Basic Functions and Their Inverses

Definition. A function is a rule that assigns to every = value in the domain, one and only one y value in
the range.

Definition. A function is one-to-one if for every y value in the range, there is one and only one x value
such that f(x) =y.

Definition. Inverse Function: Suppose f(z) is a one-to-one function with domain D and range R. The
inverse function f~'(z) is defined by

U = aif fa)=b
The domain of f~*(z) is R and the range of f~!(x) is D.

Finding an Inverse: f~!(z) is a reflection of f(z) through the line y = z. To calculate f~!(z):

1. Solve the equation y = f(z) for z. This gives a formula z = f~*(y) where z is expressed as a function
of y.

2. Interchange = and y to obtain the expression y = f _l(m)

Some Standard Functions

y = |z
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Figure 1: The Absolute Value Function

Note: This function is NOT one-to-one so it does not have an inverse. However, you could invert the section
where x > 0 or the section z <0
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Figure 2: The Reciprocal Function
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Figure 3: The Quadratic Function and its Inverse
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Figure 4: The Cubic Function and its Inverse

Figure 5: The Exponential Function and the Natural Log
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Figure 6: The Sine Function and its Inverse
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y = Arccos(z)
= Cos™!(z)
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Figure 7: The Cosine Function and

This is the principal cosine,
which is the piece of the
cosine which has an inverse.

its Inverse
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Figure 8: The Tangent Function and its Inverse
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Figure 9: The Cotangent Function and its Inverse
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y = Arcsec(z)
= Sec!(x)

y = Sec(x)

This is the principal secant,
and is the part of the secant
that has an inverse.
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Figure 10: The Secant Function and its Inverse

y = Csc(x)

This is the principal cosecant,
which is the piece of the
cosecant which has an
inverse.

Figure 11: The Cosecant Function and its Inverse



