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Working with Gravity: Potential Energy 
Michael Fowler 31/1/07 

Gravitational Potential Energy near the Earth 
We first briefly review the familiar subject of gravitational potential energy near the 
Earth’s surface, such as in a room.  The gravitational force is of course  vertically 
downwards. 

F mg=

 
To raise a mass m, we must apply an upward force F− , balancing gravity, so the net 
force on the body is zero and it can move upwards at a steady speed (ignoring air 
resistance, of course, and assuming we gave it a tiny extra push to get it going). 
Applying the steady force as the mass moves a small distance F− rΔ  takes work 

F r− ⋅Δ , and to raise the mass m through a height h takes work mgh.  This energy is 
stored and then, when the object falls, released as kinetic energy.  For this reason it is 
called potential energy, being “potential kinetic energy”, and written  
 

( ) .U U h mgh= =  
 
Note one obvious ambiguity in the definition of potential energy: do we measure h from 
the floor, from the top of our workbench, or what?  That depends on how far we will 
allow the raised object to fall and convert its potential energy to kinetic energy—but the 
main point is it doesn’t matter where the zero is set, the quantity of physical interest is 
always a difference of potential energies between two heights—that’s how much kinetic 
energy is released when it falls from one height to the other. (Perhaps we should mention 
that some of this potential energy may go to another form of energy when the object 
falls—if there is substantial air resistance, for example, some could end up eventually as 
heat.  We shall ignore that possibility for now.)  
 

h

U(h) 
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Onward and Upward 
Let’s now consider the work involved in lifting something so high that the Earth’s 
gravitational pull becomes noticeably weaker.  
  
It will still be true that lifting through rΔ  takes work F r− ⋅Δ , but now 

2( ) /F r GMm r= , downwards.  So 
 

2

GMmdU F dr dr
r

= − ⋅ =  

 
and to find the total work needed to lift a mass m from the Earth’s surface (rE from the 
center of the Earth) to a point distance r from the center we need to do an integral: 
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First check that this makes sense close to the Earth’s surface, that is, in a room. For this 
case, 
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where the only approximation is to replace rE + h by rE in the denominator, giving an 
error of order h/rE, parts per million for an ordinary room. 
 
To see what this potential function looks like on a larger scale, going far from the Earth, 
it is necessary first to decide where it is most natural to set it equal to zero. The standard 
convention is to set the potential energy equal to zero at r = infinity!  The reason is that if 
two bodies are very far from each other, they have no influence on each other’s 
movements, so it is pointless to include a term in their total energy which depends on 
their mutual interaction.   
 
Taking the potential energy zero at infinity gives the simple form 
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( ) ,GMmU r
r

= −  

 
we plot it below with r in units of Earth radii. The energy units are GMm/rE, the −1 at the 
far left being at the Earth’s surface (r = 1), and the first steep almost linear part 
corresponds to mgh.  
 

 
 

The above is a map of the potential energy “hill” to be climbed in going away from the 
Earth vertically upwards from any point.  To gain something closer to a three-
dimensional perspective, the Earth can be visualized as being at the bottom of a 
“potential well” with flared sides, like this: 

 
 
Or, from a different perspective: 
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Of course, this is still only in two dimensions, but that’s fine for most gravitational 
problems: planetary orbits are only two-dimensional.  A satellite in a circular orbit around 
the Earth can be imagined as a frictionless particle sliding around inside this “cone” at a 
fixed height, for an elliptic orbit the particle would slide between different heights. 

Gravitational Potential Energy in a Two Body System 
By this, I mean how do we extend the above picture of gravitational potential as a “well” 
going down out of a flat plane to, for example, the combined potential energies of a mass 
in the gravitational fields of both the Earth and the Moon, as would occur on a flight to 
the Moon. 
 
From the beginning of the previous section, the potential energy difference between any 
two points from the gravitational force of a single body is the work done against that 
force in going from one point to the other,  

( ) ( )
2

1

2 1 .
r

r

U r U r F dr− = − ⋅∫  

It doesn’t matter how the path gets from 1r  to 2r : if it took different amounts of work 
depending on the path, we could gain energy by having a mass go up one path and down 
the other, a perpetual motion machine.  The fact that this is not true means the 
gravitational field is conservative: gravitational potential energy can b a term in a 
conservation of energy equation. 
 
Recall from the previous lecture that the gravitational field obeys the Law of 
Superposition:  to find the total gravitational force on a mass from the gravitational field 
of both the Earth and the Moon, we just add the vectors representing the separate forces. 
It follows immediately from this that, putting Earth MoonF F F= + , the gravitational 
potential energy difference between two points is simply the sum of the two terms.  
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From this, then, the potential energy of a mass somewhere between the Earth and the 
Moon is 
 

( )total
E M

CE CM

GM m GM mU r
r r r r

= − −
− −

 

 
taking as usual , and  are the coordinates of the centers of the Earth and 
the Moon respectively. 

( ) 0U ∞ = ,CE CMr r

 
It’s worth visualizing this combined potential: it would look like two of these cone-like 
wells, one much smaller than the other, in what is almost a plain.  Going in a straight line 
from inside one well to the inside of the other would be uphill then downhill, and at the 
high point of the journey the potential energy would be flat, meaning that the 
gravitational pull of the Earth just cancels that of the Moon, so no work is being done in 
moving along the line at that point. The total potential energy there is still of course 
negative, that is, below the value (zero) far away in the plain. 

Gravitational Potential 
The gravitational potential is defined as the gravitational potential energy per unit mass, 
and is often written .   We shall rarely use it—the problems we encounter involve 

the potential energy of a given mass m.  (But 
( )rϕ

( )rϕ  is a valuable concept in more 
advanced treatments.  It is analogous to the electrostatic potential, and away from masses 
obeys the same partial differential equation, ( )2 0rϕ∇ = .) 

Escape! 
How fast must a rocket be moving as it escapes the atmosphere for it to escape entirely 
from the Earth’s gravitational field?  This is the famous escape velocity, and, neglecting 
the depth of the atmosphere, it clearly needs sufficient initial kinetic energy to climb all 
the way up the hill, 
 

21 2, .
2 escape escape

E E

GMm GMmv v
r r

= =  

 
This works out to be about 11.2 km per sec.  For the Moon, escape velocity is only 2.3 
km per second, and this is the reason the Moon has no atmosphere: if it had one initially, 
the Sun’s heat would have been sufficient to give the molecules enough thermal kinetic 
energy to escape.  In an atmosphere in thermal equilibrium, all the molecules have on 
average the same kinetic energy.  This means lighter molecules on average move faster.  
On Earth, any hydrogen or helium in the atmosphere would eventually escape for the 
same reason. 
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Exercise: Saturn’s moon Titan is the same size as our Moon, but Titan has a thick 
atmosphere.  Why? 
 
Exercise: Imagine a tunnel bored straight through the Earth emerging at the opposite side 
of the globe.  The gravitational force in the tunnel is / EF mgr r= , as derived above.   
(a) Find an expression for the gravitational potential energy in the tunnel.  Take it to be 
zero at the center of the Earth. 
 
(b) Now sketch a graph of the potential energy as a function of distance from the Earth’s 
center, beginning at the center but continuing beyond the Earth’s radius to a point far 
away.  This curve must be continuous.  Conventionally, the potential energy is defined by 
requiring it to be zero at infinity.  How would you adjust your answer to give this result? 

Potential and Kinetic Energy in a Circular Orbit 
The equation of motion for a satellite in a circular orbit is 
 

2

2 .mv GMm
r r

=  

 
It follows immediately that the kinetic energy 
 

( )21 1 1
2 2 2. . /K E mv GMm r U r= = = − , 

 
that is, the Kinetic Energy = −1/2 (Potential Energy) so the total energy in a circular 
orbit is half the potential energy.   
 
The satellite’s motion can be visualized as circling around trapped in the circular 
potential “well” pictured above.  How fast does move?  It is easy to check that for this 
circular orbit 
 

.orbit
orbit

GMv
r

=  

 
Recalling that the escape velocity from this orbit is 2 /escape orbitv GM= r  , we have 
 

2escape orbitv v=  
 
relating speed in a circular planetary orbit to the speed necessary, starting at that orbit, to 
escape completely from the sun’s gravitational field. 
 
This result isn’t surprising: increasing the speed by 2  doubles the kinetic energy, which 
would then exactly equal the potential energy: that means just enough kinetic energy for 
the satellite to climb the hill completely out of the “well”. 
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Bottom line: the total energy of a planet of mass m in a circular orbit of radius r about a 
Sun of mass M is 
 

.
2tot

GMmE
r

= −  

previous  index  next 
 

http://galileo.phys.virginia.edu/classes/152.mf1i.spring02/GravField.pdf
http://galileo.phys.virginia.edu/classes/152.mf1i.spring02/GravityIndex.htm
http://galileo.phys.virginia.edu/classes/152.mf1i.spring02/EllipticOrbits.pdf
http://galileo.phys.virginia.edu/classes/152.mf1i.spring02/EllipticOrbits.pdf

	previous  index  next
	Working with Gravity: Potential Energy
	Gravitational Potential Energy near the Earth
	Onward and Upward
	Gravitational Potential Energy in a Two Body System
	Gravitational Potential
	Escape!
	Potential and Kinetic Energy in a Circular Orbit

	previous  index  next

