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The functional matrix hypothesisrevisited. 4. The 
epigenetic antithesis and the resolving synthesis 

Melvin L. Moss, DDS, PhD 
New York, N. Y 

In two interrelated articles, the current revision of the functional matrix hypothesis extends to a 
reconsideration of the relative roles of genomic and of epigenetic processes and mechanisms in the 
regulation (control, causation) of craniofacial growth and development. The dialectical method was 
chosen to analyze this matter, because it explicitly provides for the fuller presentation of a genomic 
thesis, an epigenetic antithesis, and a resolving synthesis. The later two are presented here, where 
the synthesis suggests that both genomic and epigenetic factors are necessary causes, that neither 
alone is also a sufficient cause, and that only the two, interacting together, furnish both the 
necessary and sufficient cause(s) of ontogenesis. This article also provides a comprehensive 
bibliography that introduces the several new, and still evolving, disciplines that may provide 
alternative viewpoints capable of resolving this continuing controversy; repetition of the present 
theoretical bases for the arguments on both sides of these questions seems nonproductive, in their 
place, it is suggested that the group of disciplines, broadly termed Complexity, would most likely 
amply repay deeper consideration and application in the study of ontogenesis. (Am J Orthod 
Dentofac Orthop 1997; 112:410-7.) 

gg.l.tl is a fallacy that the genome, the 
totality of DNA molecules, is the main repository 
for developmental information; i.e. that there exists 
a genetic program, or blueprint, theoretically capa- 
ble of creating an entire organism. ''98 

Biological Mechanisms and Processes Defined 

This article continues the dialectical analysis of 
the roles of genomic and epigenetic processes and 
mechanisms in the control of craniofacial growth 
and development. Previously a genomic thesis was 
outlined and several critical terms were defined. 99 
The dialectic process concludes here with an epige- 
netic antithesis and a resolving synthesis, following 
two additional definitions: (1) A process is a series 
of actions or operations that lead toward a particu- 
lar result. (2) A mechanism is the fundamental 
physical or chemical process(es) involved in, or 
responsible for, an action, reaction, or other natural 
phenomenon. ~°° That is, mechanisms underlie pro- 
cesses. For example, loading a femur is an epige- 
netic process: the possible resultant modification(s) 
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of bone cell DNA (for example by methyl- 
ationml,l°2), or of chondrocytic DNA (for example 
as reflected in differential regulation of biosyn- 
theticic pathways~°3), are epigenetic mechanisms. 
Similarly, the specific steps of the activation and 
deactivation of appropriate portions of the bone cell 
genome, associated with the trio of possible osteo- 
blastic responses to loading (deposition, resorption, 
or maintenance of bone tissue) are further examples 
of epigenetic mechanisms that control the genome. 
In this sense, the original versions of the functional 
matrix hypothesis (FMH) described only epigenetic 
processes, 4-8 whereas recent revisions also described 
epigenetic mechanisms. 9,1° The fundamental cor- 
rectness of earlier FMH descriptions is supported by 
more recent research. 1°4,1°5 

The Epigenetic Antithesis 

Some of the principal strengths of this antithesis 
come from precise definitions of what a gene is and 
is not. For example: (a) "gene. The unit of heredity: 
one or more nucleic acid sequences incorporating 
information necessary for the generation of a par- 
ticular peptide or RNA product"l°6; and, (b) 
"enough is known about the genetic machin- 
e r y . . .  [to know]. . ,  that this is virtually the only 
kind of information which polynuceotide molecules 
are inherently capable of containing: nothing there 
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at all about which proteins will be expressed in 
which cells at what time and in what quantities. ''98 

The genomic thesis is denied because it is both 
reductionist and molecular; that is, descriptions of 
the causation (control, regulation) of all hierarchi- 
cally higher and structurally more complex morpho- 
genetic processes are reduced to explanations of 
mechanisms at the molecular (DNA) level. For 
example, the genomic thesis of craniofacial ontogen- 
esis passes directly from molecules to morphogene- 
sis: directly from DNA molecules to adult gross 
morphology, ignoring the role(s) of the many epige- 
netic processes and mechanisms competent to con- 
trol (regulate, cause) the large number of interven- 
ing, and increasingly more structurally complex, 
developmental stages 13,18 particularly, and there are 
additional similarly reductionist views of odontogen- 
esis. 17,22,60,107,108 

The epigenetic antithesis, detailing both pro- 
cesses and mechanisms, is integrative, a°9 seeking to 
clarify the causal chain between genome and phe- 
notype. Its goal is to identify and describe compre- 
hensively the series of initiating biological processes 
and their related underlying (biochemical, biophys- 
ical) responsive mechanisms that are effective at 
each hierarchical level of increasing structural and 
operational complexity. 11° 

This article reviews some of the clinically signif- 
icant epigenetic processes and mechanisms, existing 
at several organizational (structural, functional) lev- 
els, that regulate (direct, control, cause) cephalic 
and craniofacial (musculo-) skeletal morphogenesis. 

Craniofacial Epigenetics 

"Broadly speaking, epigenetics refers to the entire 
series of interactions among cells and cell products 
which leads to morphogenesis and differentiation. 
Thus all cranial development is epigenetic, by defini- 
tion." This view is supported here, 15,19,2°,an despite 
continued expressions of genomic regulation of cranio- 
facial morphogenesisJ 3a4 

As previously noted, 99 epigenetic factors include 
(1) all of the extrinsic, extraorganismal, macroenvi- 
ronmental factors impinging on vital structures (for 
example, food, light, temperature), including me- 
chanical loadings and electromagnetic fields, and (2) 
all of the intrinsic, intraorganismal, biophysical, 
biomechanical, biochemical, and bioelectric micro- 
environmental events occuring on, in, and between 
individual cells, extracellular materials, and cells and 
extracellular substances. 

In terms of clinical orthodontics, and of the 
FMH, all therapy is applied epigenetics, and all 

appliances (and most other therapies) act as pros- 
thetic functional matrices. Clinical therapeutics in- 
cludes a number of epigenetic processes, whose 
prior operations evoke a number of corresponding 
epigenetic mechanisms. These latter, in turn, under- 
lie the observed processes of tissue adaptations by 
both skeletal units and functional matrices. 

Epigenetic Processes and Mechanisms 

In craniofacial morphogenesis, more is known 
presently about processes than about mechanisms. 
Despite this, it is no longer sufficient to note, for 
example, that otherwise undescribed epigenetic pro- 
cesses of "intrauterine environment" can regulate 
fetal mandibular growth, n2 The future aim must be 
to elucidate the molecular, genomic, mechanisms 1°1 
whose activation underlies the adaptive growth pro- 
cesses of the mandibular functional cranial compo- 
nents (that is, of the mandibular skeletal units and 
their related functional matrices). 

Loading 

Many different epigenetic processes can evoke 
mechanisms capable of modifying DNA. 113q16 At 
clinically significant structural levels, physical load- 
ing is unquestionably of the greatest importance. 
"Among the numerous epigenetic factors influenc- 
ing the vertebrate face is mechanical loading. ''18 It 
is useful to consider the epigenetic process of load- 
ing and some of the epigenetic mechanisms this 
process evokes. 

Loading per se. Loads may be imposed at many 
structural levels. While clinical observations usually 
are macroscopic, the loadings act microscopically, at 
molecular and/or cellular levels, n7 Loadings are 
able to regulate several alternative molecular (cel- 
lular) synthetic pathways (mechanisms) of many 
tissues, including bonea18; for example, the mechan- 
ical environment is important in maintaining the 
differentiated phenotype of bone cells. 1°2 It should 
be noted that loading may be dynamic (for example, 
muscle contraction) or static (that is, gravity); and to 
be effective, loads may increase, decrease, or remain 
constant. 

Mechanical loading is known to influence gene 
expression? 19'12° Of clinical (and FMH) interest, 
extrinsic musculoskeletal loading can rapidly change 
(1) both articular cartilage intercellular molecular 
syntheses 1= and mineralization122; and (2) osteo- 
blastic (skeletal unit) gene expression. 123,124 Epige- 
netic loading processes include gravitational varia- 
tions that evoke unique mechanisms of molecular 
synthesisJ 25 
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Extracellular matrix deformation. Musculoskele- 
tal tissue loading inevitably deforms an extracellular 
matrix (ECM) that is not developmentally inert. 
Rather, in several ways, ECM regulates the forma- 
tion, development, and maintenance of its included 
cells that synthesize the ECM. 126"129 Further, ECM 
can regulate multicellular tissue morphogenesis 13° 
and contribute to genomic regulation of its enclosed 
cells. 13~ 

Cell-shape changes. Tissue loading can also alter 
cell shape. This inevitably deforms intracellular con- 
stitutents, in cluding the cytoskeleton, a32-134 The 
epigenetic process of changing cell shape invokes 
the epigenetic mechanisms of mechanotransduction 
of biophysical forces into genomic and morphoge- 
netically regulatory signals. ~35-138 

Cell-shape change processes can also activate sev- 
eral other epigenetic mechanisms, for example, 
stretch-activated ion channels in cartilage and other 
mechanically initiated cell-signaling mechanisms. 139-142 
There is recent orthodontic interest in the cell-shape 
change of nonskeletal cells) 43 

Cell-shape change may lead to nuclear shape 
deformation. This, in turn, is a mechanism that can 
directly cause (regulate) a consequent alteration of 
the mechanisms of genomic activity) 4° 

Epigenetic cell signalling processes. Several load- 
ing processes can regulate genomic expression. One, 
previously described, begins with cellular mechano- 
reception and mechanotransduction of the loading 
stimulus into an intercellular signal that undergoes 
parallel processing within a connected cellular net- 
work of bone cells. 9,1° The details of cell-signalling 
are reviewed extensively elsewhere. 144 

Chains of intracellular molecular levers. A second 
epigenetic cellular process begins with deformation 
of the ECM. This matrix has an epigenetic regula- 
tory role in morphogenesis, by virtue of integrin 
molecules that physically interconnect the several 
molecular components of the intracellular (cytoskel- 
etal) and the extracellular environment (for carti- 
lage). 145'127"128"146-148 While the form (size and shape) 
of the cytoskeleton may be physically controlled by a 
broad spectrum of loadings, 133,149 it responds iden- 
tically to all. aS° 

The epigenetic mechanism evoked consists of a 
physical array of intracellular macromolecular 
chains, acting as levers, extending from the cell 
membrane to multiple specific sites on each chro- 
mosome. 146 The molecular chain acts as an informa- 
tion transfer system between the extracellular envi- 
ronment and the genome, transmitting signals 
generated by deformations of the ECM directly to 

the intranuclear genome. 9,z° Indeed, such informa- 
tional transfer between cells and ECM is dynamic, 
reciprocal, and continuous) 5~ 

Other processes and mechanisms. (1) DNA 
methylation is a potent epigenetic event. It is in- 
volved in many intracellular, extracellular, and in- 
tercellular mechanisms? °1 It can "introduce novel 
features of cellular function far removed from the 
classical Mendelian view of the gene, chromosome, 
and inheritance.. ,  with information flowing back to 
the DNA level and changing gene expression, ''~2,~53 
the genome now being considered as a sophisticated 
response system and a carrier of information, 154 a 
system activated by several epigenetic processes and 
mechanisms? 55 (2) There are numerous examples of 
yet other processes and mechanisms of epigenetic 
regulation of the genome.  113'115'156-159 (3) In addi- 
tion, it has been shown that (botanical) epigenetic 
factors can impose metastable inheritable changes 
in the plant genom@ 6°-163 a nontrivial matter not 
considered further here. 

Epigenetic Regulation of Higher Structural Levels 

In addition to the molecular and cellular pro- 
cesses and mechanisms noted, over a century ago 
the discipline of developmental mechanics (entwick- 
lingsmechanik) 85,86 established that the epigenetic 
process of extrinsic loadings play a major role in the 
regulation of bone tissue and bone organ growth, 
development, and morphology. 118,164-167 

At the tissue level, there are several causal, 
strain-specific differences in bone tissue microstruc- 
ture. 168171 Closely similar epigenetic mechanisms 
and processes are observed in the adaptational 
responses of all connective tissues, including carti- 
lage, to loading.  164,165,172-175 

At the organ level, the ability of the processes of 
motion and of articular function to regulate joint 
morphology is well-known176-17~; and, of course, 
physical activity processes regulate oganismal skel- 
etal adapational responses. 179 Other epigenetic pro- 
cesses affecting bone tissue include local vascular 
factors.18° 

Regulation of functional matrices. Periosteal 
functional matrices are under closely similar epige- 
netic control. Mechanical loads regulate skeletal 
muscle (periosteal functional matrix) phenotype18~; 
and chronic muscle stimulation can change its phe- 
notype) 82-184 Numermous studies establish the neu- 
rotrophic role of neural innervation in muscle ge- 
nome regulation, aa5188 It remains only to note the 
truism that, for muscle as for bone, mechanical 
epigenetic factors, broadly termed function (or ex- 
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ercise) significantly control musculoskeletal growth, 
development, ls7,189,19° and maintenance of struc- 
tural and physiological attributes. 19t-193 

A Resolving Synthesis 

"It seemed that the next minute they would discover a 
solution. Yet it was clear to both of them that the end was 
still far, far off, and that the hardest and most complicated 
part was only just beginning."--Anton Chekov. The Lady 
with the Dog. 

As the epigraph indicates, it is certain that no 
matter what arguments, theoretical constructs, and 
supporting experimental data are presented here, 
the prevailing tension between the genomic thesis 
and epigenetic antithesis will continue unabated. 
Nevertheless, a resolving synthesis will at least clar- 
ify the bases for continued discourse. 

The fundamental argument of this resolving 
synthesis, based on an analysis of casuation, was 
presented earlier, 11 and later amplified. 99 It argues 
that morphogenesis is regulated (controlled, 
caused) by the activity of both genomic and epige- 
netic processes and mechanisms. Both are necessary 
causes; neither alone are sufficient causes; and only 
their integrated activities provides the necessary and 
sufficient causes of growth and development. 
Genomic factors are considered as intrinsic and 
prior causes; epigenetic factors are considered as 
extrinsic and proximate causes. The data supporting 
this synthesis are provided here and above. 99 

It is acknowledged that the validity of this dia- 
letic synthesis is significantly dependent on the 
validity of its epigenetic antithesis. In turn, a defen- 
sible epigenetic antithesis should convincingly sug- 
gest some process(es) and/or mechanism(s) that can 
regulate (direct, control, cause) morphogenesis. It is 
argued here that these are provided by the newly 
emerging disciplines of complexity. 

Complexity and self-organization 

The theories of ontogeny and phylogeny currently 
are being significantly reinvigorated by the new and 
evolving science(s) of complexity that integrate topics 
from mathematics (for example, cellular automata, 
fractals, strange attractors), biology (for example, ge- 
netic algorithms, artificial life simulations, neural net- 
works, emergence, adaptive systems, connectivity), and 
physics, while minimizing distinctions between them. 
Complexity theory (CT) also integrates specifically 
related topics in bioengineering and the computer 
sciences; for example, chaos, information, and hierar- 
chical theories, fuzzy logic, as well as cyto(tissue)me- 
chanics and molecular (nano)mechanics. 194-212 

Because epigenetic processes and mechanisms are 
best explained as examples of CT, a clearcut demon- 
stration of the role of CT in craniofacial ontogeny, at 
some point, is both necessary and possible. But in this 
place only this brief, intuitive preview is possible. 
Because fairness to both the novelty and conceptual 
richness of CT requires a comprehensive presentation 
to make it generally intelligible, it will be substantively 
reviewed subsequently. 

CT provides descriptions of the behavior of 
complex biological systems that exist as "ensembles" 
of several tissues and organs, and not as clusters of 
individual cells and extracellular substances. Such 
an ensemble (identical to a functional cranial com- 
ponent in the FMH) is termed here as a complex 
adaptive system (CAS), structurally arrayed as a 
vital continuum. This term is defined here as it is in 
the several analytical finite element methods (FEM) 
recently introduced into orthodontics and physical 
anthropologyY 3-221 

CT provides compact, statistical descriptions of 
the collective growth behavior of such CAS conti- 
nuity. During ontogeny, vital CAS exhibits the cre- 
ation of robust, spontaneous, and emergent order. 

An algorithm for control of such a CAS requires 
that it is able to alter itself in response to the 
(epigenetic) information produced by the system it 
is trying to control. In a CAS, minor changes in the 
epigenetic input can cause huge fluctuations in the 
morphological output. 

CT, as it utilized information theory, assumed that 
a CAS processes information (both genomic and epi- 
genetic) in a parallel, not a serial, manner. 1° Where 
most previous biological theories of development were 
based on the methods of deterministic (genomically 
predetermined), classical mechanics, information the- 
ory, and CT, are probabilistic (epigenetically self- 
organized and emergent), and are based on the meth- 
ods of statistical mechanics. It is probable that 
ontogeny involves nonlinear processes and is not fully 
predictable; that is, growth and development, to a 
significant extent, exhibit both random behaviors and 
frequent perturbations. To clarify this point, note that 
previously most biological models were studied as if 
they were linear. That is, when their mathematical 
formulas were graphed they looked like straight lines. 
Linear systems are predictable: the calculus shows the 
changes in their state, and statistics (especially regress- 
sion analysis) reduces their data to a line. However, 
CT makes it clear that most biological systems are 
nonlinear and are not most correctly described by 
these mathematical techniques; nonlinear formula- 
tions are necessary. 
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The highly ordered morphological properties of 
adult complex biological systems (for example, func- 
tional matrices and skeletal units) result from the 
operation of a series of spontaneous and self-orga- 
nized ontogenetic processes and mechanisms. 194'2°° 
Such emergent self-organizing events can create 
phenotypic variability under constant genetic and 
other extraorganisaml epigenetic conditions. 222 

The operation of complexity can be suggested as 
follows. "Environmental factors thus play a decisive 
role in all ontogenetic processes. But it is the organism 
itself that, as an integrated system, dictates the nature 
of each and every developmental response . . ,  the liv- 
ing organism self-organizes on the basis of its own 
internal structuring, in continuous interaction with the 
environment in which it finds itself. ''113- 

CONCLUSIONS 

Integration of pertinent advances in biomedical and 
bioengineering permitted an ongoing revision of the func- 
tional matrix hypothesis. The first two articles in this 
series, by emphasizing the roles of a number of biophys- 
ical and biochemical factors in the regulation of morpho- 
genesis, implicitly argued for the correctness of the fun- 
damentally epigenetic thrust of the FMH. However, 
because the conceptual tension between hypotheses sug- 
gesting the regulatory primacy of either genomic (genetic) 
or of epigenetic factors and/or processes in morphogene- 
sis continues unabated, it seemed useful to reevaluate this 
nontrivial matter, using the dialectical method of present- 
ing a thesis, an antithesis, and a resolving synthesis as 
illustrated in these two interrelated articles. 

I believe that the most appropriate conclusion permitted 
by the data bases at this time is to use the contemporary 
managerial phrase... "it is a win-win situation." Again, 
using a popular phrase, genomic and epigenetic processes 
are "apples and pears" More correctly, they are examples of 
totally differing types of causation--genomic formal cause 
and epigenetic efficient cause. Individually both are neces- 
sary causes, but neither are sufficient causes alone. Together 
they provide both the necessary and sufficient causes for the 
control (regulation) of morphogenesis. Nevertheless, epige- 
netic processes and events are the immediately proximate 
causes of development, and as such they are the primary 
agencies. The fuller demonstration of exactly how epigenetic 
events carry out their roles will be considered elsewhere in 
the context of a review of the implications of complexity 
theory for the fimctional matrix hypothesis. 
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