DESCRIBING THE REAL NUMBERS

TONY VARILLY

1. Introduction

The goal of these notes is to uniquely describe the real numbers by taking certain statements as
axioms. We are not trying to construct the real numbers, we are just trying to make sense of our
experience with them.This exercise might seem tedious at times, but it is important to do it at
least once in one’s life. Don’t worry if you can’t make sense of all the details the first time you
read this handout. Reading mathematics takes time and patience. It would be a good idea to have
pencil and paper in hand so that you can verify many of the proofs presented here as you go along.
Most of the material covered here is not in a way essential to Math 25, but the handout does have
many detailed proofs which you are invited to explore as you learn how to write proofs.

2. First Step: R is a field

Definition. A field F is a set for which two operations from F' x F' into F' are defined. We will
call them addition (+) and multiplication (-):
(a,b) —»a+b (a,b) —a-b

For a,b,c € F, these operations satisfy:

Associativity a+(b+c)=(a+0b)+¢ a(bc) = (ab)c,
Commutativity a+b=>b+a; a-b="b-a,
Identities 30,1 € F a+0=aq; a-1=a,
Inverses 3 —a and a™*(a # 0) a+ (—a) = 0; a-a”l =1

Our two operations are linked through distributivity: a-(b+c) =a-b+a-cfor a,b,c € F. Finally,
we assume that 1 # 0.

Remark. We will often write the product a - b simply as ab.

Examples. Q R, C are all fields. Another good example is R(X), the field of rational functions
in one indeterminate. An element of this field is of the form S(X)/T(X) where S and T are
polynomials with coefficients in R and T" # 0.

We can prove many results which seem trivial through experience from these axioms.
Proposition 1. The additive identity of a field F' is unique.
Proof. Suppose there are two additive identities 0,0’ € F. Then
0=0+0"=0"
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The left equality follows because 0 is an additive identity of F'. Similarly, the right equality follows
because 0 is an additive identity of F. O

Theorem 2.1. For any a € F we have a0 = 0.

Proof. This is a highly non-trivial statement. Read aloud, it says that any element of the field
multiplied by the additive identity gives you back the additive identity. We defined 0 additively, so
why should it have this wonderful multiplicative property? We have

04+0=0 additive identity

a(0+0) =al
a0 4+ a0 = a0 distributivity
(a0 + a0) + (—a0) = a0 + (—a0) existence of additive inverses
a0 + (a0 + (—a0)) = a0 + (—a0) associativity of +
a0+0=0 additive inverses
a0 =0 additive identity

O

Remark. Most, if not all proofs in Math 25a do not have to be as ultra-rigorous as this last one.
I just wanted to give an example of an absolutely water-tight axiomatic proof.

Theorem 2.2. For a € F we have (—1)a = —a. Furthermore, if b € F then (—a)(—b) = ab.

We leave the proof as an exercise. (Hint: begin with 1 4+ (—1) = 0 and use Theorem 2.1.)
The field axioms do not describe R uniquely. As we saw in the examples, they also describe Q,
and we know from experience that Q and R are different. Our picture of R is as of yet incomplete.

3. Second Step: R has an order

We follow Hewitt and Stromberg [1] in our treatment of ordered fields.

Definition. A field is ordered if there is a subset P of F' such that
1. PN(—P) =2,
2. PU{0}U(—P)=F,
3. For a,b€ P we have a+b &€ P and ab e P

Think of R as our field ' and the set of positive numbers as P. In particular, R is an ordered
field.

Theorem 3.1. Let F be an ordered field. If a € F and a # 0, then a®> € P. In particular, 1 € P.

Proof. Since a # 0, Properties 1. and 2. above tell us a € P or ¢ € (—P). If a € P, then by
Property 3. a? € P. If a € (—P), then —a € P, and by Property 3. (—a)? € P. But by Theorem
2.2, (—a)(—a) = a?, so again a® € P. Since 1-1 =1, we have 1 € P. O

Remark. It is true that Q can be embedded into every ordered field F' that is infinite. This just
means there’s a copy of Q lurking at the core of every infinite ordered field. We are not finished
with our description of R then, since Q is also an ordered field. However, C is not an ordered field,
so we have indeed made some progress towards our goal of describing R uniquely.

Definition. Let F' be an ordered field. We write a < b, or equivalently b > a if and only if
b—ac€ P.
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Theorem 3.2 (Trichotomy). Let F be an ordered field and a,b € F. Then exactly one of the
following relations hold:

a < b, a=b, a>b.
Proof. The proof follows directly from the definition of ordered field. O

You can prove now, for example, that given elements a,b and ¢ of an ordered field, such that
a > b, then a4+ ¢ > b+ c and if ¢ > 0 then ac > bc as well.

Definition. Let F' be an ordered field and a € F. We define |a| as

a if a > 0,
|a| = .
—a ifa<O.

Theorem 3.3. Let a,b be elements of an ordered field F. Then
1. |a| = [—al,
2. |ab| = |al[b],
3. |la+b] <la| + 0],
4. [la] = [b]] < ]a —b].

Proof. The first two statements follow straight from the definition of the absolute value. We prove
the third asserion. It is easily checked that a < |a| and b < |b|. Hence

a+b<lal+ bl
We also have —a < | — a| = |a|, and similarly for b. Thus
—(a+0b) < la| + [b].

To see why the fourth statement is true, substitute in turn ¢ — b for @ and b — a for b in the third
statement. O

As we said before, our description of R is still unsatisfactory. So far, an ordered field describes
both R and Q. We know, for example that v/2 € R but v/2 ¢ Q. So somehow we must fill in the
‘holes’ that Q has in order to obtain R. Would filling in these ‘holes’ be enough to characterize R
uniquely? Consider the following example.

Example. Let Q(X) be the field of rational functions with coefficients in Q. An element of this
field is of the form A(X)/B(X) where A(X) = > a;X* and B(X) = > b; X7 # 0. Now introduce
an order in Q(X) by putting A(X)/B(X) in P if and only if a,by,, is a positive rational number.
Certainly this field is ‘bigger’ than Q since a copy of Q can be found in the constant polynomials
of Q(X). But is this field intrinsically different from R? If so, in what way?

4. Third Step: R is Archimedian

Definition. An ordered field F is called Archimedian if for all a € F and b € P there exists a
positive interger n such that nb > a.

Intuitively, the Archimedian property says that given any ‘length’ ¢ and a unit of measurement
b, we can produce enough copies of b to totally cover the length a. The rational numbers are
Archimedian, and so are the real numbers. But the field we described in the example from the
previous section isn’t. To see why this is the case, take ¢« = X € Q(X) and b = 1 € P. Then
nb > a if and only if nb —a € P. But nb— a = —X + n, and this element is not in P according to
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our order of Q(X). So we have an example of an ordered field which is not Archimedian. The real
numbers, however, do constitute an Archimedian ordered field.

We are very close to our goal of describing R. We still need to fill in the holes left by the irrational
numbers in Q. Once we do this, our description will be complete. Furthermore, we can prove our
description is complete, by showing that any two objects satisfying our axioms are isomorphic (i.e.,
they have ‘the same form’).

5. Fourth Step: R has the nested intervals property

Definition. An ordered field F is said to satisfy the nested intervals property if given a sequence
of closed intervals ([ay, by]n) such that a, < apy1 and by41 < by, for all n, the intersection of the
sequence is non-empty.

Example. Q does not satisfy the nested intervals property. Consider the fractions

1
Tz, =1+ 1
2+ 1
2+2+”.
where there are n 2’s in the fraction z,. Each xz, is a rational number. Let a, = z9, and

b, = To,+1. Then one can show a, < a,y1 and b,41 < b, for all n € N. If QQ satisfies the nested
intervals property, then N, ([an, b)) # @ in Q. But this intersection is /2, which is not in Q.

Remark. The nested intervals property is what makes R complete. There are many other notions
that are equivalent to completeness. A popular one, found in most analysis books, and included in
this week’s problem set, is done using Cauchy sequences. The nested intervals approach is equivalent
and very clean. Many theories in Math have more than one way of going about them. This is my
personal favorite.

We now prove a very important theorem that is possible by the nested intervals property. In
what follows, keep R in mind whenever we discuss a field F.

Definition. Let X be a non-empty subset of an ordered field F. Let a € F. If x < a for all z € X,
then a is called an upper bound of the subset X. If such an a exists, the set X is said to be bounded

above. A lower bound is defined analogously. A set X that is bounded above and below is said to
be bounded.

Theorem 5.1. Let F be an Archimedian ordered field that satisfies the nested intervals property.
Let X be a non-empty subset of F' that is bounded above. Then among all the upper bounds of X,
there is a smallest one.

The theorem asserts the existence of a least upper bound on a set X that is bounded above.
We call this least upper bound the supremum of X and denote it sup X. One can also prove that
a non-empty subset X of F' that is bounded below has a greatest lower bound. It is called the
infimum of X, and it is denoted inf X.

Proof of Theorem 5.1. We'll follow Dieudonné [2] in our proof. Let a be an element of X, and b
an upper bound for the set. Since the field we are working on is Archimedian, for every integer n
there is another integer m such that b < a+m-27". If ¢ is an upper bound for X, then so is every
other y > c¢. Thus there is a smallest p, such that b < a + p,27" is an upper bound for X.
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Let I, = [a + (pn — 1)27",a + pp2™"]. Then by the definition of p,, X N I, is not empty. Since
P27 = (2p,)27 "L, then either p, 1 = 2p, or p,i 1 = 2p, — 1 because a + (2p, — 2)27""! =
a+ (p, — 1)2°™ is not an upper bound for X. This means I,;; C I,. By the nested intervals
property, the intervals I, have a non-empty intersection J.

We want to show that this non-empty intersection contains only one member of F', and that this
member is our least upper bound. Suppose that J contains at least two elements « and (. Assume
a < (. The interval [, 3] would be contained in each I,. But each I, has length 2~". Hence
27" > B — « for every n, or 1 > 2"(8 — ). This means F is not Archimedian. For example, since
2" > n (which one can prove using mathematical induction), we have 1 > n(8 — alpha) for all n,
which implies F' is not Archimedian. This contradiction tells us the intersectionJ can have at most
one element. Since it is not empty, we conclude J has excatly one element, J = {v}.

We claim + is an upper bound for X. Suppose it is not; then there is an £ € X such that z > +.
If we choose an integer n big enough, we get 27" < x — «y. Since v € I, for this n, we’d have
T > a+ pr2~", contrary to the definition of p,. Thus v is an upper bound for X

Finally, «y is the least upper bound of X. Suppose there is a smaller upper bound y. Then v > y
means there is some integer n such that 27" < v — y. Since y € I, for this particualr n, we have
a+ (pn—1)27" >y, s0 a + (p, — 1)27™ would be an upper bound for X. Again, this contradict
the definition of p,,. Thus + is the least upper bound of X. O

One can show that a converse to this theorem is true, that is, if in an Archimedian ordered field
every non-empty subset bounded above has a least upper bound, then this field must satisfy the
nested intervals property. Professor Karu will do this in Math 25a.

From our experience, we feel that R indeed has the nested intervals property. This is what fills
in the holes that @Q has. But how do we prove R has this property? We don’t. What we do is define
R to be an Archimedian ordered field that has the nested intervals property. We can show R is
well-defined by proving that any two Archimedian ordered fields which satisfy the nested intervals
property are ‘isomorphic’ to each other.

Definition. Two fields F' and F' are said to be isomorphic if there is a one-to-one and onto map'

¢ : F — F' that respects the operations of addition and multiplication, and such that ¢(1p) = 1p.
That is,

dla+rb) = ¢(a) +r ¢(b) and ¢(a-pb) =¢(a) g $(b) Va,b€F,
where, for example, +r denotes the operation of addition in the field F'.
Theorem 5.2. Any two Archimedian ordered fields F' and F' that satisfy the nested intervals
property are isomorphic. Furthermore, if P and P’ are their sets of positive elements, respectively,

and if ¢ is an isomorphism between F and F', then ¢(a) € P' if and only if a € P.

Proof. We'll construct the isomorphism ¢ step by step, following Hewitt and Stromberg [1]. Let 1
and 1’ be the multiplicative identities of F' and F' respectively, and let 0 and 0’ be their additive

YA one-to-one map f: A — B is a map such that for a € A and b € B, f(a) = f(b) implies @ = b. The map f is
onto if for every b € B there is an a € A such that f(a) =b.
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identities. Define ¢ : F — F' by setting
¢(1) = 1';
$(0

¢(m-p1) =m-m 1, for m an integer

) =
)
1 1
¢(—=-r1) == -@ 1, forn any non — zero integer
n n
)= 1,

(

¢ rl) =
If a € F and a is not of the form (m/n) -1 (think of the irrational numbers in R), then define
pla) =sup {5 |7 p1 <al}.
You can check that ¢ is one-to-one and onto, and that ¢(a) € P’ if and only if a € P.
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