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Note 09 Work and Potential Energy
Sections Covered in the Text: Chapter 10. Some sections of Chapter 12.

In Note 08 we discussed the kind of mechanical ener-
gy an object may possess by virtue of its motion. This
energy is called kinetic energy. 1 Here we examine the
kind of mechanical energy an object may possess by
virtue of its position relative to a reference position.
This energy is called potential energy. We shall see that
when an object undergoes a change in its state of
motion (as when it falls under gravity for example),
its potential energy can be transformed into kinetic
energy. We also describe a force as being conservative
or non-conservative. We then examine what is meant
by the stability of a system.

Potential Energy of a System
We shall see that potential energy is associated with
position. We therefore begin by considering an object
whose position is being changed. Suppose the object
is a book being lifted through a distance ∆ r  in a
vertical direction above the Earth (Figure 9-1). We
suppose that as the external agent we move the book
from position ya to position yb by exerting an upward
force on the book. The force we apply is only
infinitesimally greater than the gravitational force
exerted downward by the Earth to ensure that the
book moves very slowly and no significant portion of
the work we do goes into increasing the book’s kinetic
energy. The system is the book itself.

Figure 9-1. A book is being lifted through a vertical distance
∆r by an external agent (us). Shown is the force of gravity
exerted by the Earth on the book. The reference position is
the Earth’s surface.

                                                                        
1 Strictly speaking, we mean translational kinetic energy here.
We shall be discussing rotational kinetic energy in Note 10.

According to the definition of the work done by the
agent of a constant force (Note 07) the work we do is

  Wwe.do = (–Fg ) •Δr = (mg
) 
j ) • [(yb – ya )

) 
j ]

= mgyb – mgya  > 0. …[9-1]

Since yb > ya, the work done is positive. By the work-
energy theorem (Note 08), the work done on the book
is by definition the increase in the book’s mechanical
energy. The energy here is not kinetic energy because
the book is moving very slowly. But the position of
the book relative to the Earth’s surface has changed. It
is logical to describe this energy acquired as potential
energy.

According to eq[9-1] the work done equals the
difference between two terms of the form mgy. We
therefore define

Ug (y) ≅ mgy , …[9-2]

as the book’s potential energy at position y. Automati-
cally, this definition sets the potential energy as a
function of y (there will be more on this below).  Ug(y)
has the unit of work, namely joules (J). In proposing
this definition, we assume that the potential energy at
the position y = 0, the surface of the Earth, is zero. 2

Thus we can write

Wwe.do = ΔUg =Ug(yb) –Ug (ya )  . …[9-3]

> 0.

The work we do on the book goes into increasing the
book’s potential energy.

The Energy of an Isolated System
Strictly speaking, the book in the previous section is
not an isolated system because it is being acted upon
by an external force (the force we apply from outside
the system). To consider the book as part of a larger
isolated system, we now include the Earth in the
system and remove our force on the book (Figure 9-2).

                                                                        
2 We shall see soon enough that the zero of potential energy is
arbitrary. Gravitational potential energy has a different form from
eq[9-2] if the zero is defined at a position at infinity.



Note 09

09-2

The book will then fall towards the Earth under the
action of the force of gravity.

Figure 9-2. A book falls through a vertical distance ∆r under
the action of the force of gravity. During the process the
book and the Earth are regarded as one isolated system.

As the book falls from yb to ya the work done by the
force of gravity is3

  Wgravity = (Fg ) • Δr = (–mg
) 
j ) • (ya – yb )

) 
j 

= mgyb – mgya  > 0. …[9-4]

Rearranging eq[9-4] we can write

Wgravity = mgyb – mgya = –(mgya – mgyb )

= –[Ug(ya ) –Ug (yb )] = –ΔUg . …[9-5]

where ∆Ug is as given by eq[9-3]. Thus the work done
by the force of gravity on the book equals the negative
of the change in the book’s potential energy. This
means that as the work done by gravity increases, the
potential energy of the book decreases.

As the book falls, its speed increases and so does its
kinetic energy. We have seen in Note 07 that the work
done by gravity on the book equals the increase in the
book’s kinetic energy. Thus

Wgravity = ΔKbook . …[9-6]

Since the Wgravity in eqs[9-5] and [9-6] are one and the
                                                                        
3 Strictly speaking, the work is done by the source or agent of
the force not by the force itself. The source of the force here is the
Earth’s gravitational field (see Note 05).

same we have
ΔK = –ΔUg ,

or ΔK + ΔUg = 0 . …[9-7]

Thus the change in kinetic energy plus the change in
potential energy of the book is zero. Or in other
words, as the book’s potential energy decreases, its
kinetic energy increases and vice versa. If we call the
sum of kinetic and potential energy the total mechani-
cal energy, Emechanical, then for the book

Emechanical = K +Ug ,

and ΔEmechanical = 0 , …[9-8]

using eq[9-7]. Since the change in the book’s mechan-
ical energy is zero, the book’s total energy remains
unchanged, or is conserved . This is the law of
conservation of energy for an isolated system. Thus the
sum of the kinetic and potential energies at some final
position yf equals the sum of the kinetic and potential
energies at some initial position yi. Written in full:

1
2
mvf

2 +mgyf =
1
2
mvi

2 + mgyi . …[9-9]

We have a very useful result here that we can apply to
any number of cases. Let us consider one such case, a
ball in freefall.4

Example Problem 9-1
A Ball in Freefall

A ball of mass m is dropped from rest a height h above
the surface of the Earth (Figure 9-3). Calculate (a) the
speed of the ball when at a height y above the Earth,
and (b) the speed of the ball at y if it is given an initial
speed vi (downwards) at the initial height h.

Solution:
This problem is similar to the falling book. We have
already seen that this problem can be solved using
kinematic equations alone. However, in the spirit of
this note we shall take the energy approach.
(a) The ball and the Earth make up an isolated system,
so we can apply the law of conservation of energy,
eq[9-9]:

                                                                        
4 Another important case is in the experiment “Linear Motion”.
As a glider moves down an inclined air track, its potential energy is
converted into kinetic energy.
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Ki +Ui = Kf +Uf .

The ball is dropped from rest so the initial kinetic
energy is zero. The initial height is h, the final height
is y and the final speed is vf. Thus

Figure 9-3. A ball in freefall.

0 +mgh = 1
2
mvf

2 +mgy .

Solving for vf we obtain:

€ 

v f = ± 2g(h − y) .

The positive sign should be taken here to conform
with the sign convention of Figure 9-3.
(b) In this case the ball is thrown downwards so the
initial kinetic energy is not zero. Applying the same
law of conservation of energy we have

1
2
mvi

2 +mgh = 1
2
mvf

2 +mgy .

Rearranging we can solve for vf:

v f
2 = vi

2 + 2g(h – y) .

so

€ 

v f = ± vi
2 + 2g(h − y . …[9-10]

Again we take the positive sign here to conform with
Figure 9-3. It is useful to note that this result would
apply even if the initial velocity were at an angle to
the horizontal.

Question. Eq[9-10] is the same as what equation in
kinematics?

Conservative and NonConservative Forces
In physics, a force is commonly classified as being
conservative or non-conservative. A conservative force is
defined in at least three ways:

1 A conservative force is a force that acts between
members of a system that causes no transformation of
mechanical energy to internal energy within the
system.

2 The work done by the agent of a conservative force
does not depend on the path followed by the members
of the system; the force depends only on the initial
and final states of the system.

3 The work done by the agent of a conservative force
when a member of the system is moved through a
closed path is zero.

Examples of conservative forces are the forces of
gravity and electromagnetism. A well-known non-
conservative force is the force of friction. These state-
ments require a few words of explanation.

The idea of a conservative force can be understood
with reference to the falling book (Figure 9-2). The
work done by gravity is given by eq[9-4]. This value
depends on the endpoints of the book’s travel (ya and
yb) and not on the path taken. So according to descrip-
tion 2, the force is a conservative one. Moreover, none
of the book’s initial potential energy is transformed
into internal energy; in fact, the potential energy
initially possessed by the book is transformed
completely into kinetic energy, eq[9-7]. So the force is
conservative according to description 1 as well.

On the other hand, the work done by the agent of a
force exerted against friction is partially transformed
into heat. This work depends on the path taken, the
longer the path the greater the work. The force of
friction is therefore a non-conservative force.

One characteristic of a conservative force is that a
relationship exists between it and a potential energy
function. This mathematical fact is very useful. We
explore this in more detail in the next section.
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Math Unit 7
Relationship Between a Conservative Force

and a Potential Energy Function
If a force is conservative then a relationship exists
between the force and a potential energy function. To
see this we return to the case of the falling book
discussed above. We found that the work done on the
book by the force of gravity can be expressed as the
negative of the difference between the initial and final
potential energies of the system of book and Earth:

Wgravity = mgyb – mgya = –ΔUg . …[9-11]

This expression is characteric of a conservative force.
A force is conservative if a potential energy function
can be found such that the work done by the force on
a member of the system in which the force acts
depends only on the difference between the initial and
final values of the function. This cannot be done for a
non-conservative force because the work done by the
agent of the force depends on the path followed
between the initial and final positions.

We can therefore derive a very general relationship
between a conservative force and its potential energy
function. Using the definition of work done by the
agent of a force in the x-direction, we can rewrite eq[9-
1] as5

W = Fs (x)dxxi

x f

∫ = –ΔU(x)

= – U(x f ) –U(xi)[ ] = –U (xf ) +U(xi ) . …[9-12]

Thus the potential energy function can be written as

U(x f ) = – Fs(x)dxx i

x f

∫ +U (xi) . …[9-13]

This result makes clear that if we know what the force
function F(x) is then we can calculate the potential
energy function U(xf) by integration. The value of
U(xi) can be arbitrarily set to zero (or to any other
value). This value is not important because it simply
shifts the value of U(xf) by a constant, and it is the
change in the potential energy that is meaningful.

Conversely, if we know the potential energy func-
tion then the corresponding force function can be
found by differentiation. It follows from eq[9-13] that

                                                                        
5 This could just as well have been written for the y- or vertical
direction of Figure 9-2.

F(x) = – dU(x)
dx

. …[9-14]

This relationship is of great value in solving for either
F(x) or U(x) for a conservative system. Let us consider
two examples.

Example Problem 9-2
The Potential Energy Function of the Force of Gravity

Starting from the general expression for a potential
energy function. eq[9-13], find the potential energy
function for the force of gravity, mg, near the surface
of the Earth.

Solution:
Writing eq[9-13] in terms of the variable y and taking
the initial and final positions as ya and yb we have

U(yb ) = – (–mg)dy
ya

yb

∫ +U (ya )

= –[(–mg)yb – (–mg)ya ] +U(ya ) .

Now if we let ya = 0 (for the surface of the Earth) and
yb = y and put U(0) = 0 as we did earlier, we have

U(y) = mgy .

This is obviously the same as eq[9-2].
This expression can also be obtained directly from

eq[9-14]. Changing the variable from x to y, taking ya =
0 for the surface of the Earth and rearranging,

U(y) = − F(y)dy = − (−mg)dy
0

y

∫0

y

∫
= mgy .

Example Problem 9-3
The Potential Energy Function of a Spring

Starting from the general expression for a potential
energy function associated with a conservative force,
eq[9-13], find the potential energy function for the
spring force, F(x) = –kx.

Solution:
A spring obeys Hooke’s law so F(x) = –kx (Note 08).
The potential energy stored in a block-spring system
is



Note 09

09-5

U(x f ) = – (–kx)
xi

x f

∫ dx +U(xi)

=
1
2
kx f

2 – 1
2
kxi

2 +U(xi) .

If we let xi = 0 and put xf = x and U(0) = 0 when the
block is at the equilibrium position we are left with

U(x) = 1
2
kx2 . …[9-15]

Notice that by applying eq[9-14] we obtain in reverse
the spring force F(x) = –kx. Eq[9-15] can be obtained
directly from eq[9-14]:

U(x) = − F(x)dx
0

x

∫ = − (−kx)dx
0

x

∫

=
1
2
kx2 − 0 = 1

2
kx2

Gravitational Potential Energy
We have already examined the concept of gravitation-
al potential energy when the system is in essence a
single particle moving near the Earth’s surface. Here
the force of gravity is constant to a good approxima-
tion (Figures 9-1 and 9-2). Here too the potential ener-
gy function takes a particularly simple form, eq[9-2].

However, Fg = -mg and Ug(y) = mgy are not the most
general expressions for the force of gravity or for the
corresponding potential energy function. We now
broaden our perspective to include the Earth in the
system. In the process we shall change the reference
or zero position of potential energy of the system    from
a point on the surface of the Earth to a point infinitely
distant from the system      .

Consider a particle of mass m moving between two
arbitrary positions [A] and [B] above the surface of the
Earth (Figure 9-4). We begin by writing the gravita-
tional force in its most general vector form:

  
Fg (r) = – GMEm

r2
) r . …[9-16]

  
) r  is a unit vector directed from the Earth toward the
particle. The negative sign indicates that the force is
attractive and points downwards toward the center of
the Earth. Since the gravitational force is a conser-
vative force we can write it in terms of a potential

energy function using eq[9-13]:

Figure 9-4. A mass m moves between two positions above
the center of the Earth.

Ug (rf ) = – F(r)dr
ri

rf

∫ +Ug (ri )

= GMEm
dr
r2ri

r f

∫ +Ug (ri)

or Ug (rf ) = –GMEm
1
rf
– 1
ri

 

  
 

  
+Ug(ri) .…[9-17]

If we take ri = ∞ , rf = r (some arbitrary position) and
put U(∞) = 0, eq[9-17] reduces to

Ug (r ) = –
GMEm
r

. …[9-18]

How U(r) varies with r  is illustrated in Figure 9-5.6
U(r) is seen to be always negative. This is an attribute
of a system in which the force is attractive. As r → ∞
U(r) → –0 (where the –ve sign means it approaches
zero from negative values). A mass m released above
the surface of the Earth will move naturally toward
the Earth (downwards in potential energy). As the
mass moves toward the Earth the potential energy of
the system becomes more and more negative. Because
energy is conserved, the kinetic energy of the system
becomes more and more positive. At the Earth’s
surface r = RE and the potential energy function takes
the value

                                                                        
6 A quick comparison of eqs[9-2] and [9-18] shows them to be
quite different. You should be able to explain this difference based
on the points of view of system, form of the gravitational force and
position of the zero of potential energy.
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Figure 9-5. U(r) vs r for gravitational potential energy.

Ug (RE ) = –
GMEm
RE

This treatment can also be followed for the electric
force. It will be covered in PHYA21.

Energy Diagrams and Stability of
Equilibrium

Information about the large-scale motion of a system
can often be deduced from a study of the graph of the
system’s potential energy function. A case in point is
the graph for the block-spring system (Figure 9-6a).

The spring force F(x) is related to a potential energy
function U(x) as follows:

F(x) = – dU(x)
dx

= –kx .

This means that the force F(x) is equal to the negative
of the slope of the U(x) curve at x . If the block is
placed at rest at the equilibrium position, x = 0, where
F(x) = 0, then it will remain there unless some external
force acts on it. If the spring is stretched to the right
from equilibrium, then x is positive and the slope
dU(x)/dx is positive; F(x) is therefore negative and the
block will accelerate back toward x = 0. If the spring is
compressed, then x  is negative and the slope is
negative; F(x) is therefore positive and again the block
will accelerate toward x = 0.

These facts indicate that the x  = 0 position is a
special position—a position of stable equilibrium. By

this is meant that any movement away from this
position results in a force directed back toward this
position. This is characteristic of a restoring force. In
general, positions of stable equilibrium correspond to
those values for which U(x) has a relative minimum
value on an energy diagram.

Figure 9-6. (a) How the potential energy of a system of a
mass on a spring varies with x. The equilibrium position, x
= 0 is a minimum in the potential energy function and
therefore a position of stable equilibrium.

More details of the motion of the mass on the end of
the spring can be deduced from the energy diagram.
If we begin by releasing the mass from rest at a
position x = xmax, the potential energy of the system is
(1 / 2)kxmax

2  and the kinetic energy is zero. Thus when
the mass is placed at this position the total energy E of
the system is composed of potential energy only:

E(xmax) =
1
2
kxmax

2 .

If friction is zero then this value of mechanical energy
doesn’t change; it is represented by a horizontal line
in Figure 9-6a. When the mass is released it moves
back towards the equilibrium position. As it passes
through the equilibrium position it is moving with
maximum speed and the energy is entirely kinetic.
The mass moves through this position and comes to
rest briefly at the position x = –xmax. Because E  is
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constant the mass moves no further to the left than the
position x = –xmax. Subsequently the mass moves back
and forth through the equilibrium position with
constant energy. This motion is known as an oscillation
or  vibration. We shall continue this study in Note 11.

Unstable Equilibrium
Figure 9-7 shows a hypothetical potential energy
function. This function goes through a maximum at x
= 0. The position x = 0 is a position of equilibrium in
the sense that the force on a particle placed there is
zero. You should be able to reason using arguments
put down in previous sections that if a mass is
displaced on either side from x = 0, then it will tend to
move away from the position x = 0, not towards. For
this reason this position is called a position of unstable
equilibrium.

A valley and a hill are simple examples of positions
of stable and unstable equilibrium, respectively. A
round boulder if released at the top of a hill will tend

to roll downwards. If it does roll down it will
eventually come to rest at a point in the valley.

Figure 9-7. An example of a potential energy function that
goes through a maximum at x = 0. The position x = 0 is a
position of unstable equilibrium.

To Be Mastered

• Definitions: potential energy, isolated system, conservation of mechanical energy
• Definitions: conservative force, non-conservative force
• relationship between a conservative force F(x) and a potential energy function U(x) (to be committed to

memory:

F(x) = − dU(x)
dx

• Definitions: position of stable equilibrium, position of unstable equilibrium

Typical Quiz/Test/Exam Questions

1. (a) Explain what is meant by a conservative force.
(b) Give one example of a conservative force.
(c) An object of mass m is dropped from a height h above the surface of the Earth. Starting from the principle
of conservation of energy, derive an expression for its speed when it hits the ground (neglect air resistance).

2. Give a single definition of the following terms:
(a) isolated system
(b) conservative force

3. A force function is given by

F(x) = −1 + x2

2!
−
x4

4!
+
x6

6!
−
x8

8!
+
x10

10!
−
x12

12!
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Answer the following questions:

(a) Find the corresponding potential energy function U(x). Take U(0) = 0.
(b) Using a spreadsheet program (like Microsoft Excel, Microsoft Works, AppleWorks, etc) plot the potential
energy function between x = 0 and x = 6 (approximately). Use a convenient increment, say ∆x = 0.1.
(c) Can you identify positions of stable and unstable equilibrium? If so, at what values of x?

4. Solve problem 3 taking U(0) = 2.


