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The theory of rotating axes and polyatomic molecules is extended in a form applicable to 
linear and anomalous molecules. It is applied to a linear tetratomic molecule and to an anomalous 
ammonia-like molecule, to obtain, in each case, a Hamiltonian kinetic energy lacking first­
order terms. A second-order perturbation calculation yields the energy of interaction between 
rotation and vibration for the linear molecule. The relationship to Howard's theory of ethane 
is also given. 

INTRODUCTION 

T HE sy~tematic theory of the motion. of poly­
atomiC molecules referred to mOVIng" axes 

has been developed by Eckart! for the case of 
nonlinear normal molecules. In this theory, the 
unique definition of the axes is provided by 
certain conditions on the coupling terms2 in the 
kinetic energy, which were suggested by Casi­
mir's3 study of rigid bodies in quantum mechan­
ics. It is possible, however, to treat the interac­
tion of rotation and vibration from a more 
general viewpoint, such as that considered by 
Welker,4 which is applicable to linear molecules, 
and to various types of anomalous molecules as 
well. For the purposes of application, this general 
theory may be specialized so that it assumes a 
form similar to the method of rotating axes, and 
for nonlinear normal molecules, is, in fact, iden­
tical with it. In illustration, the method is applied 
to a linear tetratomic molecule and to an anoma­
lous molecule like ammonia. 

1 C. Eckart, Phys. Rev. 47, 552 (1935). 
2 See also, H. A. Jahn, Ann. d. Physik 23,529 (1935). 
3 H. B. G. Casimir, The Rotation of a Rigid Body in 

Quantum Mechanics. Dissertation, Leyden (1931). 
4 H. Welker, Zeits. f. Physik 101, 95 (1936). 

THE GENERAL METHOD 

Many polyatomic molecules are known to be­
have like approximately rigid bodies while still 
others possess only one or two degrees of internal 
freedom. Thus, it might be said that a general 
N atomic molecule consists of approximately 
rigid parts which may move relative to each 
other while the whole structure translates and 
rotates freely through space. Let it be assumed, 
for the time being, that the parts are perfectly 
rigid and that their relative motion is uncon­
strained. The system is thus in neutral equilib­
rium since it follows that the potential energy is 
identically zero. To specify the position in space 
of the equilibrium configuration defined in this 
way, fewer than 3N coordinates are needed, and 
these may be taken to be of two types: (a) six 
(or five) coordinates a', whose variation describes 
the over-all translation and rotation of the mole­
cule, and (b) one or more coordinates a" which 
describe the gross internal motions. 

The equations of transformation from carte­
sian coordinates, 
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k=1,2," ',3N;p=1,2, o. ',M<3N,aresimply 
the equations of rigid constraint under which the 
motion takes place, and this will be termed the 
"rigidly constrained" motion. It is convenient to 
let the Xk represent the coordinates of an atomic 
particle multiplied by the square root of its mass, 
and to use (in this section only) the summation 
convention. The properties of the system, in both 
classical and quantum mechanics, depend upon 
the Hamiltonian, which is readily obtained: 

Xk= (aFdaap)a p 
2T= ~Xk2 

= ~ k(aF kl aa p) (aF kl aar) a par, 

which may be written: 

The Hamiltonian is then 

2H =AOPTP pPr, 

where the matrix AOPT is the reciprocal of ApT(O), 
and P P is conjugate to a p • Since the solution of 
the characteristic value problem for this Hamil­
tonian is known in most cases, the rigidly con­
strained motion can be considered as part of the 
zeroth-order approximation to the true motion. 

To secure a more accurate molecular model, the 
atoms hitherto supposed to constitute one of the 
rigid parts must be allowed to vibrate about their 
equilibrium positions but, as a first approxima­
tion, with very small amplitudes, so that the con­
figuration departs only slightly from the rigid 
structure. If the 3N - M additional degrees of 
freedom, qx, are introduced in the form: 

(1) 

A=1, 2, "', 3N-M, so that they describe the 
deviation from equilibrium, and the zeroth-order 
potential energy is written as a (positive definite) 
quadratic form in the qx: 

(2) 

the motion will have the desired characteristics. 
Thus, Eq. (1) represents a loosening of the rigid 
constraints, and the motion might now be de­
scribed as the "elastically constrained" motion. 
The solution of the "elastic constraint" problem 
enables the prediction of the major features of 
the molecule's infra-red spectrum. 

As usual, the Hamiltonian must be computed. 
The velocities are: 

and the Lagrangian kinetic energy has the form: 

2 T=A PTapaT+2B pxapqx + CX)lqxql" (3) 

in which the coefficients APT have the form: 
A pT(O) + A PTXqX + A PTX)lqXqW The first group of 
terms in (3) constitutes the energy of the system 
\!nder the constraints qx = constant, and includes 
the energy of translation and rotation; the third 
sum is the kinetic energy of vibration, while the 
second represents the energy of interaction be­
tween rotation and vibration. 

It is desired, first, that the interaction terms 
be small enough to be considered as a perturba­
tion of second order or higher, and second, that 
the qx be the normal coordinates. To see how the 
first requirement, which is a generalization of 
what has been called Casimir's condition,l. 3 can 
be effected, consider the explicit form of the B pX, 
which is 

or, for short, 

Bpx =B pX (0)+ Bpxl'qw 

If, as usual, one sets 

Bpx(O) =0, (4) 

the B pX will be small for small vibrations. These 
may be considered as equations partially deter­
mining the 3N(3N - M) functions hx. Since 
there are M equations for each value of A, 
3N - M of the hx remain arbitrary. These are 
determined by the solution of the normal vibra­
tion problem in the 3N - M coordinates qx as 
follows. The potential energy, 

may be expanded in a Taylor's series about the 
equilibrium values of the coordinates: 

U = H a2 U I aXkaX I) x~F jkxh,qxql' + ... 
= t{3kzi"dll'qxql' + ... , 

this being a definition of {3kl. The bxl" (Eq. (2)), 
are therefore, 
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while the CA~' (Eq. (3)), are readily verified to be determined by Eqs. (4), (5) and (6). Eq. (1) 

The remaining!H are then uniquely determined 
by the conditions: 

where the AA are any preassigned functions. 

(5) 

(6) 

The explicit definition of the a p depends on 
the particular type of molecule to which the 
method is to be applied, and for this purpose, 
normal and anomalous molecules may be dis­
tinguished, and discussed separately. 

NORMAL MOLECULES 

A molecule which, in the vibrationless state 
(neglecting zero-point energy), behaves like a 
completely rigid body may be called normal. 
If it is nonlinear, the a p are six in number 
(M = 6), and are most conveniently chosen to 
specify the position in space of a set of axes 
moving with the molecule, namely; the three 
components, X, Y, Z, of the vector R to the 
origin, and the three Eulerian angles,5 e, C/>, if;, 
of the axes. Let the unit vectors along the 
moving axes 'be ti remembering that these are 
functions of the Eulerian angles. Also, let the 
index k of Eq. (1) be 'an abbreviation for two 
indices, i, a, (i=x, y, z; a=l, 2, "', N), so that 
Xia are the coordinates of the ath atom in fixed 
axes. If ei are the fixed unit vectors, the rigid 
constraints, Fk(a p ), become 

where za( = ~iZiati) specifies the equilibrium posi­
tion of the ath atom in the moving axes. 

It will now be shown that, for this case, the 
method can be reduced to the method of rotating 
axes. Adopting the notation of reference 1, let 
the AI-. of Eq. (1) have the form 

(7) 

where j=x, y, z, and the ZAja are constants to be 

6 The definition of the Eulerian angles to be used here is 
that of E. T. Whittaker, Analytical Dynamics (Cambridge, 
third edition, 1927), p. 10. 

becomes 

Xia= [ma!R+~j(ma!Zja+~AZ},jaqA)tj}ei. (8) 

If Yia stands for the cartesian coordinates of the 
ath atom in the moving axes, multiplied by mat, 
it is also true that 

Hence, by comparison with Eq. (8), 

which is the conventional transformation of 
coordinates. It remains to be proved that the 
six equations, B p}, (0) = 0, are precisely the ones 
used to define the rotating axes. 

Notice, first, that for ap=X, Y, Z, Bpx)J.=O, so 
that Bp}'(O) =0 implies Bpx=O. But since this is 
the condition that the kinetic energy of transla­
tion be separable, the three equations BXA = 0, 
etc., must be equivalent to 

(9) 

where Ta is the position vector in the moving 
axes, i.e., the origin of these axes is always at 
the centroid of the molecule. That the equations 
do have this form can also be proved. The 
remaining three equations may now be found. 
For ap=e, for example, 

aFia/ ae = mat[ZzaC"£x- ZzaS"£y 
+ (ZyaS"-ZxaC") £z]· ei· 

In this expression, and in what follows, s, c, =sin, 
cos e; s', c'=sin, cos c/>; s", c"=sin, cos if;. Thus, 
aFia/ae and!iax (Eq. (7)) are the ith components 
in the fixed axes of certain vectors whose com­
ponents in the moving system are the coefficients 
of £i in the respective expressions for aFia/ae and 
!iaX. Since the B pX (0) are the sums of scalar 
products of these vectors resolved along ei, they 
can be written in terms of the other components 
as well, giving: 

On rearrangement, this becomes: 

where daA = ~ jZXja£j. In like manner, 
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Bq,x (0) = '2ama!(SC"wax· £x -ss"wax· £11 

-cwax· £z) =0 

in which wax=zaXdax. These three equations 
imply that 

(10) 

which is Casimir's condition in vector form,6 
since dax has the dimensions mtXlength. 

The normal coordinate problem may likewise 
be reduced to the conventional one. The bxl' 

(Eq. (2)) are simply constants and all the Ax 
can thus be set equal to the same normalization 
constant, A. 

Linear molecules 

If the equilibrium configuration of the mole­
cule is linear, only five coordinates are necessary 
to specify its rigid motion: X, Y, Z, (J and cp, 
and there must be (3N - 5)qx. Hence, there are 
only five of the Eqs. (4), which are insufficient 
to define a set of moving axes uniquely. If, now, 
the transformation (8) is made exactly as in the 
preceding section, the angle 1/1 enters as an 
arbitrary parameter, which may therefore be set 
equal to zero, completing the definition of the 
axes. 

The choice of the two Eulerian angles, (J and cp, 
as "rigid constraint" variables implies that £. 

passes through the equilibrium configuration, 
which can always be required to have its center 
of mass at the origin, so that 

Zxa=Zya=O 

'2amazza = o. 

In the next section, this method is applied to a 
general tetratomic linear molecule; the results 
obtained there may be of use in the interpretation 
of the rotational band structure of the acetylene 
molecule. 

TETRATOMIC LINEAR ~OLECULE 

In order to compute the kinetic energy, thefiaA, 
and hence the ZiaX, must be found explicitly by 
solving Eqs. (5), (6), (9) and (10). Written in 

6 C. Eckart, reference 1, Eq. (25), p. 556. Also, E. B. 
Wilson, Jr., and J. B. Howard, J. Chern. Phys. 4, 261 
(1936), Eq. (3). 

scalar form, Eqs. (9) and (10) are: 

'2amalZXia=O (i=x, y, z) 

'2ama IZzaZXxa = 0 (11) 
'2ama iZzaZXy« = 0, 

while Eq. (6), which is also invariant under a 
rotation of the axes, takes the form 

(12) 

The 3N - 5 = 7 linearly independent solutions of 
(11) can then always be chosen normalized and 
orthogonal so as to satisfy (12), in which A is 
conveniently taken to be the equilibrium moment 
of inertia, '2amaZza2. To find particular solutions, 
set ZXxa = ZXya = 0; the one remaining equation has 
three independent solutions: Zlza = ga(l), Z2za= ga(2) , 

Z3za = ka• Two of these are also solutions for 
ZXza=ZXya=O (>'=4,5), and for ZXza=ZXxa=O 

(>'=6,7). Thus, ql, q2, q3 describe the parallel 
vibrations, q4 and q6 one perpendicular mode, 
and q5 and q7, the other. 

The potential energy must now be considered. 
On account of the rotational symmetry of the 
equilibrium configuration, and the choice of the 
ZXia, it must have the form: 

2 Uo= '2x. I'Bxl'qxqiJ+b44(q42+q62) 

+b55 (q52+ql) + 2b45 (q4q5+q6q7) ' 

where >., JJ.= 1, 2, 3. Since there are four non­
diagonal terms, there are four of Eqs. (5), and in 
order to satisfy these, it is necessary to form more 
general solutions of (11) without altering the 
character of the q's. This may be accomplished 
by taking separate orthonormal linear combina­
tions of the solutions numbered 1, 2, 3, and of 
those numbered 4 and 5, which provides the four 
independent constants needed to diagonalize the 
potential energy. Because of the degeneracy of 
the perpendicular vibrations, the same combina­
tions used for solutions 4 and 5 must be employed 
for solutions 6 and 7. The complete solution may 
therefore be written: 

ZXza= aXlga(l)+ax2ga(2) +axaha (>.= 1,2,3) 
Z4xa = Z6ya = {3llga (1) + {312ga (2) 

Z5xa = Z7ya = {321ga (1) + {322ga (2). 

The Hamiltonian 
The Hamiltonian kinetic energy, readily com­

puted by the method of WiJ'son and Howard,7 

7 E. B. Wilson and J. B. Howard, reference 6. 
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turns out to be 

where Px is conjugate to qx, M (= Mxtx+ Myty 
+Mztz) is the total angular momentum about the 
center of mass, and 

j = 1 +a13q] +a23q2+a33q3. 

The calculation also yields the result that 

.Mz-Az=O. 

The quantities A are identical (except for a 
normalization factor) with Wilson and Howard's 
px, Py, P .. and are given by 

Ax= (1/ A)~IxPx; Ay= (l/A)~~hPx; 

in which 
Az=(l/A)~3xPx, 

Ix = ~~~a(ZXzaZ~ya - ZXyaZ~za)q~ 
2h = ~~~a(ZXxaZ~za - ZXzaZ~xa)q~ 
3x = ~~~a(ZXyaZ~xa - ZXxaZ~ya)qw 

Finally, the relations of Mx and My to the mo­
menta conjugate to e, cp, and q"A are: 

Mx= - (l/s)P 4>+ (c/s)Az 
M y=P8. 

I t should be noted that the A's, which always ap­
pear in the Hamiltonian of a rotating vibrator, 
are not the same as the components of the vibra­
tional or internal angular momentum. The latter 
are defined as ~I}Jix, etc., rather than as ~IAP"A. 

The calculation of the characteristic values of 
the Hamiltonian operator is entirely analagous 
to that performed by Weinberg and Eckart8 for 
the triatomic linear molecule, so that only the 
important steps will be described here. 

The perturbation calculation 

The approximation, 

j= 1, 

is equivalent to neglecting terms of third order 
and higher, while Casimir's condition ensures 
the absence of first-order terms. There remain 
only terms of zero and second order, and these 
are: 

2ATo=~pX2 

T 2 = T- To. 

8 A. Weinberg and C. Eckart, J. Chern. Phys. 5, 517 
(1937). 

If polar coordinates9 are introduced, 

q4 = PI cos Xl; 

qs = PI sin Xl; 

q5= P2 cos X2 

q7 = P2 sin X2, 

the zero-order wave functions are, in Dennison'slo 
notation, 

in which II = V4 , V4 -2, '" 1 or 0, etc. and 
vee, cp) is an undetermined coefficient. This can 
also be written: 

ifio=v(e, cp)ungN(q, p, x), 

where N is an abbreviation for the quantum 
numbers V, n ranges over all the combinations 
1112, and g may have the values + +, + -, etc. 
The zero-order energy, 

WON = ~i( Vi+t)!iWi+ (V4+1)!iW4+ (Vii + 1)!iw5, 

is therefore of weight 7f n =(V4+1)(V5+1). In 
this and all following summations in this section, 
the index i has the range 1, 2, 3. Since the first­
order energy corrections, WI, due to the addition 
of cubic terms in the potential energy, are all 
zero, the degeneracy is unaltered to this approxi­
mation, and the correct zero order combinations 
for the second-order calculation are 

If the operators T are defined by 

the secular equations have the form: 

in which W" is that part of the second-order 
energy correction, W2, arising from T2 alone. 
This "separability" of W2 is possible only because 
the matrix elements of the first-order potential 
energy have the property: 

(mhrfng), 

where mh has the same significance as ng but 

9 The operators must be transformed correspondingly: 
p.=cos XIPp_p-l sin XIPX' etc.; A. becomes simply: 
FX1+PX2' 

. ]0 D. M. Dennison, Rev. Mod. Phys. 3, 280 (1931). 
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refers to a wave-function for any state other than 
WoN. The kinetic energy operators themselves 
have the form: 

and are 

T ±± = (1/2A)ls-IPosPe 
+S-2[P ",-hc(±IJ±12)]21 +C. 

The characteristic values are immediately avail­
able: 

W"= (h2/2A)[J(J+ 1) -K2]+C, 

where K = (±11±12), J= IKI, I KI +1, .... The 
first part is essentially the energy of a linear 
symmetric top, while the energy of interaction is 

C=(li2/2A){(V4+1) 
X [~ri2( Vi+!)(w;j W4+W4/ Wi)] 
+ (Vfi + 1)[~/i2( Vi+!)(w;j W5+W5/ Wi)]-21, 

in which the integer 2 appears because there are 
two degenerate perpendicular vibrations, and 

r i = ail!311 +ai2!312 

Ii = ail!321 +ai2!322. 

This is analagous to Weinberg and Eckart's re­
sult for the triatomic case, and the generalization 
to an n atomic linear molecule is obvious. 

For the symmetric molecule X 2 Y2, the follow­
ing simplifications occur: 

rl = 1; 
II =0; 

r2=ra=0 
t2= - (1-ta2)1. 

YXa 

The rigidly constrained configuration, YXa, is 
taken to be a tetrahedron of variable height with 
the Y nucleus at the apex, on the z axis of a 
moving system of axes, while the X nuclei form 
an equilateral triangle parallel to the x-y plane. 
The anomalous coordinate, a" = z, is thus the z 
coordinate of the Y atom. The remaining co­
ordinates are, as before, the three cartesian co­
ordinates of the origin, three Eulerian angles, and 
five normal coordinates. 

If the X nuclei, of mass m, are numbered 1, 2,3 
and the axes are the principal axes of the equi­
librium configuration, the vectors Za are: 

ZI =' - (S/2) Ex - (-V 3/6)SEy- (M/3m)zEz 
Z2= (S/2)Ex -(-V 3/6)SEy -(M/3m)zEz 

Za= (-V 3/3)SEy -(M/3m)zEz 

where M is the mass of the Y nucleus, and S 
represents the side of the equilateral triangle. 
Note that the lengths of the Za are not constant, 
as for a normal molecule, but vary with the time. 

The position vectors for the elastically con­
strained motion are given by 

where oa, the mass-adjusted displacement from 
equilibrium, is defined as 

oa= ~hqhdah 
= ~i~AZAiaq>.Ei· 

Finally, the seven equations, B Ph (0) = 0, may be 

Thus, one constant, in addition to the normal written: 
frequencies, remains to be determined by the ~ma!Oa=O 

~m}ZaXOa=O 
04' Ez=O. 

potential energy. 

ANOMALOUS MOLECULES 

These are molecules possessing internal mo­
tions with amplitudes too large to be treated as 
normal vibrations, as, for example, the free in.­
ternal rotation of an ethane-like molecule. An­
other example, to be discussed here, is a model of 
the ammonia molecule, in which it is supposed 
that the nitrogen atom, in an excited vibrational 
state, can surmount a relatively low potential 
barrier and vibrate between two extreme posi­
tions on opposite sides of the plane of the hy­
drogen atoms. 

(13) 

The seventh equation states that no normal vi­
bration involves motion of the Yatom along the 
Z axis, or that all Z>.z4=0. 

The potential energy, 

U= U(ql" 'q5, z), 

when expanded about the point q>.=O, Z=Z, takes 
the form: 

This assumes that for q>. = 0, the X atoms are in 
equilibrium for all values of z, which is, of course, 
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an approximation. The normal vibrations are 
given by the five orthonormal solutions of (13) 
which diagonalize the quadratic part of the poten­
tial energy. Three of these, (A=1,2,3), are 
identical with the normal vibrations of three 
equal atoms at the corners of an equilateral 
triangle, the Y atom being unaffected. The 
coefficients describing the remaining double 
vibration, (A=4, 5), are: 

Z4xa = Zoya = 0 
Z4ya=Z5xa= - (1/3) (.l\1/m)!d 

Z4y4 = Z5x4 = d 
Z4z1 = Z4z2 = - tKdz 

Z4z3=Kdz 

(ao=4) 

ZSzl= -ZSz2= -(-V 3/2)Kdz 
Z5z3= 0, 

where K is a constant, but d is a function of Z 

determined by the requirement that the normal­
ization factor be independent of z. What is 
sometimes referred to as the sixth "normal vibra­
tion," namely; the Z motion of the Y atom, is 
determined by U(z). Furthermore, since the 
amplitudes of some of the other vibrations de­
pend on z, this variable enters the interaction 
terms of the kinetic energy in a rather compli­
cated manner. If the experimental data warrants 
it, it would be interesting to investigate the con­
tribution of such terms to the energy levels. 

Hamiltonian kinetic energy 

It is now possible to calculate the second-order 
terms in the Hamiltonian of our model with 
complete generality. The Lagrangian kinetic 
energy is: 

and 

Taking account of Eqs. (13) and their time deriv­
atives, and neglecting terms quadratic in q)., since 
these give rise to terms of third or higher order, 
one gets: 

2T= ~i~iIiiWiWi+2wx(~x).q).+Rli) 
+ 2wY(~ID).q). + R2Z) + 2wz~B>.q). 

+J-tMi2+A~q).2, 

in which the Iii are the instantaneous moments 
and products of inertia, and 

J-t= (M/3m)+1 
Rl =2J-tM!dq4 
R2 = - 2J-tM!dq5. 

Notice that the zero-order term in z, which is 
separable, involves J-tM rather than M. 

The Hamiltonian kinetic energy takes the 
form: 

where JO is an equilibrium moment of inertia, 
and depends on z. As before, Mi=aT/aWi and 
pz=aT/ai but the Ai are now defined by 

Ethane 

Ax= (1/A)~x).p).+(Rri MJ-t)Pz 
Ay= (1/A)~ID).p).+(RdMJ-t)Pz 
Az= (1/A)~B).p).. 

This molecule has been studied in detail by 
Howard,ll and it will be sufficient to mention 
that the equations by which he removes the 
degrees of freedom corresponding to "incipient 
translations, over-all rotations, and internal rota­
tion" are the seven equations, B p). (0) = 0, appro­
priate to his choice of the seven rigid constraint 
variables. Six of these variables are identical with 
those chosen here for normal molecules, as are 
the corresponding six equations (our Eqs. (9) 
and (10)); the seventh coordinate, which de­
scribes the internal motion, is taken to be the 
angle between the two methyl groups, con­
sidered as rotating relative to each other about 
a common axis, (the Z axis of the moving system). 

The seventh equation turns out to be: 

where the summation extends over the atoms of 
one methyl group only. This means that, in first 
approximation, the z component of the angular 
momentum of each methyl group vanishes 
separately. 
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