
Chapter 2
Algorithm Design

Before we discuss how to design algorithms,

we need to make up our minds as how to rep-

resent them, i.e., what notation should we use

to express algorithms so that they are clear,

precise, and unambiguous.

We don’t want to use a programming language

at this stage since we want to be flexible but

not have to deal with details. /

Natural language is not a good choice either,

since 1) the verbosity leads to an unstructured

description; 2) it is live, thus unstable, so that

it cannot be finitely specified; and 3) the con-

text sensitivity could lead to ambiguity;

1



Too much details...

The following Java program implements the

addition algorithm that we went through in the

last chapter, on Page 11.

We will eventually come here, but not yet.

2



What do you mean?

Given the following statement:

“Call me a taxi.”

Question: Does this person ask someone to

get a taxi, or wants to be called a “taxi”? /

Another example could be

“I saw someone on the hill with a tele-

scope.”

Question: Who has a telescope? /

Remember the non-ambiguous and feasible re-

quirement?

3



What will we use?

Pseudocode is a subset of English language

constructs that looks like the statements avail-

able in most programming languages.

It is simple, flexible, and highly readable. With

its well-defined structure, it is easier to visu-

alize the organization of a pseudocode algo-

rithm. Finally, it is also easier to transform

a pseudocode algorithm into a computer pro-

gram, since its syntax resembles many pro-

gramming languages.

To start, we will present the three basic struc-

tures: sequential, conditional and, iterative con-

structs, in pseudocode.

We will then see a few exemplary algorithms

expressed in pseudocode.

4



Sequential operations

The fundamental operation sequence involved

in every algorithm is input, computation, out-

put.

Assignment is an instruction that performs a

computation and then saves the result.

Set the value of "variable" to "expression"

It evaluates the arithmetic expression first and

gets a result, which is then stored in the vari-

able. The latter corresponds to a named stor-

age location.

For example,

Set the value of Carry to be (3*4)-5

More generally,

variable = expression;

5



Input, compute, output

Input operations allow the computing agent to

receive data from the outside world, which can

then be used in a computation, while output

operations allow the agent to send out results

of the computation for future use.

The following algorithm, in pseudocode, com-

putes average miles per gallon.

1. Get values for gallons, start and end

2. Set the value of distance to (end − start)

3. Set the value of average to (distance/gallons)

4. Print the value of average

5. Stop

6



One more example

Write an algorithm that gets the values of ra-

dius r of a circle as input, then output both the

circumference and the area of such a circle.

1. Get value for r

2. Set circumsference to 2*3.14*r

3. Set area to 3.14*r ∗ r

4. Print ”Circumference is ” + circumsference

5. Print ”Area is ” + area

6. Stop

Here, ‘+’ represents the concatenation opera-

tor.

Homework: Exercises 1 and 2

7



Conditional operation

A sequence structure starts at the beginning,

goes forward, until the end, then stops. On the

other hand, a conditional operation lets the

algorithm ask a question, and, based on the

answer, selects the next operation to perform.

Below is the most commonly used structure.

If "a true-false" condition is true

Then

first set of operations

Else second set of operations.

It evaluates the condition first to see if it is

true or false, and then executes the first, or

the second set, of operations, accordingly.

In either case, the execution of the program

continues with the next operation right after

this conditional operation.

8



An example

Both Honda CR-V and Subaru Forester reach

a respectable 28 MPG.

Question: How to decide if another car is even

better?

Answer: We can run the following algorithm

to decide.

1. Get values for gallons, start and end

2. Set the value of distance to (end − start)

3. Set the value of average to (distance/gallons)

4. Print the value of average

5. If average > 28 Then

6. Print the massage “You are getting good

gas mileage.”

7. Else Print the massage “You are not get-

ting a good gas mileage.”

8. Stop

9



How does it work?

Below shows the flowchart of a conditional

structure, telling us what does it do..., where

S is the next thing to do once this conditional

structure is completed.

Assignment: Have a look at, and try, some of

the problems in Practice Problems on Page 61

of the textbook.

You don’t need to send in your work for these

assignments.

10



Another example

Write an algorithm that inputs your current

credit card balance, the total dollar amount

of new purchases, and the total amount of

all payments. The following algorithm com-

putes the new balance, including a 12% inter-

est charge on any unpaid balance.

1. Get values for balance, purchase, and payment

2. Set unpaid to balance − payment

3. If (unpaid > 0)

4. Set charge to unpaid ∗ 0.12

5. Else set charge to 0

6. Set newBalance to charge + purchase

7. Print ”New balance is ” + newBalance

Homework: Exercise 5

11



Iterative operation

The While..Do loop structure is pretty popular:

While "a condition" remains true do

operation

...

operation

We can also use Do..While:

Do

operation

...

operation

While "a condition" remains true

The Do..While loop goes through at least once,

then checks the condition.

On the other hand, the While..Do loop checks

condition first, thus it may not execute even

once. It is thus a more cautionary structure. ,

12



How does it work?

Below shows the flowchart of a while..do loop

structure, which keeps on going through the

loop until the loop condition becomes false.

Here Sn is the next thing to do after this loop

is done.

Remember that the well-founded requirement

says that the algorithm knows where to start,

and when one step is done, an algorithm needs

to know what to do next.

13



An example

The following algorithm measures the mileage

of multiple cars until we get bored with it. /

Algorithm design is often an incremental pro-

cess, following the Divide and Conquer princi-

ple: Start with something simple, then keep on

adding more and more until we have got the

complete algorithm for the task at hand.

We start with one car (Page 6), add on com-

parison (Page 10), and finally, the loop part for

multiple cars.

14



How about Do..While?

The Do..While loop puts the test at the end,

thus executes at least once. /

15



How about for?

The popular for loop runs a fixed number of

time.

If S(i) is any statement which changes the loop

variable i, then the following loop runs exactly

n times.

for (i=1; i<=n; i++)

S(i);

A for loop is not real, but implemented in a

while loop:

i=1;

while(i<=n){

S(i); i++;

}

Wait until CS2470 System Programming in

C/C++ for a more general syntax of the for

loop; and CS3221 Algorithm analysis for its

analysis.

16



What should you do?

While still thirsty

Keep on drinking

Keep on drinking

While still thirsty

Repeat

drinking

Until not thirsty

Drink three mugs

Theorem: If a problem can be solved algo-

rithmically, then it can be solved using only

the sequential, conditional, and iterative oper-

ations.

Thus, an algorithm is just a combination of

these three structures. ,

17



Go forth and multiply

How to multiply two numbers through repeated

addition? (Exercise 12 in Chapter 1)

Given two nonnegative integer values, a ≥ 0,
and b ≥ 0, compute and output the product

(a×b) using the technique of repeated addition.

That is,

P = a × b =

b
︷ ︸︸ ︷

a + a + a + · · · + a .

The first step is to bring in the values of both

a and b. We then repeatedly add a to a par-
tial product. Thus, it is natural to use a loop

structure to get it done.

Since we will add the number a b times, we

could use a variable, count, with an initial value

of 0. We will increment count once whenever

we add another a until count reaches b.

Question: What does it mean?

18



A first attempt

1. Get values for a and b

2. Set product to 0

3. Set the value of count to 0

4. While (count < b) do

5. Set product to product + a

6. Set the value of count to (count + 1)

7. End of the loop

8. Print the value of product

product count

0 0

a 1

2a 2

... ...

(b − 1)a b − 1

ba b

Once count contains b, the loop condition fails,

when we wrap up and print out the value of

product, namely, ab (= ba) since multiplication

is commutative. ,

19



A little tweaking

The assumption of the original multiplication

problem is that both a and b are non-negative,

i.e., a ≥ 0 and b ≥ 0. The code that we just got

certainly works when both a and b are positive.

Question: Will it work correctly when either

a = 0 or b = 0?

Answer: Yes.

The case of b = 0 works out nicely. When

a = 0, although we do get the right answer

of 0 back, the algorithm is not efficient, as it

keeps on adding 0 b times to product. /

What we could do is to add the following be-

fore getting into the costly loop

If(either a = 0 or b = 0)

Set the value of product to 0

Else Solve the original problem

20



A final solution

1. Get values for a and b

2. Set the value of product to 0

3. If (a! = 0 and b! = 0)

4. Set the value of count to 0

5. While (count < b) do // Not yet

6. Set product to product + a

7. Set the value of count to (count + 1)

8. End of the loop

9. Print the value of product

10. Stop

Question: Does it work?

a b count product

15 4 0 0

15 4 1 15

15 4 2 30

15 4 3 45

15 4 4 60

21



Who’s calling?

The second problem we want to discuss in de-

tail is to search for somebody’s name, if we

know her telephone number, often called the

reverse telephone lookup.

Question: Should you pick up the phone, when

a number pops up?

Answer: Let’s find out who is calling?

Assignment: Have a look at Practice Prob-

lems on Page 64 of the textbook, and try at

least Problems 3 and 4.

22



Keep on looking...

Assume that we have 10,000 names, N1, · · · ,

N10000, along with that many phone numbers,

T1, · · · , T10000.

We further assume that we are using a normal

phone book, which is sorted in the alphabetical

order of last names.

Let’s come up with an algorithm that bring

in a phone number (input), and find out the

owner’s name, using a phone book (output).

The general idea (algorithm) is to start with

the first record, to see if its phone number

matches with the input number. If it is, we

are done; otherwise, move down to the next

record, ..., until we either find it somewhere

,, or declare a failure when we have checked

the last record, but still could not find it.. /

Let’s turn this idea into an algorithm.

23



A first try

Get Number, T1, · · · , T10000 N1, · · · , N10000,

If Number == T1 Then write out N1

If Number == T2 Then write out N2

...

If Number == T10000 Then write out N10000

Stop

This algorithm is extremely long. (Eight and

half million people live in NYC.) It also tells us

nothing when the number is not in the list. /

Since we will be doing the same thing repeat-

edly, the first problem can be fixed by using a

loop, while the second can also be solved by

checking the index at the end.

Question: What will this lead us to?

Homework: Exercises 13 and 15

24



An improvement

Get Number, T1, · · · , T10000, N1, · · · , N10000,

Set i to 1 and set Found to NO

While Found == NO and i ≤ 10000 Do

If Number == Ti Then

Print Ni

Set Found to YES

Else Add 1 to i

If (Found==NO) Then

Print “Sorry, the number is not in the book.”

Stop

This is essentially the algorithm that we will

play with in Lab 2 with the Search Animator.

Questions: Is this the way we look for a num-

ber in the phone book?

How could we adjust our records to make such

a search much faster?

25



Sequential search

When we want to look for target in an un-

ordered array A[1..n], we use the following se-

quential search algorithm.

Get target

Set i to 1 and Found to NO

While both Found ==NO and i ≤ n Do

If A[i] == target Then

Print i

Set Found to YES

Else Add 1 to i

If (Found==NO) Then

Print “Sorry, the number is not in the book.”

As we found out in Lab 2, it will make at

least one comparison, when A[1] = target; and

will make at most n comparisons, when either

A[n] = target, or target is not in A.

On average, it makes (n + 1)/2 comparisons.

26



Big, bigger, biggest

The next problem we want to solve is similar

to the previous one, in the sense that we still

look for something in a list of items.

This time we will look for the biggest value,

but not a particular one. It is not only useful

by itself, but can be used to sort a list of items

(Selection sort, Page 9 in the next chapter).

Formally, the problem can be specified as fol-

lows: Given a value n ≥ 2, and a list containing

exactly n unique numbers, A1, . . . , An. find and

print out both the largest value in the list and

its position.

For example, given 19, 41, 12, 63, 22. The

algorithm should print out 63 and 4.

27



Bear in the corn field

A bear is hungry. He walks into a corn filed,

trying to get the biggest ear of corn.

What he would do is to get the first ear, then

walk forward. Whenever he sees a bigger ear,

he drops the one from his mouth, and gets the

bigger one.

He keeps on walking, picking, dropping, and

snatching, ... until he is out of the filed, when

he has got the biggest ear.

Question: What should we learn from this

bear? ,

28



Here it goes ...

Intuitively, we have to search the whole list to

find out the biggest value, and we have to save

this value and its position somewhere.

With respect to the searching, let’s begin with

the first item, check the values one at a time,

until we have looked at all the values.

As we can’t be sure about the answer until

the last step, let’s also keep the biggest value

we have seen so far in a pair of variables, and

keep on updating this pair during the searching

process.

These ideas lead to the following alternative,

and straightforward, algorithm.

29



A general algorithm
Get n, A1, . . . , and An

Set Location to 1

Set Largest to A1

Set i to 2

While (i ≤ n) Do

If Ai > Largest Then

Set Largest to Ai

Set Location to i

Add 1 to i

Print out Largest and Location

Questions: 1) How can we modify the algo-

rithm so that we can find the smallest value in

the list? 2) What happens if n equals 0 or 1?

We will play with this algorithm in Lab 3 with

the Search Animator

It always makes n − 1 comparisons, n ≥ 2, be-

cause the loop runs this many times, and each

time it runs, one comparison is made.

Homework: Exercises 16 and 17.

30


