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Introduction to Coevolution by Example

Definitions

Coevolutionary Algorithm (CoEA) - an evolutionary algorithm
(EA) in which evaluation is based on interactions between
individuals.

Changes in the set of individuals used for evaluation can affect
the ranking of individuals.

Coevolutionary Computation (CoEC) - the subfield of
computer science that is concerned with the study of CoEAs
and their application to problem solving (predominantly) and
modeling.

Encompasses both the algorithms and the problems they are
applied to.
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Introduction to Coevolution by Example

Examples

One population, single-elimination tournament

A B C D E F G HA B C D E F G H

A D F HA D F H

D FD F

D

Individual

D

F

A, H

B, C, E, G

Fitness

4

3

2

1
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Introduction to Coevolution by Example

Examples

One population, full mixing

A

B C

D

E Individual

A

B

C

D

D

Fitness

1

4

1

2

2

Popovici, Wiegand GMU, NRL

Coevolution Tutorial

Outline Introduction Coevolutionary Systems Analysis Conclusion

Introduction to Coevolution by Example

Examples

Two populations, random interacting individuals

Population 1 Population 2

Payoff

Fitness assesment

Fitness Fitness

2

5

3

3

7

1

3

5

3

4
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Introduction to Coevolution by Example

Examples

Two populations, random interacting individuals

Population 1 Population 2

Fitness Fitness

2

5

3

3

7

4

3

6

Selection and breeding
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Introduction to Coevolution by Example

Examples

Three populations, cooperative

Population 1 Population 2

Population 3

8 2 5

6

5

3
Fitness
Assessment6

4
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Introduction to Coevolution by Example

Examples

Three populations, cooperative

Population 1 Population 2

Population 3

8 2 5

6

5

3 6

4

9

Selection and
Breeding
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Introduction to Coevolution by Example

Examples

Three populations, cooperative

Population 1 Population 2

Population 3

6

5

3 6

4

9

Fitness
Assessment

7
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Introduction to Coevolution by Example

Motivation

Simulation of processes from nature

Problem decomposition for more efficient problem solving
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Introduction to Coevolution by Example

Motivation

Tackling domains in which performance of a potential solution
can only be expressed by interaction with other potential
solutions

A fitness function not based on interactions is extremely
difficult / impossible to construct
Using the complete set of interactants is impossible
Using a large set of interactants is computationally expensive
Using a small fixed set of interactants is prone to overfitting or
may not provide gradient
Using a small random set generally yields poor results due to
sampling error
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Introduction to Coevolution by Example

Motivation

Domains where CoEAs may improve performance by:

Providing a dynamic gradient
Helping maintain diversity
Incrementally building complexity
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Introduction to Coevolution by Example

Challenges

Difficult to setup in order to obtain desired results

Complex and sometimes unintuitive behaviors
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Coevolutionary Problems

Solution Concept

Solution Concept

A criterion specifying which locations in the search space are solutions
and which are not (Ficici 2004).

Engineers have a solution concept in mind when they apply an
algorithm to a problem
Algorithms induce a solution concept, by intention or not

Dynamically speaking, algorithms tend to be drawn to, or
focus on, particular areas of a search space

Key is to match algorithm’s solution concept to the intended
solution concept

� Many coevolutionary algorithms fail because these are
mismatched
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Coevolutionary Problems

Solution Concepts in Coevolution

Question:

What solution concept is implemented by traditional CoEAs?

It is especially important in coevolution to have a well-defined
notion of solution concept, but often there is none

Recently, there have been several useful & well-defined
coevolutionary solution concepts published:

Ideal Collaboration/Partnership (Wiegand 2004)
Maximum average/expected/cumulative payoff

(Ficici 2005; de Jong 2005)
Nash equilibrium (Ficici & Pollack 2003)
Pareto-optimal set (de Jong & Pollack 2004)
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Coevolutionary Problems

Properties of Coevolutionary Problems

Question:

Are problems inherently coevolutionary?

Some problem properties lend themselves more toward
coevolutionary systems than others:

Underlying objectives

Game-theoretic rewards

Roles of problem elements
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Coevolutionary Problems

Underlying Objectives

Underlying Objective

An indicator of quality returning an element from an ordered set of scalar
values, such as a real number. For any [coevolutionary] problem, a set of
underlying objectives exists such that knowledge of the objective values
of [a candidate provides as sufficient search information as] the outcomes
of all possible [interactions] (de Jong 2004).

Many coevolutionary problems have multiple underlying objectives

CoEAs typically do not have direct access to these, but must infer
them by testing different interactions

Watson & Pollack (2001) describe a simple substrate for
demonstrating problems with different underlying objectives

Bucci et al. (2004) describe an algorithm that approximates a
minimal set of underlying objectives
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Coevolutionary Problems

Game-Theoretic Rewards

One view of coevolutionary problems is one in which
game-theoretic interactions are encoded directly into the problem

Goal is to learn good players of some game

Reward function of game is given as part of the problem

Reward function may have various properties, e.g.:

Constant-sum / Variable-sum
Symmetry of reward
Other characteristics of player payoffs
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Coevolutionary Problems

Roles of Problem Elements

In coevolution, the role of elements of the problem may differ
depending on the solution concept

Object of learning/optimization may differ

Solving the problem may involve learning a variety of things
Important to understand which problem elements constitute
candidate solutions and which serve supporting roles

Different roles may be:

Symmetric — Learn players for a game
Asymmetric — Optimize sorters with challenging data
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Coevolutionary Problems

Categorizing Coevolutionary Problems

There are many ways to categorize coevolutionary problems based
on their properties. For example:

Game-Theoretic Rewards: Use GT properties to classify problems
based on the payoff from individual interactions

Roles of Problem Elements: Use the role of the solution to classify
problems as test-based or compositional
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Coevolutionary Problems

Payoff from Individual Interactions

Competitive Interactions:

Competitor: one of two or more striving to reach or obtain
something that only one can possess (www.m-w.com)

Example: constant-sum game (sufficient but not necessary)

Can be approached with either one- or two-population
algorithms

More than two populations raises interesting denotational
issues (e.g., “The enemy of my enemy is my friend.”)

Competitive problem payoff, not competitive algorithm, because:

Fitness is a function of payoffs from multiple interactions!

Increase in (best/average) fitness values in one population may or
may not cause decrease in fitness values in the opposite population
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Coevolutionary Problems

Payoff from Individual Interactions

Cooperative Interactions:

To cooperate: to associate or act together with another or
others for mutual benefit (www.m-w.com)

Example: variable-sum game with symmetric payoff (sufficient
but not necessary)

Often useful problem decompositions lead to cooperative
interactions among components
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Coevolutionary Problems

Payoff from Individual Interactions

Mixed Interactions:

Interactions can be a mixture of both competitive and
cooperative rewards

The majority of games are of this type

Example: iterated prisoner’s dilemma (Axelrod 1989)

Summary

Constant-sum games are competitive

Variable-sum games with symmetric payoff are cooperative

Variable-sum games with asymmetric payoff can be any
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Coevolutionary Problems

Test-Based vs. Compositional

Let C1,C2, ...,Cn be the n classes of elements involved in a
problem specification

C1 C2 · · · Cn−1 Cn

Learner (Solution) Test

Test-based — Solutions specify elements from a single class
Example: Sorting networks and challenging data
Recall: Object of learning may differ

Some problem elements constitute candidate
solutions and some serve supporting roles
Here, one class designated as the learner

(or candidate), other class(es) designated as
tests for the learner
For some test-based problems, roles can change
during learning

Historically, called
“competitive coevolution”
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Coevolutionary Problems

Test-Based vs. Compositional

Let C1,C2, ...,Cn be the n classes of elements involved in a
problem specification

C1 C2 · · · Cn−1 Cn

Composite (Solution)

Compositional — Solution composite of elements from all classes

Example: Team of cooperating agents
Here, all elements of the problem serve a direct
role in the assembled solutionHistorically, called

“cooperative coevolution”

Mixed — Solutions specify elements from a subset of classes
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Coevolutionary Algorithms

Categorizing CoEAs

Evaluation

Fitness
Assessment

Selecting
Interactants

Sample Size

Selective Bias

Assembling
Values

Update
Timing

Sequential

Parallel

Representation

Problem
Decomposition

Partitioning
Methods

Decomposition
Temporality

Population
Structure

Single

Multiple

Spatial
Topology

Spatial
Embedding

Non-Spatial
Embedding

Popovici, Wiegand GMU, NRL

Coevolution Tutorial

Outline Introduction Coevolutionary Systems Analysis Conclusion

Coevolutionary Algorithms

Categorizing CoEAs

Evaluation

Fitness
Assessment

Selecting
Interactants

Sample Size

Selective Bias

Assembling
Values

Update
Timing

Sequential

Parallel

Same for all individuals

One
Few
All — Full mixing

Variable

Single-elimination tournament

� Popovici & De Jong 2005 AAAIFS;
Panait & Luke 2002;
Wiegand et al. 2001;
Bull 2001; Bull 1997;
Angeline & Pollack 1993
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Coevolutionary Algorithms

Categorizing CoEAs

Evaluation

Fitness
Assessment

Selecting
Interactants

Sample Size

Selective Bias

Assembling
Values

Update
Timing

Sequential

Parallel

Random

Fitness Based, e.g.:

single-best collaboration

(Potter 1997)
last elite opponent (Sims 1994)

Mixed

Neighborhood (spatial embedding)

Memory based, e.g.:

Hall of fame
(Rosin & Belew 1997)

� Popovici & De Jong 2005 AAAIFS;
Wiegand et al. 2001
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Coevolutionary Algorithms

Categorizing CoEAs

Evaluation

Fitness
Assessment

Selecting
Interactants

Sample Size

Selective Bias

Assembling

Values

Update
Timing

Sequential

Parallel

Single value

Best (mainly in traditional
compositional settings)
Average (mainly in traditional
test-based settings)
Competitive fitness sharing

(Rosin & Belew 1995)

n-uplu

Requires multi-objective-like
selection methods

(Ficici & Pollack 2001)
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Coevolutionary Algorithms

Categorizing CoEAs

Evaluation

Fitness
Assessment

Selecting
Interactants

Sample Size

Selective Bias

Assembling
Values

Update

Timing

Sequential

Parallel

Differences more complicated than
might be expected; more than just
separability is at stake

(Jansen & Wiegand 2004)
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Coevolutionary Algorithms

Categorizing CoEAs

Problem separability
(Jansen & Wiegand 2004)

Inter-population epistasis
(Wiegand 2004; Bull 2001)

Decompositional bias: matching
decomposition of the representation
to problem separability

(Wiegand et al.)

Representation

Problem
Decomposition

Partitioning

Methods

Decomposition
Temporality

Population
Structure

Single

Multiple

Spatial
Topology

Spatial
Embedding

Non-Spatial
Embedding
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Coevolutionary Algorithms

Categorizing CoEAs

Static (Potter 1997)

Dynamic (Potter & De Jong 2000)

Adaptive

Representation

Problem
Decomposition

Partitioning
Methods

Decomposition

Temporality

Population
Structure

Single

Multiple

Spatial
Topology

Spatial
Embedding

Non-Spatial
Embedding
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Coevolutionary Algorithms

Categorizing CoEAs

In “symmetric” domains (i.e., with a
single role) need to make a choice
between one or two populations

Representation

Problem
Decomposition

Partitioning
Methods

Decomposition
Temporality

Population

Structure

Single

Multiple

Spatial
Topology

Spatial
Embedding

Non-Spatial
Embedding
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Coevolutionary Algorithms

Categorizing CoEAs

Specialized choices about interaction
methods and selection / survival

Historically successful
(Pagie1999;Cliff & Miller 1995;
Hillis 1991)

Helps maintain diversity of potential
interactions

(Williams & Mitchell 2005;
Wiegand & Sarma 2004)

Representation

Problem
Decomposition

Partitioning
Methods

Decomposition
Temporality

Population
Structure

Single

Multiple

Spatial

Topology

Spatial
Embedding

Non-Spatial
Embedding
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Coevolutionary Dynamics

Why Study Dynamics?

Coevolution seems a natural, highly adaptive search method
for certain kinds of problems.

Unfortunately, coevolutionary algorithms often disappoint
engineers with poor performance and/or counterintuitive
behavior

Even modifications of the algorithms often lead to
counterintuitive response on certain problems

� Analyzing the dynamics (i.e., run-time behaviors) is key to
understanding coevolution
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Coevolutionary Dynamics

Relativity & Its Effects

The Red Queen —a character in Lewis Carroll’s “Through the
Looking Glass”

Imported first in biology and then in CoEC
and interpreted in many different ways

E.g.: Wiegand 2004;
de Jong & Pollack 2004;
Watson & Pollack 2001;
Pagie & Hogeweg 2000;
Cliff & Miller 1995; Ridley 1993

A metaphor for relativity— the main feature of co-evolution:
(internal) fitness is subjective

Relativity’s hope: to have an algorithm achieve a certain goal
without specifically encoding it internally into fitness

Relativity’s caveats:

Generates intricate run-time behaviors
Makes it difficult to monitor progress towards the goal
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Coevolutionary Dynamics

Instrumenting CoEAs

To understand how CoEA behaviors, many have attempted to
measure their progress

Metrics for the quality of individuals:

Contextual Dependence

subjective — the quality of an individual depends on the
context in which it is evaluated

objective — context independent

Influence on the algorithm

internal — its values are used by the algorithm and
influence its course

external — not internal
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Coevolutionary Dynamics

Instrumenting CoEAs

Metrics for the quality of individuals

Traditional EA— internal objective metric as fitness.
CoEA— internal subjective metric as fitness; the context is a
set of other evolving individuals.
Performance towards the goal— should be measured with an
objective metric (in co-evolution, this will be external, as the
internal measure is always subjective).

(Popovici & De Jong 2005 CEC;
Watson & Pollack 2001)
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Coevolutionary Dynamics

Instrumenting CoEAs

Metrics for the quality of individuals (Cont’)
Other external metrics— designed to understand how an
algorithm is functioning, but do not necessarily say anything
about progress towards the goal.

External objective metrics
Ficici & Pollack 1998 —order theory

External subjective metrics:
Bader-Natal & Pollack 2004 — all of gen. ancestor contests
Stanley & Miikkulainen 2002 — dominance tournament
Funes & Pollack 2000 — information theory
Floreano & Nolfi 1997 — master tournament
Cliff & Miller 1995 —CIAO

Monitor best individual value / whole population average
Observe trends: increasing, decreasing, stagnating, noisy,
repeated values, etc.
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Coevolutionary Dynamics

Instrumenting CoEAs

Monitoring genotypic / phenotypic change
Examples:

Elite bitmaps
Ancestral Hamming maps (Cliff & Miller 1995)
Best-of-gen space trajectories (Popovici & De Jong 2004-5)
Trajectories for percentage of best in population (Wiegand 2004)
Dynamical system cob-web plots (Ficici et al. 2000)

Monitor best individual / whole population
Observe trends: cycling, converging, diverging, chaotic, etc.
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Coevolutionary Dynamics

Arms Race

Arms Race

Any competition where there is no absolute goal, only the relative goal of
staying ahead of the other competitors (Wikipedia)

Ideally, we hope that coevolution progresses by making
parallel adaptive changes in responding strategies

Example: Sorting networks learn to sort easy data, but the
data learns to be more challenging, so the sorting network
must learn to sort harder data, but the data ...

In CoEC, we hope arms race behaviors produce a continuous
increase in external objective progress toward the goal

Unfortunately, there are several pathological dynamics that
prevent arms race behaviors...

Popovici, Wiegand GMU, NRL

Coevolution Tutorial



Outline Introduction Coevolutionary Systems Analysis Conclusion

Coevolutionary Dynamics

Cycling

Visiting the same areas of the space multiple times in a
repeated sequence

Traced by observing changes in individuals at the genotypic /
phenotypic level

Generates some repeating patterns in the internal / external
metrics

Presumed related to intransitivities in the problem’s definition

� Popovici & De Jong 2005 CEC; Watson & Pollack 2001;
Nolfi & Floreano 1997; Ficici & Pollack 1998; Juillé & Pollack 1998;
Paredis 1997; Cliff & Miller 1995
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Coevolutionary Dynamics

Mediocre Stable States

The external metric is “trapped” in a suboptimal value or set
of values

There may still be genotypic change occurring (e.g., cyclic or
chaotic)

Suggestions to replace the term with more specific ones

� Ficici & Pollack 1998
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Coevolutionary Dynamics

Lack (Loss) of Gradient

The distribution of fitness values in (at least) one population
is (almost) flat

Example: tests are too tough for learners; no learner solves
any test

May or may not be accompanied / caused by lack of diversity

May be temporary (gradient may be regained due to changes
in either population) or persistent

Can cause genetic drift

� Bucci et al. 2004; Wiegand & Sarma 2004; Watson & Pollack 2001;
Juillé & Pollack 1998
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Coevolutionary Dynamics

Overspecialization

Individuals improve on some of the underlying objectives but
fail to do so on others

May be due to lack of representatives of those latter objectives

Example: players discovering an opponents weaknesses and
exploiting them but failing to learn the task in a general way

Hard to detect

� Bucci et al. 2004; Watson & Pollack 2001
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Coevolutionary Dynamics

Relative Overgeneralization

Components that perform well in combination with a large
number of other components are favored over components
that perform very well (optimally) in combination with a small
number of other components but poorly otherwise

It is more likely to occur when the fitness results from
averaging payoffs from many sampled interactions

Depending on the goal, it can be good (e.g. when robustness,
good cumulative / average performance is desired) or bad
(when optimal possible payoff is desired)

� Wiegand 2004
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Coevolutionary Dynamics

Monotonicity

A good CoEA consistently refines solutions to the problem

Ideally, we want algorithms that make monotonic progress

toward the goal

Monotonic solution concepts (Ficici 2005):

Use the solution concept to develop a preference relation over
search space, creating a partial-ordering
A monotonic search process produces solution estimates that
never contradict the partial ordering
A monotonic solution concept guarantees such operation
Algorithms that implement such solution concepts
monotonically approach the solution
Example: Nash solution concept

Popovici, Wiegand GMU, NRL
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Coevolutionary Dynamics

Monotonicity

Monotonic CoEAs and ideal evaluation (de Jong 2004):
Coevolution selects the tests used in evaluation adaptively
Ideal evaluation is one that uses a small set of tests but is
equivalent to evaluating against all tests
At every point in time, only the relations between current
candidate solutions need to be evaluated
A set of tests that reveal all relations between the existing
candidate solutions is suficient.
Example: DELPHI

Monotonic CoEAs and archives (de Jong 2005):
Monotonic CoEAs achieve reliable progress by using an archive
of tests that guarantee monotonic progress
There is a distance function for which the distance to the
solution concept decreases with every change to the archive
Example: MaxSolve
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Survey of Coevolutionary Analysis

Empirical Analysis

Component analysis: algorithm properties + problem
properties → performance

Methods of interaction + cross-population epistasis in
cooperative setups

Bull 2001; Wiegand et al. 2001; Bull 1997; Potter 1997
Methods of interaction + noise in competitive setups

Panait & Luke 2002
Methods of interaction + decompositional bias

Wiegand et al. 2003
Different algorithms + asymmetry

Olsson 2001
Different algorithms + intransitivity

de Jong 2004
Memory & diversity maintenance + cycling

Rosin & Belew 1997
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Survey of Coevolutionary Analysis

Empirical Analysis

Dynamics analysis

Run-time properties in isolation
Cliff & Miller 1995; Stanley & Miikkulainen 2002

Run-time properties → performance
Pagie & Mitchell 2002; Juillé & Pollack 1998

Algorithm properties → run-time properties
Ficici & Pollack 2000

Problem properties → run-time properties → performance
Watson &Pollack 2001

Algorithm properties + problem properties → run-time
properties → performance
Popovici & De Jong 2005 CEC; Popovici & De Jong 2005 AAAIFS
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Survey of Coevolutionary Analysis

Theoretical Analysis

Asymptotic run time analysis of the algorithms
Jansen & Wiegand 2004;

EGT, Dynamical systems analysis, & Markov Models
Wiegand 2004; Ficici 2004; Schmitt 2003; Liekens 2002

Category / Order theory
Ficici 2004; Bucci et al. 2004

Multiobjective techniques & Pareto dominance
de Jong 2004

Random walk & intransitivity
Funes & Pujals 2005
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A Few Concluding Points

Conclusions

Coevolution can be useful for certain kinds of problems

It can also behave in complex and counterintuitive ways

The key to successful applications of coevolution revolves
around the solution concept:

Understand your problem: What do you want to achieve?
Understand your algorithm: To what types of solutions is it drawn?
Match the two: Use the right tool for the right job
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A Few Concluding Points
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