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Approximation to real numbers
by cubic algebraic integers. 11

By DAMIEN RoY*

Abstract

It has been conjectured for some time that, for any integer n > 2, any
real number € > 0 and any transcendental real number &, there would exist
infinitely many algebraic integers « of degree at most n with the property that
|€—a| < H(a) "¢, where H () denotes the height of o. Although this is true
for n = 2, we show here that, for n = 3, the optimal exponent of approximation
is not 3 but (3 + 1/5)/2 ~ 2.618.

1. Introduction

Define the height H(a) of an algebraic number « as the largest absolute
value of the coefficients of its irreducible polynomial over Z. Thanks to work
of H. Davenport and W. M. Schmidt, we know that, for any real number &
which is neither rational nor quadratic over Q, there exists a constant ¢ > 0
such that the inequality

€ —af < cH(a)™,

where v = (1 4 v/5)/2 denotes the golden ratio, has infinitely many solutions
in algebraic integers « of degree at most 3 over Q (see Theorem 1 of [3]). The
purpose of this paper is to show that the exponent v2 in this statement is best
possible.

THEOREM 1.1. There exists a real number & which is transcendental over
Q and a constant ¢y > 0 such that, for any algebraic integer o of degree at
most 3 over Q, we have

2

€ —al>caH(a)™.
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In general, for a positive integer n, denote by 7,, the supremum of all real
numbers 7 with the property that any transcendental real number £ admits
infinitely many approximations by algebraic integers « of degree at most n over
Q with |¢ — a| < H(a)~7. Then, the above result shows that 73 = v ~ 2.618
against the natural conjecture that 7,, = n for all n > 2 (see [7, p. 259]). Since
To = 2 (see the introduction of [3]), it leaves open the problem of evaluating
T, for n > 4. At present the best known estimates valid for general n > 2 are

[(n+1)/2] <7 <n

where the upper bound comes from standard metrical considerations, while the
lower bound, due to M. Laurent [4], refines, for even integers n, the preceding
lower bound 7, > |(n+1)/2]| of Davenport and Schmidt [3]. Note that similar
estimates are known for the analog problem of approximation by algebraic
numbers, but in this case the optimal exponent is known only for n < 2
(see [2]).

In the next section we recall the results that we will need from [6]. Then,
in Section 3, we present the class of real numbers for which we will prove, in
Section 4, that they satisfy the measure of approximation of Theorem 1.1. Sec-
tion 3 also provides explicit examples of such numbers based on the Fibonacci
continued fractions of [5] and [6] (a special case of the Sturmian continued
fractions of [1]).

2. Extremal real numbers

The arguments of Davenport and Schmidt in Section 2 of [3] show that,
if a real number £ is not algebraic over Q of degree at most 2 and has the
property stated in Theorem 1.1, then there exists another constant co > 0
such that the inequalities

(2.1) 1 S \:r()] S X, ‘xog — {L‘1| S CQX_l/’Y, ‘xogz — $2’ S CQX_l/’Y,

have a solution in integers x¢, 1,22 for any real number X > 1. In [6], we
defined a real number £ to be extremal if it is not algebraic over Q of degree
at most 2 and satisfies the latter property of simultaneous approximation. We
showed that such numbers exist and form a countable set. Thus, candidates
for Theorem 1.1 have to be extremal real numbers.

For each x = (g, 21, 72) € Z> and each ¢ € R, we define

x| = max{|zo|, [z1], |z2|} and L¢(x) = max{|zo& — 21, |20&? — z2|}.

Identifying x with the symmetric matrix

rog X1
Ty x2)’
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we also define
det(x) = zozg — 22

Then, Theorem 5.1 of [6] provides the following characterization of extremal
real numbers.

PROPOSITION 2.1. A real number £ is extremal if and only if there exists
a constant c3 > 1 and an unbounded sequence of nonzero points (Xj)k>1 of YA
satisfying, for all k > 1,

(i) 5 Ixell” < lIxpaall < esllxwl],
(if) c3 kil = < Le(xx) < esllxil 7,
(iii) 1 < |det(xg)| < cs,

(iv) 1 < |det(xp, Xpt1, Xp42)| < c3.

In order to prove our main Theorem 1.1, we will also need the following
special case of Proposition 9.1 of [6] where, for a real number ¢, the symbol {¢}
denotes the distance from ¢ to a closest integer:

PROPOSITION 2.2.  Let £ be an extremal real number and let (xi)i>1 be
as in Proposition 2.1. Assume that, upon writing X, = (Tk,0, k1, Lk 2), there
exists a constant c¢g > 0 such that

{208’} > 4

for all k > 1. Then, for any algebraic integer o of degree at most 3 over Q,

we have
2

€ —al = esH(a)™”
for some constant c5 > 0.

Since extremal real numbers are transcendental over Q (see [6, §5]), this
reduces the proof of Theorem 1.1 to finding extremal real numbers satisfying
the hypotheses of the above proposition. Note that, for an extremal real num-
ber ¢ and a corresponding sequence (xj)r>1, Proposition 9.2 of [6] shows that
there exists a constant cg > 0 such that

_ 3
Tk,0 2> Co|| Xk
{08} > collxil|

for any sufficiently large k.
We also mention the following direct consequence of Corollary 5.2 of [6]:

PROPOSITION 2.3.  Let £ be an extremal real number and let (xi)i>1 be
as in Proposition 2.1. Then there exists an integer kg > 1 and a 2 X 2 matriz
M with integral coefficients such that, viewing each Xi as a symmetric matriz,
the point Xpyo is a rational multiple of xXx11Mxy, when k > ko is odd, and a
rational multiple of x5! Mx}, when k > kg is even.
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Proof. Corollary 5.2 together with formula (2.2) of [6] show that there
exists an integer kg > 1 such that x4 9 is a rational multiple of xk+1x,;11xk+1
for all £k > kg. If S is a 2 x 2 matrix such that x;y; is a rational multiple
of x3,5%xy_1 for some k > kg, this implies that x;o is a rational multiple of
XpSxp11 and thus, by taking transpose, that x;io is a rational multiple of
Xp41'5%,. The conclusion then follows by induction on k, upon choosing M
so that the required property holds for k = kg. O

Note that, in the case where all points x; have determinant 1, one may
assume that M € GL2(Z) in the above proposition and the conclusion then
becomes X2 = £Xj115%;, where S is either M or M depending on the parity
of k > kg. This motivates the following definition:

Definition 2.4. Let M € GLg(Z) be a nonsymmetric matrix. We denote
by £(M) the set of extremal real numbers ¢ with the following property. There
exists a sequence of points (x)r>1 in Z3 satisfying the conditions of Proposi-
tion 2.1 which, viewed as symmetric matrices, belong to GL2(Z) and satisfy
the recurrence relation
M if kis odd,

Xt = X1 5%, (k2 1), where S = {tM if k is even

Examples of extremal real numbers are the Fibonacci continued fractions
&a,p (see [5] and [6, §6]) where a and b denote distinct positive integers. They
are defined as the real numbers

&ap =1[0,a,b,a,a,b,...]=1/(a+1/(b+--"))

whose sequence of partial quotients begins with 0 followed by the elements of
the Fibonacci word on {a, b}, the infinite word abaab- - - starting with a which
is a fixed point of the substitution a — ab and b — a. Corollary 6.3 of [6] then
shows that such a number &, belongs to £(M) with

a 1 b 1 ab+1 a
(-
We conclude this section with the following result.

LEMMA 2.5.  Assume that & belongs to E(M) for some nonsymmetric
matrix

M= (i 2) € GLy(Z),

and let (Xi)k>1 be as in Definition 2.4. Then, upon writing X, = (Tk,0, Tk1, Tk 2),
we have, for all k > 2,

(i) Xgt2 = (aa:k,g + (b + c)xk,l + d$k,2)xk+1 + xp_1,

(i) Tr0Tkr12 — Th2Trr1,0 = £(axp—10 — drg—12) + (b — )wp—11-



APPROXIMATION TO REAL NUMBERS 1085

Proof. For k > 1, we have
Xp41 = XpSxp_1 and  Xpio = Xpi1'Sxy
where S is M or !M according to whether & is even or odd, and so
Xpio2 = Xpyo = XpSXp1 = (%15)2 X5 1.
Since Cayley-Hamilton’s theorem gives
(xS8)? = trace(x,S) xS — det(x;5)I,

we deduce
Xg+o = trace(xS)Xp41 — det(xxS)Xk—1

which proves (i). Finally, (ii) follows from the fact that the left-hand side
of this inequality is the sum of the coefficients outside of the diagonal of the
product

XpJXp+1 where J:(_Ol (1)>,

and that, since JxiJ = :tx,;l, we have

XipJXpr1 = :l:Jx,;lka =+J5xp_1.

3. A smaller class of real numbers

Although we expect that all extremal real numbers £ satisfy a measure of
approximation by algebraic integers of degree at most 3 which is close to that
of Theorem 1.1, say with exponent 72 +¢ for any € > 0, we could only prove in
[6] that they satisfy a measure with exponent v+ 1 (see [6, Th. 1.5]). Here we
observe that the formulas of Lemma 2.5 show a particularly simple arithmetic
for the elements & of £(M) when, in the notation of this lemma, the matrix M
has b =1, ¢ = —1 and d = 0. Taking advantage of this, we will prove:

THEOREM 3.1. Let a be a positive integer. Then, any element & of

a 1
el )

satisfies the measure of approximation of Theorem 1.1.

The proof of this result will be given in the next section. Below, we simply
show that, for a = 1, the corresponding set of extremal real numbers is not
empty.

PROPOSITION 3.2.  Let m be a positive integer. Then, the real number

n= (m—|—1+§m,m+2)_1 =[0,m+1,mm+2m,m,m+2,...]
belongs to the set &1.
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Proof. We first note that, if a real number £ belongs to £(M) for some
nonsymmetric matrix M € GLg(Z) with corresponding sequence of symmetric
matrices (Xj)g>1, and if C' is any element of GLg(Z), then the real number
n for which (n,—1) is proportional to (£, —1)C belongs to E(!CMC) with
corresponding sequence (CilxktC’*l)kzl. The conclusion then follows since
Em,m+2 belongs to £(M) where M is given by (2.2) with a =m and b=m+2

and since L1 0 )
. B B _
C]\JC(_1 0) for C(—l m+1>'

Remark. In fact, it can be shown that &, is not empty for any integer
a > 1. For example, consider the sequence of matrices (xx);>1 defined recur-
sively using the formula of Definition 2.4 with

(1 1 - a® + 2a a® —a?+2a—1
X1=\1 o) 27 a?—a?+2a—1 a3>—2a2+3a—2

M:<i D‘

Then, using similar arguments as in [6, §6], it can be shown that (xj)g>1 is a

and

sequence of symmetric matrices in GLo(Z) which satisfies the four conditions
of Proposition 2.1 for some real number & which therefore belongs to &,.

4. Proof of Theorem 3.1

We fix a positive integer a, a real number ¢ € &,, and a corresponding
sequence of points (xx)k>1 of Z3 as in Definition 2.4. For simplicity, we also
define

Xk = HXkH and 514 = {xhgf}, (k > 1).

The constant c3 being as in Proposition 2.1, we first note that

(4.1) A{zrol} < |rrof — 20| < 03X§17
{2£16} < |weaé — o8| + 208 — zr2] < (1€ 4+ Des X

For k > 2, the recurrence formula of Lemma 2.5 (i) implies
(4.2) Tpy2,2 = AT OTE41,2 £ Tho12
and Lemma 2.5 (ii) gives

Tk O0Tk+1,2 = Th2Th41,0 T ATp_1,0 £ 20511
Using (4.1), the latter relation leads to the estimate

{r00h4126} < Xp{ans106} + afwp-106} + 2{zp-1,1€} < er XY
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for some constant c¢; > 0 (since XX, +11 < c?r'yX ,;11 by virtue of Proposition
2.1 (i)). Combining this with (4.2), we deduce

042 — Op—1| < a{wporri128} < acr Xl

Since the sequence (Xj)r>1 grows at least geometrically, this in turn implies
that, for any pair of integers j and k£ which are congruent modulo 3 with
j >k >1, we have

|5j - 5k| < CgXlgl

with some other constant cg > 0. Since

H{zr0€®} — 0k < |7r08” — 21 0€] < c3lé| XY, (k> 1),

we conclude that, for i = 1,2, 3, the limit
0; = lim {l‘i+3j,053} = lim 043,
Jj—00 j—00

exists and that
10; — {2106} < (cs + cal€) X!
for k =i mod 3. Since, for all sufficiently large k, Proposition 9.2 of [6] gives
{zpo&’} > CQX];U’Y?’
with a constant c¢g > 0, these numbers 6; are nonzero. Thus the sequence
({xk70§3}) o1 has (at most three) nonzero accumulation points and therefore

is bounded below by some positive constant, say for k£ > kg, to exclude the
finitely many indices k where 3o = 0. Applying Proposition 2.2 to the sub-
sequence (Xj)k>k,, We conclude that  has the approximation property stated
in Theorem 1.1.
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