is the maximum of A.

It follows from the supremum axiom that any nonempty subset A ⊂ R
which is bounded from below has an infimum. The infimum of a set is also
unique, and inf(A) may fail to be an element of A. When it is in A, we say
it is the minimum of A.

Remark: AXIOMS FOR THE REAL NUMBERS. There are three groups
of axioms:

1) Algebraic axioms: (R,+, ·, 0, 1) is a field. This means:
1a) (R,+, 0): addition (+) is an associative, commutative operation with

neutral element 0; any x ∈ R has a unique additive inverse −x (meaning
x+ (−x) = 0).

1b) (R, ·, 1): multiplication (·) is an associative, commutative operation,
with neutral element 1. Any x ∈ R, x 6= 0 has a unique multiplicative inverse
x−1 (meaning x · x−1 = 1).

1c) multiplication distributes over addition: x · (y + z) = x · y + x · z.
1d) Nontriviality: 1 6= 0.

2) Order axioms. There exists a subset R+ ⊂ R with the following proper-
ties:

2a) defining x ≤ y ↔ y − x ∈ R+ establishes a total order relation in R.
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2b) x ≤ y and z ≤ w → x+ z ≤ y + w.
2c) x ≤ y and z ≥ 0→ x · z ≤ y · z.

3) The supremum axiom.

Note that the set of rational numbers Q also satisfies the algebraic and
order axioms. What distinguishes R from Q is the fact that Q does not
satisfy the supremum axiom. That is, a non-empty subset of Q which is
bounded above may fail to have a supremum in Q.

Example. Let A = {x ∈ Q|x2 < 2}. Clearly A is nonempty and bounded
above (say, 2 is an upper bound, since x > 2→ x2 > 4→ x 6= A). However,
we’ll see shortly that if L = sup(A) exists (and, regarding A as a subset of
R, it does) we must have L2 = 2, and hence L can’t be an element of Q.

Theorem (Characterization of the supremum). Let A ⊂ R be nonempty
and bounded above. Then L = sup(A) if and only if L is an upper bound
for A and:

(∀ε > 0)(∃a ∈ A)(L− ε < a ≤ L).

Analogously, if A ⊂ R is nonempty and bounded below, L = inf(A) if, and
only if, L is a lower bound for A and:

(∀ε > 0)(∃a ∈ A)(L− ε > a ≥ L).

This isn’t hard to prove.

Example/Theorem. Let A = {x ∈ R|x > 0 and x2 < 2}. Then L =
sup(A) satisfies L2 = 2. (Note that A is nonempty and bounded above, and
that clearly L > 0; thus this theorem establishes the existence of the positive
square root of 2, as a real number.)

Proof. By contradiction. If L2 6= 2, either L2 < 2 or L2 > 2. Assume
first L2 < 2. Let:

ε = min{1

2
,

2− L2

2L+ 1
}.

Note 0 < ε < 1, so ε2 < ε. Let a = L+ ε > L. Note:

a2 = L2 + 2Lε+ ε2 < L2 + (2L+ 1)ε ≤ L2 + (2− L2) = 2.

So a2 < 2. This means a ∈ A, and yet a > L, contradicting the fact L is an
upper bound for A.

Now suppose L2 > 2. Then x = L− L2−2
2L < L, and:

x2 = L2 − (L2 − 2) +
(L2 − 2)2

4L2
> 2.
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Let a ∈ A be arbitrary. Since a > 0, a2 < 2 and x2 > 2, it follows that
a2 < x2, so a < x. This shows x is an upper bound for A. Since x < L, this
contradicts the fact that L is the least upper bound for A. Thus we must
have L2 = 2, ending the proof.

Functions. If A ⊂ R, f : A → R is a function and E ⊂ A,E 6= ∅, the
following are standard definitions:

If f(E) ⊂ R is bounded above: supE f = sup f(E); maxE f = max f(E).
If f(E) ⊂ R is bounded below: infE f = inf f(E); minE f = min f(E).

PROBLEMS.

1. Find the supremum and the infimum of the following sets (when they
exist.)

(a) A = {x ∈ R|0 < x2 − 3x− 5 < 1}.
(b) A = {x ∈ R|(∃n ∈ N)(x = 1

n − (−1)n)}.
(c)A = {1 + (−1)n

2n ;n ∈ N}.

2. Let A,B be nonempty subsets of R, both bounded above.
(a) Prove that if A ⊂ B, then sup(A) ≤ sup(B).
(b) Prove that if A ∩B 6= ∅, then sup(A ∩B) ≤ min{sup(A), sup(B)}.
(c) Give an example where the inequality in (b) is strict: sup(A ∩B) <

min{sup(A), sup(B)}
(d) Prove that sup(A ∪B) = max{sup(A), sup(B)}.
Remark: analogous results apply to the infimum.

3. Let A ⊂ R, A 6= ∅. Let f, g : A→ R.
(a) Show that if f(A), g(A) are bounded above, sup(f+g)(A) ≤ sup f(A)+

sup g(A).
(b) Show that if f(A), g(A) are bounded below, inf(f+g)(A) ≥ inf f(A)+

inf g(A).

4. For each of the following functions f and sets A, find supA f and
infA f (if they exist), and indicate if they are also a maximum (resp. a
minimum.)

(a) f(x) = 1+x2
x2 , A = [−1, 1] \ {0}.

(b) f(x) = x
2+x2 , A = (−1, 1).

(c) f(x) = 2
2+sinx , A = R.

(d) f(x) = x
1+x , A = N.

(e) f(x) = x+1
x+2 ;A = {x ∈ R;x ≥ 0}
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