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Work 
 
In this section we review the concepts of force, work, kinetic energy, and potential 
energy, and their relations.  Let's begin with one-dimensional motion along a straight 
line.  A particle with mass  m  moves along a straight line (the x axis) under the action of 
a force  F  whose x-component depends only on the particle's position, not on its velocity 
or time.  That is,  F  is a function only of  x;  we denote this relationship as  F(x).  During 
a displacement of the particle from  x1  to  x2,   the work  W12  done by the force is defined 
as 

 W F x dx
x
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Potential Energy 
 
The work defined in Eq. (1) can be expressed in terms of a potential-energy function, and 
we can think of potential energy as a shorthand way to calculate the work done by a 
force.  Here are two familiar examples. 
 
Example 1: The particle moves along a vertical line in a uniform gravitational field  g.  
The coordinate  x  is the vertical displacement of the particle above a reference position 
where  x = 0.  (That is,  x  is positive when the particle is above the reference position, 
negative when below.)  The force (or, more precisely, the x-component of force) is 
constant and is given by  F = −mg.  (Do you understand why this is negative?)  During a 
displacement from  point  x1  to point  x2,  the work  W12  done  by the gravitational force 
is 

 W mg dx mgx mgx
x
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We define a potential-energy function  V(x)  as   

 V x mgx( ) .=   (3) 

Then we can express Eq. (2)  as 

 W V x V x12 1 2= −( ) ( ).  (4) 
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When  x2 > x1,  the particle is rising,  W12  is negative, and  V(x2)  is greater than  V(x1). 
When  x2 < x1,  the particle is falling,  W12  is positive, and  V(x2)  is less than  V(x1).  So 
we can think of  V(x)  as representing an opportunity for the force to do work.  When the 
work  W  done by the gravitational force is positive,  some of that opportunity is "used 
up," and V decreases.  When  W  is negative,  V  increases. 
 
Example 2:  The particle moves along the  x axis under the action of a spring that applies 
a force having an  x component that is directly proportional to the particle's displacement 
from an equilibrium position, which we take to be  x = 0, and always directed toward the 
equilibrium position (i.e., opposite to the displacement).  That is,   

 F(x )  =  −kx.   (5) 

We assume the spring has open coils, so it can be both stretched and compressed, with 
the same force constant.  Then Eq. (5) is valid for both positive and negative values of  x. 
 
When the particle moves from point  x1  to point  x2,  the work  W12  done by the force  is 

 W kx dx kx kx
x
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As in Example 1, we define a potential-energy function  V(x)  as 

 V x kx( ) .= 1
2

2   (7) 

Then Eq. (6) becomes  

 W V x V x12 1 2= −( ) ( ),  (8) 

just as in Example 1. 
 
Note that in each example the force function  F(x)  and the potential-energy function V(x)  
are related by 

 F x
d
dx

V x( ) ( ).= −  (9) 

This relation is valid for any force function  F(x)  and the corresponding potential-energy 
function  V(x),  as we will now prove. 
 
A general definition of the potential-energy function  V(x)  is 

 V x F x dx
x

x
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where  xref  is an arbitrary reference point.  By definition,  V(xref) = 0.  In both of the 
above examples,  xref = 0  You should verify that both examples are consistent with the 
general definition given by  Eq. (10).  This expression represents the work done by the 
force when the particle moves from an arbitrary initial position  x  to the reference 
position  xref, and so it is the opportunity for doing work that is "used up" during this 
displacement. 
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If you know how to take the derivative of a definite integral with respect to one of its 
limits, deriving  Eq. (9)  from  Eq. (10)  is trivial.  (See Stewart, Section 5.3)  If not, 
consider the following argument.  For a very small displacement  ∆x,  we can consider 
the force  F(x)  to be nearly constant, so  W F x x12 ≅ ( ) .∆   Then  Eq. (4)  becomes 

 W F x x V x V x x F x
V x x V x

x12 ≅ = − + = − + −
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In the limit as  ∆x  → 0, this becomes  Eq. (9). 
 
 
Work and Kinetic Energy 
 
The kinetic energy  K  of a particle with mass  m  is defined as 

 K mv mx= =1
2
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where  v x
dx
dt

= =&   is the particle's instantaneous velocity  (or, more precisely, the  x-

component of its instantaneous velocity).  If the particle has velocity  v1  at position  x1 
and velocity  v2  at position  x2,  its kinetic energies at these two points are  K1  and  K2,  
where 
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The work-energy theorem, derived from Newton's second law, states that 

 K K W v v W F dx
x
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If  F  is the total force acting on the particle,  Eq. (13) is always true, irrespective of the 
nature of the force, which may be constant or may depend on position  (x),  velocity  
(v x= & , )  time  (t)  or all of these. 
 
In the special case when  F  depends only on  x,  W12  can always be expressed in terms of 
a potential energy function  V(x),  as in  Eqs. (4)  and  (8).  Abbreviating  V(x1)  as  V1,  
and so on, we can rewrite  Eq. (13)  as 

 K K W V V K V K V2 1 12 1 2 1 1 2 2− = = − + = +, .or  (14) 

The points  x1  and  x2  are arbitrary, so  Eq. (14)  shows that the sum of kinetic and 
potential energies  (K + V)  is the same at all points of the motion.  We call this the total 
energy  E,  and Eq. (14)  says that in this case    K  +  V  =  E =  constant,  an example of 
conservation of energy.  But if  the total force  F  depends explicitly on time or velocity, 
then there is no such thing as a potential-energy function, and Eq. (14) is not valid. 
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Equilibrium 
 
A particle is in equilibrium if the net force  F  acting on it is zero.  If it is at rest at such a 
point, it stays there forever because it has zero acceleration and so can never begin to 
move.  The equilibrium may be stable or unstable.  At a stable equilibrium point, when 
the particle is displaced slightly, the direction of the force is such as to tend to push it 
back toward the equilibrium point.  That is, for small displacements, the force is always 
opposite in direction to the displacement. 
 
At an unstable equilibrium point, a particle displaced slightly from equilibrium 
experiences a force directed away from the equilibrium position (i.e., the same direction 
as the displacement), and the particle tends to move farther and farther from the 
equilibrium point.. 
 
The conditions for stable and unstable equilibrium can be expressed simply in terms of 
the force and potential energy functions  F(x)  and  V(x).  Suppose  xo  is an equilibrium 
point, so that  F(xo) = 0.  We expand  F(x)  in a Taylor series about this point: 
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The first term is zero because  xo  is an equilibrium point.  If  x  −  xo  is very small, then 
the second term is the dominant one.  Thus for points very near the equilibrium position, 

 F x
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We see that  if  dF/dx  is positive at  xo,  F  is positive when  x  is greater than  xo and 
negative when  x  is less than  xo.  In each case the force tends to push the particle farther 
from the equilibrium position.  We conclude that when  dF/dx  is positive  at  xo  , this is a 
point of unstable equilibrium.  A similar argument for the opposite case shows that when  
dF/dx  is negative at  xo,  it is a point of stable equilibrium. 
 
These conditions can also be expressed in terms of the potential-energy function  V(x).  
Expanding it in a Taylor series about  xo,  we get 
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From Eq. (9),  the second term is zero because  F(xo) = 0.  In the third term the derivative 
is equal to  (−dF/dx)x = xo.  We conclude that the above conditions can be written in terms 
of the sign of  the value of  d2V/dx 2   at  the equilibrium point  x = xo: 
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> stable equilibrium, < unstable equilibrium. (18) 
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In exceptional cases, one or more derivatives of  F(x)  may be zero at  xo.  It turns out that 
if the first non-vanishing derivative  of  F(x)  is of even order, the equilibrium is unstable; 
if it is of odd order, the equilibrium is stable. 
 
These relationships between  F(x)  and  V(x)  have a simple graphical interpretation.  At 
each point, the force  F  is the negative of the slope of the  V  curve.  At a point of stable 
equilibrium,  F(x)  is zero  and  V(x)  has a minimum.  Such a situation is often called a 
potential well. 
 
Equations (15), (16), and (17) show that when  x  is very close to  xo,  the force is 
approximately directly  proportional to the displacement  (x − xo) from equilibrium, with 
proportionality constant  k,  where 
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(The negative sign is included so that  k  is a positive quantity.)  This direct 
proportionality of force and displacement is characteristic of simple harmonic motion; 
therefore the resulting motion is approximately simple harmonic, with angular frequency 
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Caution 
 
This discussion of motion near a stable equilibrium point  xo  depends on the derivatives 
in Eq. (19) being non-zero at  x = xo.  In exceptional cases, they may be zero at  x = xo.  
Then the first nonvanishing term in the Taylor expansion of  F(x)  in Eq. (15)  contains  
(x − xo)2  or even a higher power of  (x − xo).  In this case, there is no approximation in 
which  F  is directly proportional to  (x − xo),  and the motion is not even approximately 
simple harmonic, even for the smallest displacements from equilibrium.    
 
Example 
 
As an example of some of the foregoing discussion, consider a potential-energy function 

 V x
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with  x  measured in nanometers and  V  in electronvolts.  This might be an approximate 
potential-energy function for the atoms in a diatomic molecule.  A potential-energy 
function with this general shape is often called a potential well.  We would like to draw 
graphs of  V(x)  and the corresponding force  F(x), show that there is a stable equilibrium 
point  xo,  determine its location,  and find the value of  V  at  the equilibrium point  xo.  
Here is an outline of the calculation; you should try to fill in the details, using Maple. 
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Use Maple to obtain a graph similar to the one at the 
left.  The force acting on the particle is given by Eq. 
(9).  Calculate the derivative and set it equal to zero 
to find  xo = 0.10 nm.  Substitute this back into  V(x)  
to find that at the equilibrium point,  V = −0.10 eV.  
Also take the second derivative of  V,  to show that 
at  x = xo  this derivative is positive (showing that  xo  
is a point of stable equilibrium).  
 

If the total energy  E  is greater than zero, x  can become indefinitely large, but when it is 
less than zero,  x  is limited to a finite range. 
 
As an additional exercise, suppose that the total energy of the system is  E = −0.05 eV, as 
shown by the horizontal line.  The points where this line intersects the  V(x)  curve are the 
points where the potential energy equals the total energy and hence the kinetic energy is 
zero. (I.e., the particle stops and reverses direction.)  Hence these points represent the 
limits of the motion.  Use Maple to solve for the values of  x  at these points and show 
that  xmin = 0.059 nm  and  xmax = 0.341 nm. 
 
Motion in a Potential Well 
 
When a particle moves in a potential well, as in the above example, the motion is 
confined to a finite range of values of  x  if the energy is sufficiently small.  In this case 
the particle's motion is periodic; it moves from  xmin  to  xmax  and back, with a definite 
period  T  (time for one complete cycle).  We can use energy considerations to derive a 
general expression for the period.  First, the time  dt required to move a distance  dx  is 
given by  dt  =  dx/v.  From the energy relation,  E  =  K  +  V,  we get 
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The time for the particle to go from  xmin  to  xmax  is the integral of this expression, and 
the period (the total time for the round trip) is twice that.  Thus the period is given by 

 T m
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Note that this is a general result, not limited to small oscillations.  The small-oscillation 
approximation was not used in its derivation.  In general the period  T  of the motion 
depends on the total energy  E.  
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Three Dimensions  
 
When a particle moves in two or three dimensions, the generalized definition of work, 
corresponding to Eq. (1), involves a line integral.  Consider a particle acted on by a force 
that depends only on the particle's position  (position vector  

r
r ).  We denote this force as  r r

F r( ) .  When the particle moves from a point with position vector  rr1  to a point with 

position vector  rr2 ,  the work  W12  done by the force  is defined as 
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With this more general definition of work,  Eq. (13)  is still valid.  That is,  
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There is a significant added complication in this case because there are many different 
paths leading from point  

r
r1   to point  

r
r2 .  In general the integral in Eq. (26) is different 

for different paths. 
 
However, there is a class of position-dependent forces for which Eq. (25)  is  independent 
of path.  Such a force is called a conservative force field.  In this case we can define a 
potential energy function in analogy to Eq. (10).  We choose a reference point with 
position vector 

r
rref ,  and we define 
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This definition is unambiguous if the integral is independent of path.   The line integral of 
a conservative force around a closed path is always zero.  Can you prove this?   
 
From this definition of  V ( )rr ,  it can be shown that  

 
r r r r
F r) = r r( ( ) ( ).− = −∇grad V V  (28) 

This equation is the three-dimensional generalization of  Eq. (9).   
 
Finally,  Stokes' theorem can be used to show that if  ∇ ×

r
F = 0   everywhere in a region, 

the force is conservative for all points in the region. 
 
Thus there are four equivalent definitions of a conservative force in three dimensions: 
 
(1) The line integral of  

r r
F r)(   is independent of path, for all paths in a region. 

(2) The line integral of  
r r
F r)(   around every closed path in a region is zero. 

(3) There is a potential-energy function  V
r
rb g   such that   
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(4) ∇ ×
r
F = 0   everywhere in the region. 
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