
The Real Number System 
 

 

  Preliminaries 

Given the fundamental importance of the real numbers in mathematics, it is important for 
mathematicians to have a logically sound description of the real number system.  In particular, 
the adoption of set theory as the basic language for mathematics means that the real numbers 
need to be described formally in terms of set theory.  As indicated in Munkres, two ways of 
approaching this are as follows: 
 

I. One can assume the existence of the real numbers as a mathematical system with certain 
so-called “undefined concepts” and axioms. 

II. One can construct the real numbers explicitl y from other objects in set theory; e.g., the 
natural numbers. 

 
From a strictly theoretical viewpoint the second alternative has an important advantage; it 
dramatically simpli fies the total number of assumptions that are needed to set up a logical 
framework for mathematics.  However, it has a major disadvantage for our purposes because it 
requires a considerable amount of effort to carry out and justify the necessary constructions, and 
the work itself does not shed a great deal of light on the basic topics of this course.  Therefore, as 
in Munkres we shall choose the first alternative.  A reader who is interested in the details of the 
“minimalist” approach to the real number system can find the details in several references (to be 
listed here).    
 

  The Axioms for the Real Numbers 

Addition and multiplication are examples of  binary operations.  We need to describe such 
objects explicitl y before going any further. 
 

Definition:  Given a set S, a binary operation on S is a function & from S ×× S to S.  If x and 
y belong to S and & is a binary operation we generally write x & y for &(x, y). 
 

The so-called “undefined entities” for the real number system are  

• (real) numbers,   
• addition of real numbers,   
• multiplication of real numbers,  
• linear ordering of real numbers.   



Formally, these are given by a nonempty set 4 (whose elements are the real numbers), a binary 

operation � representing addition on 4, a binary operation ×× or  ·   representing multiplication 

on 4, and a partial ordering  � on 4.  Following standard mathematical practice we shall often 

denote a ×× b or  a ·  b  simply by a b   
 
 
 
 
GROUP I : ALGEBRAIC EQUALITY AXIOMS  
 
 
 
A-1:  

(Associative Laws)  For all  a, b, c  ∈∈ 4  we have (a + b) + c  =  a + (b + c) and 

(ab) c  =  a (bc).   
A-2:  

(Commutative Laws)  For all  a, b  ∈∈ 4  we have a + b  =  b + a  and  a b  =  b a.   
 

A-3:  
(Additive and Multiplicative Identities)  There exist unique and distinct numbers 0 and 1 

in  4  such that  a  +  0 =  a  and a ·  1  =  a  for all  a  ∈∈ 4.   
 

A-4:  

(Additive and Multiplicative Inverses)  For each  a  ∈∈ 4  there exists a unique b  ∈∈ 4 

such that a + b  =  0, and for each  a  ∈∈ 4  with a  ≠≠  0  there exists a unique c  ∈∈ 4 

such that c  ≠≠  0 and  a ·  c   =  1.  
 

A-5:  

(Distributive Law)  For all  a, b, c  ∈∈ 4  we have   a ·  (b + c)  =  ab + ac.  
 

A-6:  

(Multiplication by Zero)  For each  a  ∈∈ 4  we have a ·  0   =  0.  
 
 
 

GROUP II :  INEQUALITY AXIOMS  
 
B-1:  

(Equals added to unequals)  If   a, b  ∈∈ 4  satisfy  a  !  b  then for all  c  ∈∈ 4 we 

have a + c  !  b + c. 



 
B-2:  

(Unquals multiplied by positive equals)  If   a, b  ∈∈ 4  satisfy  a  !  b  and  c !  0 
then we have a ·  c  !  b ·  c. 
 
 

GROUP III: COMPLETENESS AXIOM   
 
C-1:  

Let  S be a nonempty subset of 4 that has an upper bound; i.e., there is a real number a 

such that x  ≤≤  a for all  x ∈∈ S.  Then  S has a least  upper bound;  i.e., there is a real 

number b such that b  ≤≤  a  for every upper bound  a  of the set S.  
 
 
Property A-6 is not stated explicitl y in Munkres, but it is a logical consequence of  the other four 
Algebraic Equality Axioms; we have included it here because it is so basic and would have to be 
taken as an axiom if it were not a formal consequence of the other properties. 
 
Some standard concepts (negative numbers, subtraction, reciprocals, quotients, positive numbers, 
etc.) are discussed on page 31 of Munkres, and a few consequences are also listed on pages 31 
and 32.  Numerous other elementary consequences like the “paradoxical” identity  
 

(–1) ·  (–1)   =  + 1 
 
can be found in most undergraduate textbooks for abstract algebra.  We shall mention a few 
additional consequences here and explain the relation between the real numbers and the positive 
integers from our perspective.  In a subsequent section we shall show that there is essentially 
only one system (up to a reasonable notion of equivalence known as isomorphism) that satisfies 
the axioms for the real numbers. 
 
Squares of nonzero numbers are positive:   If  r is a nonzero real number,  then r 2  is positive.   
 
Finding n-th roots of positive real numbers:   If  r is a positive real number and n is a positive 
integer, then there is a unique positive real number x such that x n  =  r.   
 
The preceding two observations imply that a nonzero real number is positive if and only if it is 
the square of another (nonzero) real number.  This algebraic property plays a key role in 
showing that the axioms for the real numbers are algebraically rigid;  i.e., the only one-to-one 
correspondence h of the real numbers with itself such that  
 

h(a + b) =  h(a) + h(b),     h(a ·  b) =  h(a) ·  h(b) 
 



(i.e., an automorphism) is the identity.  We shall prove this in the section on the uniqueness of 
the real numbers up to isomorphism.  In contrast, the conjugation map for complex numbers 

sending a  +  b i  to  a  –  b i  (where  a, b  ∈∈ 4� and i 
2 = – 1)  is an automorphism of 

complex numbers that is not equal to the identity. 
 
Real numbers and infinite decimal expressions:   Every positive real number is the sum of an 
infinite series of the form  
 

  aN10N + a 
N–110N–1 + … + a0 + b110–1 + b210–2 + … +  bk10–k  + … 

 
where each  ai and  bj  is an integer between 0 and 9, and every positive real number has a 
unique expression of this form such that bj  is positive for which infinitely many values of j.  
Conversely, every infinite series of the form is convergent. 
 
Of course, real numbers are generally viewed from a practical standpoint as quantities 
expressible by such “infinite decimal” expansions, so this result essentially justifies the usual 
sorts of manipulations that one performs in order to compute with real numbers.  However, 
although such representations of real numbers are absolutely necessary for computational 
purposes, they are not particularly convenient for theoretical or conceptual purposes.  For 
example, describing the reciprocal of a positive real number (even a positive integer!) explicitl y 
by means of infinite decimal expansions is at best awkward and at worst unrealistic.  Another 
diff iculty is that these expansions are not necessarily unique; for example, the relation  
 

1.0  =  0.9999999… 
 
reflects the classical geometric series formula; the representations become unique if one insists 
that infinitely many terms to the right of the decimal point must be nonzero, but this generates 
further conceptual problems.  A third issue is whether one gets the same number system if one 
switches from base 10 arithmetic to some other base.  It is natural to expect that the answer to 
this question is yes, but any attempt to establish this directly runs into all sorts of diff iculties 
almost immediately.  This is not purely a theoretical problem; the use of digital computers to 
carry out numerical computations implicitl y assumes that one can work with real numbers 
equally well using infinite base 2 (or base 8 or 16) analogs of decimal (base 10) expansions.  
This discussion strongly suggests that the formal mathematical description of real numbers 
should be expressed in a manner that does not depend upon a computational base.   The 
axiomatic description in Munkres and these notes provides a characterization of this sort. 
 

Density of the rational numbers:   If   a, b  ∈∈ 4  satisfy  a  !  b  then there is a rational 

number  r such that  a  !  r  !  b.   
 
Rational numbers and integers are defined on page 32 of Munkres.  In particular, if  b  =  0 then 
one can choose  r  to be the reciprocal of a positive integer (write the positive rational number  r  
as a quotient of two positive integers m�n ;  if  s  is equal to 1�n  then we clearly have the 



inequalities  a  !  r  ≥≥   s  !  0).   
 
Integral Archimedean property:   If   a  ∈∈ 4  then there is a nonnegative integer  k such that  

k  !  a .   
Specifically, if  a  �  0 then one can take  k = 0,  and if  a !  0 then 1�a  !  0 and by the 

discussion in the preceding paragraph we can find a positive integer k such that 1�a  ! 1�k .  
Taking reciprocals, one obtains the desired inequality k  !  a .    
 
 
 

Intervals in the Real Number System 
 
 
We shall use standard notation from calculus and real variables courses to denote various open, 
closed and half open intervals: 
 
 

The closed interval  [a, b] consists of all real numbers x such that  a  ≤≤  x  ≤≤  b.. 
 
The open interval  (a, b) consists of all real numbers x such that  a  �  x  �  b.. 
 
The half-open interval  (a, b] consists of all real numbers x such that  a  �  x  ≤≤  b.. 
 
The half-open interval  [a, b) consists of all real numbers x such that  a  ≤≤  x  �  b.. 
 
 

In the second and third cases we shall replace a by – ∞∞ to denote the sets of real numbers 

satisfying  x  �  b  and  x  ≤≤  b  respectively,  and in the second and fourth cases we shall 

replace b  by + ∞∞ to denote the sets of real numbers satisfying  a  �  x  and  a  ≤≤  x 
respectively.  If we use both conventions in the second case, this expresses 4� as the “interval”  

(– ∞∞, + ∞∞). 
 
Reminder.   Although one can manipulate  – ∞∞ and + ∞∞ in many contexts as if they were 
real numbers, these objects do not belong to the real number system and there are also contexts 
in which one cannot manipulate them as if they were real numbers (for example, the product of  

0 and  + ∞∞  cannot be defined, and likewise for the sum of  – ∞∞ and + ∞∞). 
 
 
 



The Real Numbers and the Natural Numbers 
 

We had previously postulated the existence of the natural numbers  in terms of the Peano 
Axioms.  In Section 4 of Munkres the existence of the natural numbers is formulated as a 
consequence of the postulate that there is a system satisfying the axioms for the real numbers.  

We shall take a slightly different approach, showing that  can be viewed as a subset of  4� in a 

natural way.   In particular, there is a unique map e :   →→�4  such that  
 

e(0) = 0  and  e(1(n) ) = e(n) + 1 
 

for all n ∈∈  .  Specifically, this map can be defined recursively by the given formulas.  
 
 
Arithmetic operations and the successor function.    The following elementary identities will be 

needed in the uniqueness proof for the real numbers; they hold for all  m, n ∈∈  :   
 

e(m) + e(1(n) ) =  e(m) + e(n) + 1 
 

e(m) ·  e(1(n) ) =  e(m) ·  e(n) + e(m) 
 

One can also use minor variants of these identities to define addition and multiplication on  
abstractly in the “minimalist” approach  to the real number system. 


