
Math 341 Lecture #13
§2.8: Double Summations and Products of Infinite Series

You may have noticed that there is no homework for this section. No exam will test you
on this section.

Recall that we showed for a double indexed array {ai,j : i, j ∈ N} it could happen that

∞∑
i=1

∞∑
j=1

aij 6=
∞∑
j=1

∞∑
i=1

aij.

And also conspicuously missing from the Algebraic Limit Theorem for Series was a prod-
uct rule.

We will address both of these issues here, starting with sums.

One way to define a partial sum of
∑∞

i,j=1 aij is by the finite sum

smn =
m∑
i=1

n∑
j=1

aij

for m,n ∈ N.

Of particular interest here will be the situation when m = n, so that the numbers snn
form a sequence of partial sums.

We can apply the theory of sequences to (snn) to conclude something about the original
double sum.

Definition. We say that
∑∞

i=1

∑∞
j=1 aij converges if (snn) converges, and we write

∞∑
i=1

∞∑
j=1

aij = lim
n→∞

snn.

We will see how the theory of absolute convergence overcomes the problem with how we
add up a double sum.

Definition. We say the iterated series

∞∑
i=1

∞∑
j=1

|aij|

converges if for each fixed i ∈ N, the series
∑∞

j=1 |aij| converges to some nonnegative real
number bi, and the series

∑∞
i=1 bi converges.

Theorem 2.8.1. If
∑∞

i=1

∑∞
j=1 |aij| converges, then both

∑∞
i=1

∑∞
j=1 aij and

∑∞
j=1

∑∞
i=1 aij

converge to the same number, and

lim
n→∞

snn =
∞∑
i=1

∞∑
j=1

aij =
∞∑
j=1

∞∑
i=1

aij.



Proof. Suppose that
∑∞

i=1

∑∞
j=1 |aij| = A ≥ 0.

Then for each fixed i ∈ N, the series
∑∞

j=1 |aij| converges to a nonnegative real number
bi, and the series

∑∞
i=1 bi converges to A.

The partial sums of
∑∞

i=1

∑∞
j=1 |aij| are

tmn =
m∑
i=1

n∑
j=1

|aij| ,m, n ∈ N.

The set of partial sums {tmn : m,n ∈ N} is bounded above:

tmn =
m∑
i=1

n∑
j=1

|aij| ≤
m∑
i=1

∞∑
j=1

|aij| =
m∑
i=1

bi ≤
∞∑
i=1

bi = A.

Since the terms |aij| in the double sum are nonnegative, the sequence (tnn) is increasing.

Then (tnn) is increasing and bounded, and so converges by the Monotone Convergence
Theorem.

By the Cauchy Criterion for Sequences, we have that (tnn) is Cauchy: for ε > 0 there is
N ∈ N such that

|tmm − tnn| < ε for all m,n ≥ N.

For m > n ≥ N we have

|smm − snn| =

∣∣∣∣∣
m∑
i=1

m∑
j=1

aij −
n∑

i=1

n∑
j=1

aij

∣∣∣∣∣
=

∣∣∣∣∣
n∑

i=1

m∑
j=n+1

aij +
m∑

i=n+1

m∑
j=1

aij

∣∣∣∣∣
≤

n∑
i=1

m∑
j=n+1

|aij|+
m∑

i=n+1

m∑
j=1

|aij|

= |tmm − tnn|
< ε.

[To understand this, think about aij as the entries of a matrix with i the row and j the
column, and carefully consider what smm − snn means.]

Thus (snn) is Cauchy, and hence converges to say S.

Now we will show that

S =
∞∑
i=1

∞∑
j=1

aij.

To do this we go back to the bounded set of partial sums tmn, and set

B = sup{tmn : m,n ∈ N}.



Then for ε > 0 there is m0, n0 ∈ N such that

B − ε

2
< tm0n0 ≤ B.

For N1 = max{m0, n0} we have tm0n0 ≤ tmn whenever m,n ≥ N1 because each |aij| ≥ 0.
[To see this think again about |aij| as the (i, j) entry of a matrix, and what N1 means.]

With m > n ≥ N1, we have

|smn − snn| =

∣∣∣∣∣
m∑

i=n+1

n∑
j=1

aij

∣∣∣∣∣ ≤
m∑

i=n+1

n∑
j=1

|aij| = tmn − tnn.

Since tmn ≤ B and B − ε/2 < tnn with the latter implying −tnn < −B + ε/2, we obtain

|smn − snn| < B −B +
ε

2
=
ε

2
.

With n > m ≥ N1, a similar argument shows that |smn − snn| < ε/2.

Now because (snn)→ S, there is N2 ∈ N such that |snn − S| < ε/2 for all n ≥ N .

With N3 = max{N1, N2} we have for all m,n ≥ N3 that

|smn − S| = |smn − snn + snn − S| ≤ |smn − snn|+ |snn − S| <
ε

2
+
ε

2
= ε.

For a moment consider m ≥ N3 to be fixed and write

smn =
n∑

j=1

a1j +
n∑

j=1

a2j + · · ·+
n∑

j=1

amj.

The hypothesis guarantees that for each fixed i ∈ N, the series
∑∞

j=1 aij converges (ab-
solutely) to a real number ri.

By the Algebraic Limit Theorem, we have that

lim
n→∞

smn = r1 + r2 + · · ·+ rm.

From |smn − S| < ε for all n ≥ N3, we know that

S − ε < smn < S + ε.

By the Order Limit Theorem we obtain for all m ≥ N3 that

S − ε ≤ r1 + r2 + · · ·+ rm ≤ S + ε.

Thus we have for m ≥ N3 that

|r1 + r2 + · · ·+ rm − S| ≤ ε



which is ∣∣∣∣∣
m∑
i=1

∞∑
j=1

aij − S

∣∣∣∣∣ ≤ ε.

From this we conclude that

lim
n→∞

snn = S =
∞∑
i=1

∞∑
j=1

aij.

To get the other iterated sum equaling S, we only need to show that for each j ∈ N, the
sum

∑∞
i=1 aij converges to some real number cj; then we argue as we did before to get

S =
∞∑
j=1

∞∑
i=1

aij.

Thus both of the iterated sums exist and equal each other. �.

As you might expect now, to have a product rule in the Algebraic Limit Theorem for
series, we need to assume that

∞∑
i=1

ai and
∞∑
j=1

bj

converge absolutely to A and B respectively, and then we can conclude correctly that(
∞∑
i=1

ai

)(
∞∑
j=1

bj

)
= AB.


