The Real Number System

Preliminaries

Given the fundamental importance of the red numbersin mathematics, it isimportant for
mathematiciansto have alogicaly sound aescription d the red number system. In particular,
the adoption d set theory as the basic language for mathematics means that the red numbers
need to be described formally in terms of set theory. Asindicated in Munkres, two ways of
approadiing this are afollows:

I. One can asume the existence of the red numbers as a mathematicd system with certain
so-cdled “undefined concepts’ and axioms.
I1. One can construct the red numbers explicitly from other objedsin set theory; e.g., the
natural numbers.

From a strictly theoreticd viewpoint the seandalternative has an important advantage; it
dramaticdly simplifies the total number of assumptions that are needed to set up alogicd
framework for mathematics. However, it has amgor disadvantage for our purposes becaise it
requires a mnsiderable anount of effort to carry out and justify the necessary constructions, and
the work itself does not shed agrea ded of light onthe basic topics of this course. Therefore, as
in Munkres we shall choase thefirst aternative. A realer whoisinterested in the detail s of the
“minimalist” approad to the red number system can find the detail sin several references (to be
listed here).

The Axiomsfor the Real Numbers

Addition and multiplicaion are examples of binary operations. We neel to describe such
objeds expli citly before going any further.

Definition: Givenaset S, abinary operation on Sisafunction& fromSx Sto S, If X and
y belong to Sand & is abinary operation we generally write X & Y for & (X, Y).

The so-called “undefined entities’ for the real number system are

(real) numbers,

addition of real numbers,
multiplication of real numbers,
linear ordering of real numbers.



Formally, these are given by anonempty set R (whose elements are the real numbers), abinary

operation + representing addition on R, abinary operation X or +  representing multiplication
on R, and apartial ordering < on R. Following standard mathematical practice we shall often
denoteaxbor a- b smplybyab

GROUP |: ALGEBRAIC EQUALITY AXIOMS

A-1:

A-2:

A-4:

A-5:

A-6:

(Associative Laws) Foral a,b,c [J R wehave(a+b)+c = a+(b+c)and
(ab) c = a(bc).

(Commutative Laws) Foral a,b [ R wehavea+b = b+a and ab = ba.

(Additive and Multiplicative | dentities) There exist unique and distinct numbers 0 and 1
in R suchthat a + 0= aanda- 1 = aforal a O R.

(Additive and Multiplicative nverses) For each a [ R thereexistsauniqueb [ R
suchthata+b = 0, andforeach a [0 R witha # O thereexistsauniquec [ R
suchthaac # Oand a- ¢ = 1.

(Digtributive Law) Foral a,b,c 1R wehave a- (b+c) = ab+ac.

(Multiplication by Zero) Foreach a [J R wehavea- 0 = 0.

GROUP II: INEQUALITY AXIOMS

B-1:

(Equals added to unequals) If a, b [0 R satisty a > b thenforal ¢ I R we
havea+C > b+cC.




B-2:
(Unquals multiplied by positiveequals) If a, b [0 R saisty a > bandc> 0
thenwehavea+: ¢ > b- C.

GROUP |11: COMPLETENESS AXIOM

C-1:
Let Sbe anonempty subset of R that has an upper bound i.e., thereisared number a
suchthat X < aforadl X S. Then Shasaleast upper bound i.e, thereisared
number b suchthat b < a for every upper bound a of theset S.

Property A-6 is nat stated explicitly in Munkres, but it isalogicd consequenceof the other four
Algebraic Equality Axioms; we have included it here becaiseit is © basic andwould haveto be
taken as an axiom if it were not aformal consequence of the other properties.

Some standard concepts (negative numbers, subtradion, redprocds, qudients, pasitive numbers,
etc.) arediscussed on @ge 31 d Munkres, and afew consequences are dso listed on @ges 31
and 32. Numerous other elementary consequences like the ‘paradoxicd” identity

-1 -1 =+1

can be foundin most undergraduate textbooks for abstraa algebra. We shall mention afew
additional consequences here and explain the relation between the red numbers and the positive
integers from our perspedive. In asubsequent sedionwe shall show that thereis essentially
only one system (up to areasonable nation d equivalence known as isomorphism) that satisfies
the atioms for the red numbers.

L. . 2 . ..
Squar es of nonzero numbers are positive: If I isanonzero real number, thenr “ is positive.

Finding n-th roots of positivereal numbers. If r isapositive real number and N is a positive
integer, then there is a unique positive real number X suchthat X" = .

The precading two observations imply that a nonzero real number is positive if and only if it is

the square of another (nonzero) real number. This agebraic property plays akey rolein
showing that the aciioms for the red numbers are algebraically rigid; i.e., the only one-to-one

corresponcence h of the red numbers with itself such that

h(a+b) = h(@ +h(), h@- b)= h(@@) - h(b)



(i.e., an automorphism) isthe identity. We shall prove thisin the section on the uniqueness of
the real numbers up to isomorphism. In contrast, the conjugation map for complex numbers
sendinga + bi to a — bi (where &, b O R andi ?=—1) isan atomorphism of
complex numbersthat is not equal to the identity.

Real numbers and infinite deamal expressons: Every positive real number isthe sum of an
infinite series of the form

a1 +apna10Vt+ . +ay+ b0 + b0 + ... + b A0® + ...

where eab @ and b, isaninteger between O and 9, and every positive real number hasa
unigue expression of this formsuch that b; is positive for which infinitely many values of .
Conversdly, every infinite series of the formis convergent.

Of course, red numbers are generally viewed from a pradicd standpant as quantiti es
expressble by such “infinite dedmal” expansions, so this result esentialy justifies the usual
sorts of manipulations that one performsin order to compute with red numbers. However,
although such representations of red numbers are dsolutely necessary for computational
purposes, they are not particularly convenient for theoretica or conceptual purpaoses. For
example, describing the redprocd of apasitive red number (even a positive integer!) explicitly
by means of infinite dedmal expansionsis at best awkward and at worst unredistic. Another
difficulty isthat these expansions are not necessarily unique; for example, the relation

1.0 = 0.9999999..

refleds the dasscd geometric series formula; the representations become unique if oneinsists
that infinitely many terms to the right of the dedmal point must be noreero, bu this generates
further conceptual problems. A third issue is whether one gets the same number system if one
switches from base 10 arithmetic to some other base. It is natural to exped that the answer to
this questionisyes, but any attempt to establish thisdiredly runsinto all sorts of difficulties
amost immediately. Thisisnot purely atheoreticd problem; the use of digital computersto
cary out numericd computations impli citly assumes that one can work with red numbers
equally well using infinite base 2 (or base 8 or 16) anaogs of dedmal (base 10) expansions.
This discusson strongly suggests that the formal mathematical description of real numbers
should be expressed in a manner that does not depend upon a computational base. The
axiomatic description in Munkres and these notes provides a dharaderization d this rt.

Density of the rational numbers. If a,b [0 R satisfy @ > b thenthereisarational
number r suchthat @ > r > b.

Rational numbers and integers are defined on fage 32 o Munkres. In particular, if b = O then
one can choose I' to betheredprocd of apasitive integer (write the positi ve rational number r
asaqudient of two pasitiveintegersm/n ; if S isequa to 1/n then we clearly have the



inequalites a > r = s > 0).

Integral Archimedean property: If a [ R thenthereisanonnegativeinteger k such that
k > a.

Specificaly, if @ < Othenonecantake k=0, andif a> Othen1/a > 0andbythe
discussion in the preceding paragraph we can find a positive integer K suchthat 1/a > 1/k .
Taking reciprocals, one obtains the desired inequaity kK > a.

Intervalsin the Real Number System

We shall use standard notation from calculus and real variables courses to denote various open,
closed and half openintervals:

Theclosedinterval [a, b] consists of all real numbers X suchthat a £ X < b..
The open interval (@, b) consists of all real numbersX suchthat a < X < Db..

The half-open interval (@, b] consists of all real numbersX suchthat a < X < b..

The half-open interval [a, b) consists of all real numbersX suchthat a < X < b..

In the second and third cases we shall replace a by — 00 to denote the sets of real numbers
satisfying X < b and X < b respectively, and in the second and fourth cases we shall
replace b by + 00 to denote the sets of real numbers satisfying @ < X and a £ X
respectively. |f we use both conventions in the second case, this expresses R asthe “interval”
(=00, + 00).

Reminder. Although one can manipulate — 00 and + ©0 in many contexts asif they were
real numbers, these objects do not belong to the real number system and there are also contexts
in which one cannot manipulate them asif they were real numbers (for example, the product of

Oand + 00 cannot be defined, and likewise for the sum of — 00 and + ©0).



The Real Numbersand the Natural Numbers

We had previously postulated the existence of the natural numbers [\ in terms of the Peano
Axioms. In Section 4 of Munkres the existence of the natural numbersisformulated as a
consequence of the postulate that there is a system satisfying the axioms for the real numbers.

We shall take aslightly different approach, showing that [\l can be viewed as asubset of R ina
natural way. In particular, thereisauniquemap €: [l — R such that

e0)=0 ad eo(n))=¢en)+1

foral n O[N] . Specifically, this map can be defined recursively by the given formulas.

Arithmetic operations and the successor function. The following elementary identities will be
needed in the uniqueness proof for the real numbers; they hold for all m, n O [\ :

e(m) + eo(n) ) = e(m) + gn) +1
em) - ea(n)) = em)- gn)+em)

One can also use minor variants of these identities to define addition and multiplication on [\
abstractly in the “minimalist” goproach to the real number system.



