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1. Introduction 

 Machine Learning is the study and construction of algorithms that can gain insight 

from sample dataset and make data-driven predictions or decisions on new data. Tom M. 

Mitchell provided a formal definition: "A computer program is said to learn from 

experience E with respect to some class of tasks T and performance measure P if its 

performance at tasks in T, as measured by P, improves with experience E"[1]. It involves 

development of computer programs which changes or learns when exposed to new data 

which is like data mining. Both systems search through data to look for patterns. 

However, data mining extracts data for human comprehension whereas machine learning 

uses that data to detect patterns in data and adjust program actions accordingly.  

 Machine learning is done always based on observations or data, direct experience, 

or instruction. So, in general, machine learning is about learning to do better in the future 

based on what was experienced in the past. The goal is to devise learning algorithms that 

do the learning automatically without human intervention or assistance. The machine 

learning paradigm can be viewed as “programming by example.” Often we have a 

specific task in mind, such as spam filtering. But rather than programming the computer 

to solve the task directly, in machine learning, we seek methods by which the computer 

will come up with its own program based on examples that we provide. Machine learning 

is a core subarea of artificial intelligence. It is very unlikely that we will be able to build 

any kind of intelligent system capable of performing complex tasks such as language or 

vision, without using learning to get there. These tasks are otherwise simply too difficult 

to solve. Further, we would not consider a system to be truly intelligent if it were 

incapable of learning since learning is at the core of intelligence. Although a subarea of 
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AI, machine learning also intersects broadly with other fields, especially statistics, but 

also mathematics, physics, theoretical computer science and more. 

 Machine learning is nowadays used in every industry to solve their common 

problems, some of them are explained below:  

➢ Optical Character Recognition (OCR): conversion of handwritten or printed 

characters in images into machine-encoded text 

➢ Face detection: find faces in images or videos using image processing  

➢ Spam filtering: identify email messages as spam or non-spam  

➢ Topic spotting: categorize news articles into generics such as politics, sports, 

entertainment, etc.  

➢ Spoken language understanding: within the context of a limited domain, 

determine the meaning of something uttered by a speaker to the extent that it can 

be classified into one of a fixed set of categories  

➢ Medical diagnosis: diagnose a patient as a sufferer or non-sufferer of some 

disease  

➢ Predictive Modeling: target specific customers and improve products marketing 

process  

➢ Fraud detection: identify fraudulent credit card transactions   

➢ Weather prediction: predicting the probability of getting rain or snow 

The primary goal of machine learning research is to develop general purpose 

algorithms of practical value with efficiency. In the context of learning, we should care 

about the amount of data that is required by the learning algorithm in addition to time and 

space efficiency. Learning algorithms should serve a general purpose in solving problems 
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that can be easily applied to a broad class of learning problems, such as those listed 

above. Of primary importance, we want the result of learning to be a prediction rule 

which should be accurate in making predictions on a new data. Occasionally, we may 

also be interested in the interpretability of the prediction rules produced by learning. As 

mentioned above, machine learning can be thought of as “programming by example.” 

The major advantage of machine learning over static programming is the results are often 

more accurate with machine learning than static programming results because the 

machine learning algorithms are data driven, and can examine large amounts of data. On 

the other hand, a human expert who writes static programs is likely to be guided by 

imprecise impressions or perhaps an examination of only a relatively small number of 

examples or data. Figure 1 show the general process involved in a typical machine 

learning model. 

 

Figure 1. Diagram of a general Machine Learning Process 
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For instance, it is easy for humans to label images of letters by the character 

represented, but we would have trouble in explaining how we did it in precise terms. 

Another reason to study machine learning is the hope that it will provide insights into the 

general phenomenon of learning. Some of the details we might learn are the intrinsic 

properties of a given learning problem that makes it hard or easy to solve and know ahead 

of time about what is being learned to be able to learn it effectively. In this report, we are 

interested in designing machine learning algorithms, but we also hope to analyze them 

mathematically to understand their efficiency. Through theory, we hope to understand the 

intrinsic difficulty of a given learning problem and we attempt to explain phenomena 

observed in actual experiments with learning algorithms.  
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2. Overview of Machine Learning 

Machine learning is basically turning data into information. The knowledge or 

insight we try to learn from raw data cannot be done by just looking at it, for example, a 

spam email cannot be detected by looking at the occurrence of a single word but rather 

looking at certain words occurring in combination or length of the email and other such 

factors can help you in detecting it. Machine learning also makes use of statistics and it 

can be used to solve any problems that needs to interpret and act on data later use those 

facts learned to decide on a new set of data. Usually static programs are used to solve 

deterministic problem with a definite solution but problems that are not deterministic 

which doesn’t provide enough data about it we take the approach called machine 

learning. In the early days, it was difficult to make realistic decisions using machine 

learning due to inadequate datasets to train the algorithms. But due to resurgence in 

sensors and their ability to connect to Internet, nowadays the real problem is to efficiently 

sort through the available abundant free data and make use them to train machine 

learning algorithms. The increase in smartphones usage which contains various sensors 

such as accelerometers, GPS, temperature sensors within it has also added fuel to the 

increase in the data collection. The current development trends in mobile computing and 

Internet of Things will lead to the generation of more and more useful data in the future. 

Since lots of economic activities are dependent on data we cannot afford to get lost in 

them, so machine learning helps to get through these data and extract important 

information from them. 

Let’s explain the key terminologies involved in machine learning using an 

example before we get into actual algorithms. Consider we are building a coin 
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classification system which can be used to count different coins ranging from 1 cent to 1 

dollar. By creating a computer program, we have replaced a human being to count coins. 

Each coin has its own characteristics such as diameter, thickness, mass and edge which 

are called as features or attributes and the corresponding value is called as target variable 

as shown in Table 1.  

 

   S. No Diameter Thickness Mass Plain Edge Value 

1 19.05 mm 1.55 mm 2.50 g Yes 1¢ 

2 21.209 mm 1.95 mm 5 g Yes 5¢ 

3 17.907 mm 1.35 mm 2.268 g No 10¢ 

4 24.257 mm 1.75 mm 5.67 g No 25¢ 

5 30.607 mm 2.15 mm 11.34 g No 50¢ 

6 26.492 mm 2.00 mm 8.10 g Yes 1$ 

 

Table 1. Coin Classification based on four features 

The first three features are numeric which takes a decimal value whereas the plain 

edge feature takes a Boolean value 1 or 0. Classification is one major task in machine 

learning and here each coin is classified into its own value using combination of data 

from image processing and other sensors, so that it can be counted to a total value. This 

report majorly revolves around classification algorithms. Once the classification 

algorithm to be used is finalized, we should train the algorithm by feeding it with quality 

data (training examples) called as training set. In table 1 there are 6 training examples 

with each has 4 features and 1 target variable. Machine learning algorithm learns some 

relationship between features and target variable and it will try to predict the target 
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variable for the new data. In this example target variables are just the value of coins so 

every time when a new coin comes inside the machine, it will measure its features and 

predict the value of the coin and these new measured features are called as test set. 

Accuracy of the algorithm can be calculated by comparing the actual value of the coin 

with the predicted target variable of the algorithm. The process of viewing the data 

learned by the algorithm is called as knowledge representation which can be a set of 

rules, a probability distribution function or an example from the training set.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



8 

 

3. Types of Machine Learning Algorithms 

Machine learning algorithm can model each problem differently based on the 

input data, so before getting into algorithms we should briefly view various kinds of 

learning styles broadly used. This way of organizing machine learning algorithms forces 

us to choose the right algorithm to tackle a given problem based on the available input 

dataset and model preparation process and achieve efficient results. We can divide 

machine learning algorithms into three different groups based on their learning style: 

• Supervised learning 

• Unsupervised learning 

• Reinforcement learning 

SUPERVISED LEARNING 

Supervised learning occurs when an algorithm learns from input data also known 

as training data which has known target responses or labels that can be a numeric value or 

string. A model is prepared through the training or learning process which predicts the 

correct response when given a new example. The supervised approach is further divided 

into two: Classification and Regression. In classification, the algorithm predicts the class 

to which the given test data fall into whereas regression predicts a numeric value for 

target variable. For example, we might treat investment as a classification problem (will 

the stock go up or down) or a regression problem (how much will the stock go up) 



9 

 

through which we want the computer to learn directly how to decide to make investments 

to maximize wealth.  

UNSUPERVISED LEARNING 

Unsupervised learning occurs when an algorithm learns from input data without 

any labels and does not have a definite result, leaving the algorithm to determine the data 

patterns on its own. A model is prepared by learning the features present in the input data 

to extract general rules. It is done through a mathematical process to reduce redundancy 

or to organize data by similarity. Unsupervised learning is again majorly used in two 

different formats: Clustering in which we group similar items together and density 

estimation which is used to find statistical values that describe the date. For example, 

customer targeted online advertisements are based on this learning model which derives 

its suggestion form your past purchases. The recommendations are based on an 

estimation of what group of customers you resemble the most and then inferring your 

likely preferences based on that group. 

REINFORCEMENT LEARNING 

Reinforcement learning allows machines to determine automatically its behavior 

within a specific context to maximize its performance. Simple reward feedback is 

required to learn its behavior known as reinforcement signal. This learning occurs when 

you present the algorithm with examples that lack labels, as in unsupervised learning. 

However, you can accompany an example with positive or negative feedback per the 

solution the algorithm proposes. Reinforcement learning is connected to applications for 

which the algorithm must make decisions unlike unsupervised learning and the decisions 
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bear consequences in real world. It is considered like learning by trial and error method. 

An interesting example of reinforcement learning occurs when computers learn to play 

video games by themselves. In this case, an application presents the algorithm with 

examples of specific situations, such as set of moves in a chess game. The application lets 

the algorithm know the outcome of actions it takes, and learning occurs while trying to 

avoid checkmate. This learning is a steady improvement process and the chess algorithm 

improves its mastery based on number of games it played and level of difficulty it came 

across.   
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4. Steps in developing a Machine Learning Algorithm 

There are six general steps we would follow throughout this report while 

implementing machine learning algorithms in the forthcoming sections which are briefly 

explained below:  

1. Collect data: Data collection is a tedious process and it can be done by scraping 

some websites and extracting from them; get information from RSS feed or 

collect reading from any sensors and internet of things. To keep the process 

simple, we made use of publicly available data for this thesis. 

2. Prepare the input data: Once the data is available convert them into a format 

which your algorithm accepts which will help us to use the same set of 

information with various algorithms. But the algorithm-specific formatting is 

usually trivial compared to collecting data. 

3. Analyze the input data: This is looking at the data from the previous task to make 

sure the text file created from steps 1 & 2 are valid working data which matches 

our expectation. We can also search for any recognizable patterns also can plot 

the data in two or three dimensions for deep analysis. When there are multiple 

features available in data we can reduce them to three important features for 

plotting purpose. 

4. Train the algorithm:  This step can also be called as learning process. The 

combination of training and testing the algorithm is the “core” of any machine 

learning process. We would feed the algorithm with valid analyzed data called as 

training set and extract knowledge or information. This knowledge you often store 

in a format that’s readily useable by a machine for the next two steps. In the case 
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of unsupervised learning, there’s no training step because you don’t have a target 

value. Everything is used in the next step. 

5. Test the algorithm: Information learned from training process is used here. When 

evaluating an algorithm, testing needs to be done to determine its accuracy. In the 

case of supervised learning, the target variables are known for test data which is 

used to evaluate the algorithm. In unsupervised learning, you may have to use 

some other metrics to evaluate the success. In either case, if the efficiency is not 

satisfactory we have to go back to step 4 redo the learning process using different 

and more accurate training data and test the algorithm again. 

6. Use it: We make use of algorithm to make decisions or predict a solution at this 

step. If you are not satisfied with the accuracy revisit the process from initial step 

and retrain using more data as Machine Learning is a continuous development 

process. 

Even though these six steps hold perfectly for creating a machine learning 

algorithm, for each algorithm based on the problem to be solved small changes or few 

steps should be added in-between them to facilitate data as per the requirement. As 

mentioned this paper focuses majorly on classification algorithms in supervised learning 

our next part explains clearly the total process involved in creating a supervised learning 

model.  
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5. Supervised Learning 

Let us start this section with a detailed workflow diagram of supervised learning 

for both classification and regression which differs only in the target variable predicted 

(class or decimal) as in Figure 2. 

 

Figure 2. Workflow diagram of Supervised Learning Process 
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 To explain the workflow diagram in Figure 2 we will use the famous “Iris” flower 

dataset [3] example which is most commonly used to explain various concepts in data 

science here it is used to explain supervised machine learning task. This dataset has four 

features: Sepal width, sepal length, petal width and petal height which falls into three 

flower species also called class labels: setosa, virginica and versicolor. If iris dataset 

consists of series of images of flowers which is considered the raw data, the second step 

of pre-processing must be done which is feature extraction to measure the four features in 

centimeters. We cannot afford to have samples with missing data so if the data sparsity is 

less we could remove the samples with missing value from dataset or replace the missing 

values using some statistics instead of removing it. Third step sampling is the process of 

splitting randomly our dataset into training and test dataset. The training dataset is used to 

train the algorithm whereas test dataset is to evaluate the efficiency of the algorithm at 

the end. Next process called cross-validation is used to evaluate different combinations of 

feature selection, dimensionality reduction and learning algorithms. The common one 

used is k-fold cross-validation in which the training dataset is split into k subsets (k-1 

subset is used for training and 1 subset will be used for testing), this splitting can help in 

calculating the average error rate once the learning process is done. Normalization is 

done to give equal importance to every feature in the dataset since each feature can have 

different range of values while learning and making decisions, it must be done on both 

training and test data. There are many kinds of learning algorithms in this paper we 

would explain about k-Nearest Neighbor, Decision trees and Naïve Bayes in the later 

sections. In post processing process, we would evaluate accuracy of the algorithm by 

testing it using the test data and if accuracy doesn’t satisfy the expected process we can 
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always restart the process by providing the algorithm with more accurate and abundant 

data. We can also refine our input dataset collection and preparation technique to achieve 

better result. When the algorithm achieves the expected accuracy, we can use the 

algorithm to predict real data. 

 Classification is a part of supervised learning model where the algorithm predicts 

the class under which the new data falls where the class should not be a numeric value. In 

this paper, we are going to deal with three important classification algorithms: 

➢ k-Nearest Neighbor 

➢ Decision Trees 

➢ Naïve Bayes 
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6. k-Nearest Neighbor 

In this section, we will discuss about our first classification algorithm: k-Nearest 

Neighbors. It is simple to understand and easy to implement compared to other machine 

learning algorithms. This section will start with an explanation about basic working 

concept behind this algorithm followed by a flow chart which explains step wise process 

involved. To explain the algorithm, we would state an example for improving results 

from a dating website and the corresponding python script used to implement it. The 

python script would be clearly explained function wise in the next subsection followed by 

the results obtained from that code. 

The advantages in using this algorithm are its high accuracy, insensitive to 

outliers and no assumption about data. It has its own disadvantages also which are its 

requirements for lot of memory and expensive computation. This algorithm works with 

both numeric and nominal values.      
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6.1. Background 

The k-Nearest Neighbor (kNN) algorithm is one of the most widely used 

classification algorithm due to its simplicity and easy implementation. It is also used as 

the baseline classifier in many domain problems [4]. kNN algorithm is a conventional 

non-parametric classifier [5] usually used for classification and regression problems. We 

start with a set of data each with a data point and a known class and these are divided into 

two subsets called as training data and test data. The process of predicting the class for 

new data based on the classes of available training data is called as classification 

problem. kNN is a type of lazy learning method because we don’t need to train the 

algorithm but during the classification phase it goes through all the training data to 

calculate the distance between them and input data and predicts the class of input data 

[1].  

The distance between two points is decided by a similarity measure called as 

Euclidean distance, even though there are many other ways to measure the distance 

Euclidean distance measurement is commonly used since there is no comparative study 

examining the effect of distance function over the efficiency of kNN. Mathematical 

formula for measuring Euclidean distance between two points p & q with n elements is 

given below: 
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Once the distance between the input data and the training data are measured using 

the above formula, then k number of nearest points to the input data are selected and 

majority class of the selected neighbors will become the predicted class for new data. 

Hence the name k-Nearest Neighbors. Euclidean distance calculations hold good for 

categorical and numerical datasets but not for the mixed type of datasets [6] & [7]. 
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6.2. Flowchart 

In k-Nearest Neighbors (kNN) algorithm we would have training dataset and test 

dataset. Each instance of training data would have several features and one label, since 

we are discussing about single label classification only. So, we know the labels to which 

each instance of data falls into. The whole purpose for developing this algorithm is to 

identify the label for the new data given without a label of its own and the whole process 

involved is explained in the workflow diagram given in Figure 3. 

 

Figure 3. Workflow diagram of k-Nearest Neighbor Algorithm  
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We start the process by initializing the value k (integer) whose importance will be 

explained later. In the next step, we would compute the Euclidean distance between the 

new input sample and every training sample provided to the algorithm. It is followed by 

sorting out the distance of each training sample from the input data and once the 

distances are sorted we choose k nearest neighbors to the input data, this is where k 

becomes useful. Once the neighbors are chosen, new input data is given the label which 

is a majority among its neighbors. This is the simple process behind the powerful and 

most common classifier used among machine learning models.   
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6.3. Example with Python Code 

To explain effectively the k-Nearest Neighbors algorithm we are going to look at 

an interesting example of filtering the matches recommended by a dating site per the 

user’s input and dividing the recommendation into three categories: doesn’t like, like in 

small doses and like in large doses. The user’s input is derived from her past dating 

experiences with the persons recommended by the site. The data was collected in a text 

file by the user which contains percentage of time spent in playing videogames, liters of 

ice-cream consumed weekly and number of frequent flyer miles earned per year as three 

features used to determine the likability of the person. We would prepare the data by 

parsing the text file in python. Analysis of data is done by Matplotlib to make 2D plots of 

data. Algorithm training is not needed in kNN since the Euclidean distance between the 

input sample and training sample is done every time. Then we would test the algorithm 

by comparing the result of test data from algorithm to its actual result which would give 

us the error rate. At last create a program where the user would receive the predicted 

output (like or dislike) by feeding few inputs. To implement the algorithm, we have used 

an open data science platform called Anaconda powered by python and it has inbuilt 

NumPy and Matplotlib packages which makes our life easy. Let us look at the python 

code designed to implement kNN algorithm for this example.     
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PYTHON CODE 
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6.4. Explanation 

In the python code, we first import NumPy which is our scientific computing 

package and then the operator module which is later used in the algorithm for sorting. 

The idea behind our first function classify0( ) is as follows: 

• Calculate the Euclidian distance between input data (inX) and a training data 

• Sort the distances in ascending order along with the distances of other training 

data 

• Take k lowest distances from sorted distance data 

• Choose the majority class among k lowest distances 

• Return the majority class as predicted class of input data 

  Next our function file2matrix( ) works basically to prepare a file i.e. parsing data 

from a text file to python. This function briefly does the following functions: 

• Reads the file and counts the number of lines present in text file 

• Create a NumPy matric to populate and return 

• Loop all the lines and strip the return line character using line.strip( ) and use 

tab delimiter between them 

• Return the first three elements of each line as returnMat which are the 

features of dataset and the fourth element of the line as classLabelVectors 

which is the class 

Let us now talk about autoNorm( ) function which is used to normalize each value 

with respect to 1. In this example, frequent flier miles will always dominate the Euclidean 

distance outcome irrespective of liters of ice-cream and percentage of time spent playing 
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video games differences because of its high value. But the user treats all three features 

equally when deciding the likability of the person so to make the impact of each features 

on Euclidean distance equal we normalized them. This function is based on the following 

idea: 

• Get the minimum and maximum values of each column and place it in 

minVals & maxVals 

• Perform element-wise calculation for normalized value with the help of 

following formula: 

Normalized value = (old value – min) / (max - min)  

The function datingClassTest( ) calls for two functions file2matrix( ) and 

autoNorm( ) which opens the input data parse them into python and normalize each 

values of functions. Then this function splits the input dataset into two separate datasets 

called as training dataset and testing dataset. These two datasets are fed into classify0( ) 

function and the returned matrices from it are used to display the comparison between 

original class of test dataset and the class predicted by the algorithm. Also, the 

corresponding error rate is also displayed by this function. 

  The final classifyPerson( ) function uses the algorithm to predict totally new data 

without any class. This function would ask for the input features from the user and 

predict the output class by calling for file2matrix( ), autoNorm( ) and classify0( ) 

functions in order. The output has been predicted with the error rate of 0.064000 for the 

given training data which is shown in the following section.  
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6.5. Results 

We would start this section by showing 2D plots created by Matplotlib during the 

input data analysis phase. The python code used to create the plot is given below: 

 

 The input features number of frequent flyer miles/year, percentage of time spent 

playing video games and liters of ice-cream consumed weekly are represented as columns 

0,1 & 2 respectively while plotting as given in input text file. Figure 4 represents the plot 

where x axis represents frequent flyer miles and y axis shows time spent playing video 

games. The violet color plot shows the “did not like” class; yellow color shows “liked in 

large doses” class and blue color shows “liked in small doses” class. The color 

representation remains the same for Figure 5 & 6 too where only the x and y axis 

representation changes. 
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Figure 4. Frequent flyer miles earned yearly vs time spent playing video games  

 

Figure 5. Time spent playing video games vs liters of ice-cream consumed weekly  
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Figure 6. Frequent flyer miles earned vs liters of ice-cream consumed weekly  
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Figure 7 would show us the error rate which affected the efficiency of the kNN 

algorithm during its implementation along with the error rate and few examples showing 

the expected test data class and the actual test data class predicted by the algorithm. The 

arrow mark on the left-hand side of the figure shows the typical error in the testing phase. 

The error rate is basically the error count divided by the total number of test data given to 

the algorithm. In this example, the error rate is 0.064000 with an error count of 32.   

 

 Figure 7. Screenshot of testing phase showing an error and its error rate & count  
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We would finish the results subsection with the screenshot in Figure 8 showing 

the final prediction output when new features were fed to the algorithm by the user. 

 

Figure 8. Screenshot of output predicted when new features were fed 
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7. Decision Trees 

In this section, we will discuss about our next classification algorithm: Decision 

Trees. It is the most commonly used machine learning technique. This section will start 

with an explanation about background of this algorithm followed by a flow chart which 

explains step wise process involved. To explain the algorithm, we would state an 

example to predict the contact lens type people would need and the corresponding python 

script used to implement it. The python script would be clearly explained function wise in 

the next subsection followed by the results obtained from that code. 

The major advantage of decision tree is that humans can easily understand the 

data and they are computationally cheap to use. Decision trees still holds good for 

missing values and can deal with irrelevant features. The biggest disadvantage is they are 

prone to overfitting. This algorithm also works with both numeric and nominal values 

like kNN.      
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7.1. Background 

A decision tree is a representation of a design process to determine the class of a 

given feature. Each node of the tree can be either a leaf node (or answer node) that 

contains a class name or a non-leaf node (decision node) that contains an attribute test 

with a branch to another decision tree for each possible value of the attribute. Generally, 

in a decision tree plot a leaf node will be in the shape of oval whereas decision nodes 

would be a rectangle with arrows pointing the connections between appropriate nodes 

[8]. The core strength of every machine learning model is based on its underlying 

learning strategies and the strategy behind this implemented decision tree is ID3 

algorithm [9] which takes care of splitting the dataset based on the attribute and the right 

place to stop splitting. Those processes are explained in the following sections. 

Before we move on the next section, let us discuss about the mathematical 

calculations and theories surrounding the ID3 algorithm. To split the dataset based on 

best attribute we use the concepts from Information theory formulated by Shannon [10]. 

Using information theory, we would measure the difference in information before and 

after the split called as information gain. The measure of information of a set is called as 

Shannon Entropy or Entropy which is defined as:    
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Higher the entropy, more mixed is the dataset. So, the difference in Entropy 

before and after the split is called as Information gain and the split with the highest 

information gain will be considered as the best feature to split after all Decision tree 

algorithm is performed for classifying data instances belonging to same class to the same 

leaf node.  
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7.2. Flowchart 

Decision tree algorithm falls under supervised learning technique and is the most 

commonly used technique. We will follow ID3 algorithm which decides the best feature 

to split and indicates the time to stop splitting the tree algorithm. The structured 

workflow followed in implementing the decision tree algorithm is given below in Figure 

9. 

 

Figure 9. Workflow Diagram of Decision Tree using ID3 algorithm 
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Deciding on the best feature to split and the actual splitting process is done using 

ID3 algorithm and the process of calculating the information of a dataset is defined as 

Shannon Entropy or Entropy. From the workflow diagram, we infer the following steps: 

• Start the algorithm by collecting the input data and preparing it for further 

processing 

• Use the input data as training dataset 

• Decide the best feature to split based on calculating the information gain, higher 

the information gain best is the feature to split 

• Split the dataset into subsets based on the best feature 

• Check whether all the data in the subset belongs to the same class, if yes stop the 

splitting process. If there are different classes available restart deciding the feature 

to split on and split the dataset further leading to different branches.  

Hence the process continues until every end node of the tree has elements 

belonging to the same class. Next section explains the example used along with the 

python code used to implement it.   
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7.3. Example with Python Code 

We would look at an example that predicts the contacts lens type that needs to be 

prescribed based on the given dataset. From the results, we can get an insight about the 

process by which the doctor prescribes the contacts lens to the patient. The data was 

collected in the text file which is provided to us and we are not interested in data 

collection process now. The collected data is prepared by parsing it into python using tab 

delimited lines. Analysis phase is done by reviewing the data visually and creating a tree 

plot finally. We train the algorithm by creating a tree data structure and test it for errors. 

We can use the data structure code for different scenarios by providing a different 

training data and usually decision trees are used for better visual understanding of data by 

humans.    
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PYTHON CODE 
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7.4. Explanation 

This section would explain the implemented python code function wise for the 

given example. To start the code, we import logarithmic tool from math module, operator 

module and Matplotlib module for plotting the decision tree. Our first function 

calcShannonEnt( ) is useful in calculating the information of a dataset using Shannon 

Entropy with the following steps: 

• Calculate number of instances in dataset and create a dictionary which 

counts all possible classes and its total number of occurrence 

• Use the frequency of all labels to calculate its probability 

• Calculate Shannon entropy by implementing its formula and use the 

above calculated probabilities 

Next function splitDataSet( ) is used to split the dataset which is done by creating 

a separate list for saving the new dataset. Then this function would cut out input dataset 

based on a feature.  

Now chooseBestFeatureToSplit( ) function will analyze the best feature to split 

such that the information gain would be large i.e. difference between the old entropy and 

new entropy is large because higher the entropy more messier is the data. It is carried out 

in following ways: 

• Calculate the Shannon entropy of the input dataset before splitting by 

calling calShannonEnt( ) function 

• Create a unique list of values for each feature from the dataset using 

native set data type 
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• Now split the dataset based on each unique feature in the set, their 

corresponding entropies are calculated and summed together 

• Calculate the information gain, find the largest information gain i.e. 

largest loss in entropy and return the best feature 

Next the majorityCnt( ) function creates a dictionary with unique class names in 

classList and the object of the dictionary is the frequency of occurrence of each class 

label in the list. Finally use the operator module to sort the dictionary and returns the 

class with the greatest frequency. It is useful when the dataset has no more attributes left 

for splitting but still the classes are not the same. 

The tree building code createTree( ) gets two inputs dataset and a list of labels. 

This function first creates a list with labels from each of the features in the given dataset 

followed by two stopping condition one when all the classes are equal and if there are no 

more features available to split. If the stopping conditions are not met, the function calls 

for chooseBestFeatureToSplit( ) function to choose the best feature. Get all the unique 

values from the given dataset for the best feature which is stored in a set data type. At last 

we would recursively call for createTree( ) function for the new datatype until the 

stopping conditions are met. Hence, the Tree is created for the given dataset. 

We would now start the second portion of our code for creating a plot i.e. provide 

a visual result for decision tree algorithm to make the user understand it more easily and 

effectively. Now let us start import Matplotlib module into our code before staring the 

functions. We would first define some constants which would useful in box and arrow 

formatting in the tree plot later. Then create a plotNode( ) function which is useful in 

drawing annotation with arrows. 
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Before plotting the tree, we should know the number of leaf nodes and number of 

levels the tree travel which would be helpful in sizing X & Y direction properly. It was 

achieved using functions. Next function) is used to calculate the midpoint between the 

parent and child and place a small text label there. 

Now the most important function for plotting a tree plotTree( ) comes which 

follows the steps:  

• Calculate the width and height of the tree to place the leaf nodes and 

decision nodes at right places by calling getNumLeafs( ) & getTreeDepth( 

) functions 

• Plot the value for the feature along the split exactly at the center of the 

arrow by calling plotMidText( ) function 

• Decrement the Y axis value when you are about to plot the child node, 

follow these steps recursively until every leaf node is plotted 

The last function createPlot( ) handles setting up the overall image, calculates the 

global tree size and kicking start the plotTree( ) function and the other mentioned 

functions follows recursively. 
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7.5. Results 

We would code few lines to feed the input text file and get the tree output by 

calling createTree( ) and createPlot( ) functions also giving all the available labels as 

input to these functions.

  

The output Tree and the output plot received as output for the given example is 

shown in Figure 10. 

 

Figure 10. Output Tree & Plot of Decision Tree Algorithm 
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8. Naïve Bayes 

In this section, we will discuss about our next classification algorithm: Naïve 

Bayes. From the previous two classification algorithms, we estimated a definite class for 

the input data and then we calculated the error rate for the same. But in Naïve Bayes we 

would guess the best class and assign a probability for that best guess. This section will 

start with an explanation about background of this algorithm followed by an example to 

classify the spam emails and the corresponding python script used to implement it. The 

python script would be clearly explained function wise in the next subsection followed by 

the results obtained from that code. 

The major advantage of decision tree is it works with a small amount of data and 

handles multiple classes. But it is sensitive to the input data preparation process. This 

algorithm will work with nominal values only. 
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8.1. Background 

Naïve Bayes is a simple form of Bayesian classifiers, based on Bayes Decision 

theory. Bayes’ theorem plays a major role in the classification process which is explained 

in the next section. Bayesian classifiers assigns the most likely class to a given instance. 

The Naïve Bayes classifier assumes that the effect of an attribute on a class is statistically 

independent of all other attributes [12]. This assumption is considered naïve [13]. Despite 

this assumption, its accuracy is still comparable to other sophisticated classifiers and has 

proved effective in many practical applications [14] [12] [15]. The popularity of naïve 

Bayes classifier has increased and it is adopted by many due to its computational 

efficiency, simplicity and performance for real-world problems. 

  Before we look at the example and its implementation, let us discuss about the 

mathematical foundation behind Bayes Decision theory. If we have p1(x, y) as 

probability of a piece of data belonging to class 1 and p2(x, y) as probability of same data 

belonging to class2. As per Bayes Decision theory to choose the class with higher 

probability by following two rules: 

• p1(x, y) > p2(x, y), then the class is 1 

• p1(x, y) < p2(x, y), then the class is 2 

To explain in brief the probabilities p1 & p2 are the conditional probabilities p (x 

| y) and the mathematical formula for the conditional probability is given below: 
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Bayes’ rule is used to manipulate the conditional probabilities which gives the 

mathematical calculation behind swapping the symbols inside conditional probability as 

follows: 

 

Combining the conditional probabilities and Bayes’ rule from the above equations 

we can rewrite the Bayesian Classification rule: 

• p (c1 | x, y) > p (c2 | x, y), then the class is 1 

• p (c1 | x, y) < p (c2 | x, y), then the class is 2 

But we don’t have the values for p (ci | x, y) so by applying Bayes’ rule, it is 

rewritten as 
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8.2. Example with Python Code 

To explain Naïve Bayes elaborately we will look at its famous real-life usage: 

Email Spam filtering. The first scholarly publication on Bayesian spam email filtering 

was y Sahami et al. [11]. A Naïve Bayes classifier [12] simply uses Bayes’ theorem on 

the context classification of each mail, with a naïve assumption that the words included in 

the email are independent to each other. Data which is emails in this case are collected in 

text files and are provided to the algorithm. This data is prepared by parsing the text into 

token vectors which is the input for the algorithm. Inspection of tokens are done as an 

analysis process to check the accuracy of parsing done. We train the algorithm using 

training data and the testing is done eventually to calculate the error rate over a set of 

documents. We would build a complete program which would classify a group of 

documents and print misclassified ones on the screen with the error rate. 
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PYTHON CODE 
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8.3. Explanation 

The first process in this example would be to covert the words in the documents 

into a vector with numbers. We would start with createVocabList( ) function which will 

create an empty set (python data type) and append the set with new set from each 

document using | operator for producing union of two sets. Set holds only the unique 

words from the documents. Next as a continuation let us see about bagOfWords2VecMN( 

) function which takes the vocabulary list and the input document and gives an output of 

vector with numbers representing the frequency at which the word in vocabulary is 

present at the given document. 

Since the words has been converted to numbers let us now calculate the 

probabilities with these numbers to predict the class: Spam or Ham. To perform this, we 

would call trainNB0( ) function which works in the following stepwise manner: 

• Count the number of documents in each class 

• For each training document and for each class if a word occurs increment the 

count for that word 

• For each class and for each word divide the word count by the total number of 

words to get conditional probabilities 

• Return the conditional probability for each class 

  Next classifyNB( ) function is used to perform Bayesian Decision theory in which 

the class with higher conditional probability becomes the predicted output class. In the 

function, we would perform element-wise multiplication between two vectors and add up 
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all the values for the words in vocabulary which is added to logarithmic value of class. 1 

is returned if probability of class1 is greater than class2 or 0 for vice versa. 

Now the next function textParse( ) would parse the text file into a list of strings 

which eliminates any word under two characters long and converts them into lowercase. 

The last function spamTest( ) automated the spam classifier and follows the following 

steps: 

• Initiate vectors, load and parse text files from spam and ham folder into those 

vectors 

• 10% of input data is randomly chosen as test vector and remaining as training 

set, the probabilities will be computed only form the training set 

• When a test set is selected, the algorithm will remove them from training set 

called as cross validation 

• The last loop iterates through all the items in test data and creates word 

vectors from them and vocabulary using bagOfWords2VecMN( ) function  

• Call for trainNB( ) function to calculate the probabilities needed and iterate 

through each test set and classify each email in the test dataset 

• When the email is not classified correctly error count is increased and the final 

error percentage along with the word list of the email which got misclassified 

is printed 
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8.4. Results 

We can infer from Figure 11 that due to our code which chooses test and training 

dataset randomly the output shows different error rates at each instance also showing the 

email document which got misclassified. Hence the Naïve Bayes algorithm for spam 

testing has been successfully implemented. 

 

 

Figure 11. Output Screen of Naïve Bayes Algorithm showing different error rates 
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9. Conclusion 

This study is not a comparison between three classification algorithms because 

each algorithm has been given different machine learning problems to tackle which fits 

their strength accordingly. But I would say this paper as a brief study about three 

important and mostly used classification algorithms: k-Nearest Neighbors, Decision tree 

and Naïve Bayes. Each example scenarios have been implemented with Python code 

using an open source data science tool called Anaconda powered by Python 2.0 with 

inbuilt scientific modules such as NumPy and Matplotlib. The results have been clearly 

given after each implementation along with the detailed explanation of the python code. 
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