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Following Erdős [1] we say a sequence {an}∞n=1 is irrational if the set {∑n≥1
1

ancn
| cn ∈

N}, which we refer to henceforth as its expressible set, contains no rational numbers. In
[1] it is shown that if limn→∞ a1/2n

n = ∞ and an ∈ N for all n ∈ N then
∑

n≥1 a−1
n is

an irrational number. From this Erdős deduces that the sequence {22n}∞n=1 is an irrational
sequence. Thus its expressible set contains no rational numbers. In [2] it is shown that if
an ∈ R

+ for all n ∈ N and lim supn→∞ 1
n log2 log2 an < 1 then the expressible set of the

sequence {an}∞n=1 contains an interval. It seems to be the case that in general finding the
expressible set for the sequence {an}∞n=1 is not easy.

.

Ein interessantes zahlentheoretisches Problem ist die Frage nach der Rationalität des
Werts einer konvergenten Reihe reeller Zahlen. An diese Fragestellung anknüpfend
nennen wir mit P. Erdős eine Folge {an}∞n=1 reeller Zahlen irrational, falls die Menge
E = {∑∞

n=1 1/(ancn) | cn ∈ N} keine rationale Zahl enthält. In der vorliegenden Ar-
beit beweisen die Autoren für den Fall, dass die Reihe

∑∞
n=1 1/an bedingt konvergent

ist, dass die Menge E jeweils die gesamte reelle Zahlengerade ausschöpft.
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In this paper we give conditions on {an}∞n=1 to ensure that its expressible set is equal to R.
We prove the following:

Theorem 1. Let {an}∞n=1 be a sequence of nonzero real numbers such that the series
∑∞

n=1
1

an
is conditionally convergent. Then its expressible set is equal to R.

A series is conditionally convergent if it is convergent but the series of the absolute values
of its terms is not. Theorem 1 is an immediate consequence of the following more general
theorem.

Theorem 2. Let {an}∞n=1 be a sequence of nonzero real numbers such that the series
∑∞

n=1
1

an
is conditionally convergent. Then for every pair α, β of real numbers with α ≤ β

there exists a sequence {cn}∞n=1 of positive integers such that

α = lim inf
N→∞

N∑

n=1

1

ancn
and β = lim sup

N→∞

N∑

n=1

1

ancn
. (1)

For the proof of Theorem 2 we need the following two lemmas.

Lemma 1. Let {an}∞n=1 be a sequence of nonzero real numbers such that the series
∑∞

n=1
1

an
is conditionally convergent. Then for every real number A ≥ 0 and every in-

teger N ≥ 0 there exist a number K ∈ N and numbers cN+1, . . . , cN+K ∈ N such that

N+K∑

n=N+1

1

ancn
∈

(

A, A + 1

aN+K

]

.

Proof. Define P = {
n | an > 0

}
and N = {

n | an < 0
}
. The series

∑∞
n=1

1
an

is
conditionally convergent, hence

∞∑

n=N+1
n∈P

1

an
= ∞ .

This implies that there exists a positive integer K such that

N+K−1∑

n=N+1
n∈P

1

an
≤ A and

N+K∑

n=N+1
n∈P

1

an
> A .

The fact that

0 <

N+K∑

n=N+1
n∈P

1

an
−

N+K−1∑

n=N+1
n∈P

1

an
= 1

aN+K

immediately gives

s =
N+K∑

n=N+1
n∈P

1

an
∈

(

A, A + 1

aN+K

]

.



32 J. Hančl, J. Šustek, R. Nair, P. Rucki and D. Bodyagin

Now consider two cases:

(1) Assume that N ∩ {N + 1, . . . , N + K } = ∅. In this case put cn = 1 for every
n = N + 1, . . . , N + K and the result follows.

(2) Now suppose that

r =
N+K∑

n=N+1
n∈N

1

an
< 0 .

Put C = [ r
A−s

] + 1. Then

0 >

N+K∑

n=N+1
n∈N

1

Can
= 1

C

N+K∑

n=N+1
n∈N

1

an
>

A − s

r
· r = A − s .

Hence the result follows by taking cn = 1 for n ∈ {N + 1, . . . , N + K } ∩ P and
cn = C for n ∈ {N + 1, . . . , N + K } ∩ N . �

Lemma 2. Let {an}∞n=1 be a sequence of nonzero real numbers such that the series
∑∞

n=1
1

an
is conditionally convergent. Then for every real number A ≤ 0 and every in-

teger N ≥ 0 there exist a number K ∈ N and numbers cN+1, . . . , cN+K ∈ N such that

N+K∑

n=N+1

1

ancn
∈

[

A −
∣
∣
∣

1

aN+K

∣
∣
∣, A

)

.

Proof. Using the transformation an 	→ −an and Lemma 1 we obtain Lemma 2. �

Proof of Theorem 2. In the following we set

Sk =
k∑

n=1

1

ancn
.

If β ≥ 0 then putting A = β and N = 0 into Lemma 1 we obtain a number K and a
sequence {cn}K

n=1 such that

SK ∈
(

β, β + 1

aK

]

.

Then set N0 = 0 and N1 = K .

Similarly, if β < 0 then α < 0, and putting A = α and N = 0 into Lemma 2 we get K
and {cn}K

n=1 with

SK ∈
[

α −
∣
∣
∣

1

aK

∣
∣
∣, α

)

.

Then set N0 = K .
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Now we will construct the sequence {cn}∞n=1 by induction. Consider two cases:

(1) Suppose that we have constructed the sequence {Nm}2t+1
m=0 , t ∈ N0, with

SN2t+1 ∈
(

β, β + 1

aN2t+1

]

.

Lemma 2 implies that there exist K and {cn}N2t+1+K
n=N2t+1+1 such that

N2t+1+K∑

n=N2t+1+1

1

ancn
∈

[

α − SN2t+1 −
∣
∣
∣

1

aN2t+1+K

∣
∣
∣, α − SN2t+1

)

.

Let N2t+2 = N2t+1 + K . Then we have

SN2t+2 ∈
[

α −
∣
∣
∣

1

aN2t+2

∣
∣
∣, α

)

.

(2) Suppose that we have constructed the sequence {Nm}2t
m=0, t ∈ N0, with

SN2t ∈
[

α −
∣
∣
∣

1

aN2t

∣
∣
∣, α

)

.

Lemma 1 implies that there exist K and {cn}N2t +K
n=N2t +1 such that

N2t +K∑

n=N2t +1

1

ancn
∈

(

β − SN2t , β − SN2t + 1

aN2t +K

]

.

Let N2t+1 = N2t + K . Then we have

SN2t+1 ∈
(

β, β + 1

aN2t+1

]

.

Using alternatively cases (1) and (2) we construct the whole sequence {cn}∞n=1. From the
construction it follows that

• α − ∣
∣ 1

ak

∣
∣ ≤ Sk ≤ β + ∣

∣ 1
ak

∣
∣ for every k ≥ N1,

• SN2t < α for every t ∈ N,

• SN2t+1 > β for every t ∈ N0.

The series
∑∞

n=1
1
an

is conditionally convergent, hence 1
an

→ 0. This implies that

lim
t→∞ SN2t = α and lim

t→∞ SN2t+1 = β

and the result follows. �
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Dvořákova 7
701 03 Ostrava 1, Czech Republic
e-mail: pavel.rucki@seznam.cz

Dmitry Bodyagin
Department of Theory of Numbers
Institute of Mathematics
National Academy of Sciences of Belarus
Surganov str. 11
220072 Minsk, Belarus
e-mail: bodiagin@mail.ru

The paper was supported by the grants no. 201/04/0381, 201/07/0191,
and MSM6198898701


