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Work

In this section we review the concepts of force, work, kinetic energy, and potentia

energy, and their relations. Let's begin with one-dimensond motion dong asraight

line. A patidewith mass m moves dong agraight line (the x axis) under the action of
aforce F whose x-component depends only on the particle's pogition, not on its velocity
ortime. Thatis F isafunctiononly of x; we denote thisreationship as F(x). During
adisplacement of the particlefrom x; to x», thework Wi, done by the forceis defined
as

W, = FF(x) x. M
X

Potential Energy

The work defined in Eq. (1) can be expressed in terms of a potential-energy function, and
we can think of potential energy as a shorthand way to caculate the work done by a
force. Here are two familiar examples.

Example1: The particle movesaong averticd linein auniform gravitationd fied g.

The coordinate x isthe vertica displacement of the particle above areference postion
where x =0. (Thatis, x ispodtive when the particle is above the reference position,
negative when below.) The force (or, more precisaly, the x-component of force) is
condant andisgivenby F =- mg. (Do you understand why thisis negative?) During a
displacement from point x; to point X2, thework W, done by the gravitationd force
IS

W, = [ (-mg) dx = mox, - mox, @
We define a potential-energy function V(x) as
V(X) = mgx. ©)

Then we can express Eq. (2) as

W, =V (x) - V(%) (4)
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When x» > X1, thepaticeisriang, Wi» isnegaive and V(x2) isgreater than V(x1).
When xz < X3, thepatideisfdling, Wi, ispodtive and V(x2) islessthan V(x1). So
we can think of V(x) asrepresenting an opportunity for the force to do work. When the
work W done by the gravitationd forceis postive, some of that opportunity is"used
up,” and V decreases. When W isnegdtive, V increases.

Example 2. The particle moves dong the x axis under the action of a spring that gpplies
aforce having an x component that isdirectly proportional to the particle's displacement
from an equilibrium postion, which we teke to be x = 0, and always directed toward the
equilibrium pogtion (i.e., opposite to the displacement). That is,

F(x) = -kx. (5)
We assume the spring has open coils, so it can be both stretched and compressed, with
the same force congtant. Then Eq. (5) isvalid for both positive and negative values of  x.

When the particle moves from point x; to point x», thework W, done by theforce is

W, = (lddx = $ke' - kg (6)
Asin Example 1, we define a potentid-energy function V(x) as

V(x) = ke, ()
Then Eq. (6) becomes

Wo =V(X) - V(%), (8)

just asin Example 1.

Note that in each example the force function F(x) and the potentia-energy function V(x)
arerelated by
d
F(x) = - d—V(X)- ©)
X
Thisrdaion isvdid for any force function F(x) and the corresponding potentia-energy
function V(x), aswewill now prove.

A generd definition of the potentid-energy function V(X) is

V(x) = J Fx)dx, (10)

where X iSan arbitrary reference point. By definition, V(X)) = 0. In both of the
above examples, X« =0 You should verify that both examples are consstent with the
generd definition given by Eq. (10). This expression represents the work done by the
force when the particle moves from an arbitrary initid postion x to the reference
position Xef, and so it is the opportunity for doing work that is"used up* during this
displacement.
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If you know how to take the derivative of a definite integral with repect to one of its
limits, deriving Eq. (9) from Eq. (10) istrivid. (See Stewart, Section 5.3) If not,
congder the following argument. For avery smdl displacement Dx, we can consider
the force F(x) to be nearly congstant, s0 W, @F(x) Dx. Then Eq. (4) becomes

_V(x+Dx) - V(X) (12)

W, @F(X)Dx =V(x) - V(x+Dx), o F(x) = =

Inthelimitas Dx ® O, thisbecomes Eq. (9).

Work and Kinetic Enerqgy

Thekineticenergy K of aparticlewith mass m isdefined as

K =4m? = im¢, (12)

where v=x= ccjlt_x is the particle's ingtantaneous velocity (or, more precisaly, the x-

component of itsingtantaneous velocity). |If the particle hasvelocity vi at postion X
and velocity v, a pogtion Xo, itskinetic energies at thesetwo pointsare K; and Ko,
where

Kl = §1V12 and K2 = %VZZ .

The work-energy theorem, derived from Newton's second law, states that

X2

v =W, = J F dx. (13)

X

— 1,2
Kz' Kl_WZ' or AN

NI

1

If F isthetotd force acting on the particle, Eq. (13) isalways true, irrepective of the
nature of the force, which may be constant or may depend on position (x), velocity
(v =x,) time (t) oradl of these.

In the specid casewhen F dependsonly on x, Wi, can always be expressed in terms of
apotentid energy function V(x), asin Egs. (4) and (8). Abbreviating V(x1) as Vi,
and so on, we can rewrite Eq. (13) as

KZ-K1=V\{2=V1-V2, or K1+V1=K2+V2- (14)

Thepaints x; and X, areabitrary, so Eq. (14) showsthat the sum of kinetic and
potentia energies (K + V) isthesame at dl points of the motion. We cdll thisthe total
energy E, and EqQ. (14) saysthatinthiscase K + V = E = condant, an example of
conservation of energy. Butif thetotd force F depends explicitly on time or velocity,
then there is no such thing as a potentid-energy function, and Eq. (14) isnot valid.
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Equilibrium

A patideisin equilibrium if thenet force F actingonitiszero. If itisatres a sucha
point, it stays there forever because it has zero acceleration and so can never begin to
move. The equilibrium may be stable or unstable. At astable equilibrium point, when
the particle is displaced dightly, the direction of the force is such asto tend to push it
back toward the equilibrium point. That is, for smdl displacements, the force is dways
oppositein direction to the displacement.

At an ungable equilibrium point, a particle digolaced dightly from equilibrium
experiences aforce directed away from the equilibrium position (i.e., the samedirection
as the displacement), and the particle tends to move farther and farther from the
equilibrium point..

The conditions for stable and unstable equilibrium can be expressed smply in terms of
the force and potentia energy functions F(x) and V(x). Suppose X, isan equilibrium
point, sothat F(X,) =0. Weexpand F(x) inaTaylor series about this point:

2
FO=FOo) + || 0ex) SR et vy
X lx=x 2! dx“ | _
X=X
The first term is zero because X, isan equilibrium point. If x - X, isvery smdl, then
the second term is the dominant one. Thus for points very near the equilibrium postion,

F @ || - (16)

dX x=x

We seethat if dF/dx ispositiveat x,, F ispodtivewhen x isgresater than X, and
negative when x islessthan X,. Ineach casethe force tends to push the particle farther
from the equilibrium pogtion. We conclude that when dF/dx ispositive at X, , thisisa
point of unstable equilibrium. A smilar argument for the opposite case shows that when
dF/dx isnegativeat Xo, itisapoint of stable equilibrium.

These conditions can also be expressed in terms of the potentiad-energy function V(x).
Expanding it inaTaylor series about X,, we get
dv 1d¥
V) V(%) + {—} (x- %) +=|) (o xg2 4 @)
dx X=x, 2! | dx x=x,

From Eq. (9), the second term is zero because F(X,) = 0. Inthethird term the derivative
isequa to (- dF/dX)x = xo. We conclude that the above conditions can be written in terms
of thesign of thevaueof d?V/dx? a the equilibrium point X = Xo:

HZ} >0 U stableequilibrium, |:d3\/
x=%,

dxz} <0 U unstable equilibrium. (18)
x=x,
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In exceptiona cases, one or more derivativesof F(X) may bezeroa X,. It turnsout that
if the first non-vanishing derivaive of F(x) isof even order, the equilibrium isunstable;
if itisof odd order, the equilibrium is stable.

These rdationships between F(x) and V(x) have asample graphica interpretation. At
each point, the force F isthe negative of the dope of the V curve. At apoint of stable
equilibrium, F(x) iszero and V(x) hasaminimum. Such astuation isoften cdled a
potential well.

Equations (15), (16), and (17) show that when x isvery cdloseto X,, theforceis
goproximately directly proportional to the displacement (X - X,) from equilibrium, with
proportiondity constant k, where

- [5].- [,
dx N~ dx -

(Thenegative sgnisinduded so that k isapostive quantity.) Thisdirect
proportiondity of force and displacement is characterigtic of smple harmonic motion;
therefore the resulting motion is goproximately simple harmonic, with angular frequency

K \/-[dF/dx]X:Xo _ \/[sz/dxz]x_xo.

m m

m

(20)

Wo

Caution

This discusson of mation near astable equilibrium point X, depends on the derivatives
in Eg. (19) being non-zero at X = Xo. In exceptiona cases, they may bezeroat X = Xo.
Then the firg nonvanishing term in the Taylor expansgon of F(x) in Eq. (15) contains
(X - Xo)* or even ahigher power of (X - Xo). Inthiscase, thereis no goproximation in
which F isdirectly proportiona to (X - Xo), andthemotion isnot even gpproximately
smple harmonic, even for the smallest displacements from equilibrium.

Example
As an example of some of the foregoing discussion, consider a potentid-energy function
V(X) = 0.1(0)'(21 - %)

with x measured in nanometersand V in eectronvolts. This might be an goproximate
potentia-energy function for the atlomsin adiatomic molecule. A potentid-energy
function with this generd shape is often caled apotential well. We would like to draw
graphsof V(x) and the corresponding force F(x), show that there is a stable equilibrium
point X,, determineitslocation, and find thevaueof V a the eguilibrium point Xo.
Hereis an outline of the caculation; you should try tofill in the details, using Maple.
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0.15
o] | Use Maple to obtain a graph similar to the one at the
S left. The force acting on the particle is given by Eq.

] (9). Calculate the derivative and st it equal to zero

it R ~ tofind x,=0.10 nm. Substitutethis back into V(x)
ot TP 002 0E 05 0B 0 6 fing thet & the eguilibrium point, V = - 0.10 eV.
004 1., Also take the second derivative of V, to show that
015 'a__ SR i a X =X, thisderivativeis postive (showing that X,
ey e isapoint of stable equilibrium).

.14 b

If thetotal energy E isgreater than zero, X can become indefinitely large, but wheniitis
lessthan zero, x islimited to afinite range.

Asan additiona exercise, suppose that the total energy of the sysemis E=-0.05eV, as
shown by the horizontd line. The pointswherethisline intersectsthe V(x) curve arethe
points where the potentid energy equals the total energy and hence the kinetic energy is
zero. (l.e, the particle stops and reverses direction.) Hence these points represent the
limits of the motion. Use Mapleto solvefor thevauesof x at these points and show

that Xmin = 0.059 nm and Xmax = 0.341 nm.

Motion in a Potential Wdll

When a particle moves in a potentia well, asin the above example, the motion is
confined to afinite range of vaduesof x if the energy is sufficiently small. Inthiscase
the particlés motion is periodic; it movesfrom Xmin t0 Xmax and back, with a definite
period T (timefor one complete cycle). We can use energy considerations to derive a
generd expression for the period. Firg, thetime dt required to move adistance dx is
gvenby dt = dx/v. Fromtheenergy rdation, E = K + V, weget

imv? + V(x) = E. (21)
Solving thisfor v, we get

v = 1/%[E - V()] S0 (22)

= X - \ﬁ—dx (23)
v 2 JE-V(X)

Thetimefor the particleto go from Xmin t0 Xmax iStheintegrd of this expression, and

the period (the totd time for the round trip) istwice that. Thusthe period is given by

- 2
T \/_mﬂ (24)

Note that thisis a generd result, not limited to smal oscillations. The small-oscillaion
gpproximation was not used in its derivation. In generd the period T of the motion
depends on the total energy E.
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Three Dimensions

When a particle moves in two or three dimensions, the generdized definition of work,
corresponding to Eq. (1), involvesalineintegral. Consider a particle acted on by aforce
that depends only on the particle's position (position vector 7). We denote thisforce as

F () . When the particle moves from a point with position vector 7, to apaint with
position vector T, , thework Wi done by theforce isdefined as

W, = f%ﬁ)mr (25)

2

With this more generd definition of work, Eq. (13) isdill vdid. Thatis,
- B = W, = [P, (2

Thereisaggnificant added complication in this case because there are many different
paths leading from point ¥, topoint T,. Ingenerd theintegra in Eq. (26) is different

for different paths.

However, thereis a class of position-dependent forces for which Eq. (25) is independent
of path. Such aforceis caled aconservative force field. Inthis case we can definea
potential energy function in analogy to Eq. (10). We choose areference point with

position vector T, , and we define
V(F) = j F(r)dr". 27)

This definition is unambiguousiif the integrd is independent of path.  The line integrd of
a consarvative force around a closed path is dways zero. Can you prove this?

From thisdefinition of V(r) , it can be shown that
F(F) = -grad V(T) = - N\V(F). (28)
This equation is the three-dimensond generdization of Eq. (9).

Finally, Stokes theorem can beusedto show thatif N~ F = O everywherein aregion,
the force is conservative for dl pointsin the region.

Thus there are four equivaent definitions of a conservative force in three dimensons.

(1) Thelineintegrd of F(T) isindependent of path, for al pathsin aregion.
(2) Thelineintegrd of F(r) around every closed path in aregion is zero.
(3) Thereisapotentia-energy function V(F) suchthat

F(F) = -grad V() = - NV(F).
(4 N’ F =0 eveywherein the region.
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