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1 Systems of linear equations

Linear systems

A linear equation in variables z1,zo,..., T, is an equation of the form
11 + a2z + -+ + apTn = b,

where a1, as,...,a, and b are constant real or complex numbers. The constant a; is called the coefficient
of x;; and b is called the constant term of the equation.
A system of linear equations (or linear system) is a finite collection of linear equations in same

variables. For instance, a linear system of m equations in n variables z1, o, ..., T, can be written as
a1171 + 1272 + -+ a1pTh . = by
a2171 + Qa2 + 0+ 2Ty, = bo
(1.1)
Am1%1 + Gm2T2 + -+ + AT = bm
A solution of a linear system (1.1) is a tuple (s1, S2,...,S,) of numbers that makes each equation a true
statement when the values s1, sa, . . ., s, are substituted for x1, xs, ..., x,, respectively. The set of all solutions

of a linear system is called the solution set of the system.

Theorem 1.1. Any system of linear equations has one of the following exclusive conclusions.
(a) No solution.
(b) Unique solution.
(c) Infinitely many solutions.

A linear system is said to be consistent if it has at least one solution; and is said to be inconsistent if
it has no solution.

Geometric interpretation

The following three linear systems

211 +x9 = 3 211 +ro = 3 211 +ro = 3
(@) 2x1y —xz2 = 0 (b)¢ 2z —xz3 = 5 (c)¢ 4x1 +2z2 = 6
T —21’2 = 4 T —2{EQ = 4 6(E1 +3(E2 = 9

have no solution, a unique solution, and infinitely many solutions, respectively. See Figure 1.

Note: A linear equation of two variables represents a straight line in R2. A linear equation of three vari-
ables represents a plane in R3.In general, a linear equation of n variables represents a hyperplane in the
n-dimensional Euclidean space R™.

Matrices of a linear system



X 5 X 5 X
Figure 1: No solution, unique solution, and infinitely many solutions.
Definition 1.2. The augmented matrix of the general linear system (1.1) is the table
ai; a2 ... a1, | by
a1 a22 . aon b2
(1.2)
Aml Gm2 -+ Omn | by
and the coefficient matrix of (1.1) is
ail a2 P QA1n
az1 a2 Q2n
. (1.3)
Am1 Am2 ... Qmn



Systems of linear equations can be represented by matrices. Operations on equations (for eliminating
variables) can be represented by appropriate row operations on the corresponding matrices. For example,

T +xo —2x3 = 1 1 1 -2 1
2r1 —3x9 +r3 = —8 2 -3 1] -8
3x1 +xo +4rs = 7 3 1 4 7

[Eq 2] — Q[Eq 1] R2 - 2R1
[Fq3] - 3[Eq1] Ry~ 3F,

X1 “+xo —2x3 = 1 1 1 -2 1
—5ry +5x3 = -—10 0 -5 5| —10
—2x9 +10z3 = 4 0 -2 10 4

(—1/5)[Eq2] (—1/5)Ro
(—1/2)[Eq3] (=1/2)R3
r1 +x2 —2x3 = 1 1 1 -2 1
To —xr3 = 2 01 -1 2
To —bxrz = =2 0 1 —-5|-2
[Eq3] — [Eq2] R3 — Ry
Ty +xo —2x3 = 1 1 1 -2 1
Lo —xr3 = 2 01 -1 2
—4xry = —4 0 0 —4|—-4
(=1/4)[Eq3] (—1/4)Rs
X1 +29 —2I3 =1 1 1 =211
T2 —Tr3 = 2 0 1 112
z3 = 1 0 0 111
(Bq1] + 2[Eq 3] Ry + 2R3
[Eq2] + [Eq3] Ry + Ry
T +T2 = 3 [1 1 0]37
To = 3 01 03
r3 = 1 L 0 0 1|1 i
[Eq1] - [Eq2] Ry — Ry
T = 0 [1 0 0]07
To = 3 01 03
r3 = 1 I 0 0 1|1 ]

Elementary row operations

Definition 1.3. There are three kinds of elementary row operations on matrices:
(a) Adding a multiple of one row to another row;
(b) Multiplying all entries of one row by a nonzero constant;
(¢) Interchanging two rows.

Definition 1.4. Two linear systems in same variables are said to be equivalent if their solution sets are
the same. A matrix A is said to be row equivalent to a matrix B , written

A~ B,

if there is a sequence of elementary row operations that changes A to B.



Theorem 1.5. If the augmented matrices of two linear systems are row equivalent, then the two systems
have the same solution set. In other words, elementary row operations do not change solution set.

Proof. Tt is trivial for the row operations (b) and (c) in Definition 1.3. Consider the row operation (a) in
Definition 1.3. Without loss of generality, we may assume that a multiple of the first row is added to the
second row. Let us only exhibit the first two rows as follows

a1 ai2 e A1n bl
a1 a2 P agn b2
(1.4)
Am1 Am2 oo Amn bm
Do the row operation (Row 2) + ¢(Row 1). We obtain
a1 ai2 e A1n b1
ao1 +caijl a9y +casy ... aon +casy, | ba +cby
asy a32 . a3n bs (1.5)
Am1 Am?2 e Amn bm
Let (s1, 82,-..,8,) be a solution of (1.4), that is,
a;181 + 282 + -+ ainsp = b;, 1 <i<m. (1.6)
In particular,
a1151 + @192 + -+ + a1nsp = by, (L.7)
2181 + Ao1%o + - -+ + aspSy, = ba. (1.8
Multiplying ¢ to both sides of (1.7), we have
ca1181 + caig + -+ + cains, = cby. (1.9)
Adding both sides of (1.8) and (1.9), we obtain
(0,21 + ca11)51 + (a22 + ca12)52 + -+ ((LG + caln)sn = b2 + Cbl. (110)

This means that (s1, S2,...,5y) is a solution of (1.5).
Conversely, let (s1, s2,...,s,) be a solution of (1.5), i.e., (1.10) is satisfied and the equations of (1.6) are
satisfied except for ¢ = 2. Since
a1151 + a12T2 + -+ + A1,5, = by,

multiplying ¢ to both sides we have
cla1181 + a1z + - - + a1psn) = cby. (1.11)
Note that (1.10) can be written as
(ag181 + agas2 + - -+ + a2nsy) + c(a1181 + a1282 + « -+ + a1pSy) = by + ¢by. (1.12)
Subtracting (1.11) from (1.12), we have
G2151 + 42252 + -+ + G2n, Sy = ba.

This means that (s1, $2,...,8,) is a solution of (1.4). O



2 Row echelon forms

Definition 2.1. A matrix is said to be in row echelon form if it satisfies the following two conditions:
(a) All zero rows are gathered near the bottom.

(b) The first nonzero entry of a row, called the leading entry of that row, is ahead of the first nonzero
entry of the next row.

A matrix in row echelon form is said to be in reduced row echelon form if it satisfies two more conditions:
(c) The leading entry of every nonzero row is 1.
(d) Each leading entry 1 is the only nonzero entry in its column.

A matrix in (reduced) row echelon form is called a (reduced) row echelon matrix.

Note 1. Sometimes we call row echelon forms just as echelon forms and row echelon matrices as echelon
matrices without mentioning the word “row.”

Row echelon form pattern
The following are two typical row echelon matrices.

e % x x *x % % % % 0 e % * % % % *x x
0 e % * x % * x 0 00 0 e x *x x =
0 0 00O e x x *x x 0 0000 0 e x =x
0000 0 O0 e % x|’ 0 0000 0O 0 0 e
0O 0000 0O 0 O00DO0 0O 0000 0O O0 00O
0O 0000 0 0 00O 0O 0000 0O 0 O00DO0

where the circled stars e represent arbitrary nonzero numbers, and the stars * represent arbitrary numbers,
including zero. The following are two typical reduced row echelon matrices.

1 0 x % 0 % 0 *x = 01 = = 0 = 0 0 0
01 %« x 0 % 0 = = 00 0 01 x 0 0 O
0 00 01 = 0 == =« 00 0 0 O0O0OT1TO0TO0
000 O0O0O0 1T % x|’ 00 0 0 00001
0O 000 0 0 O0 O0O0 00 0 0 O0O0O0O0TO0
00 00O O OO0 O0OTDO 00 0 0 O0O0O0OO0OTO

Definition 2.2. If a matrix A is row equivalent to a row echelon matrix B, we say that A has the row
echelon form B; if B is further a reduced row echelon matrix, then we say that A has the reduced row
echelon form B.

Row reduction algorithm

Definition 2.3. A pivot position of a matrix A is a location of entries of A that corresponds to a leading
entry in a row echelon form of A. A pivot column (pivot row) is a column (row) of A that contains a
pivot position.

Algorithm 2.1 (Row Reduction Algorithm). (1) Begin with the leftmost nonzero column, which is
a pivot column; the top entry is a pivot position.

(2) If the entry of the pivot position is zero, select a nonzero entry in the pivot column, interchange the
pivot row and the row containing this nonzero entry.

(3) If the pivot position is nonzero, use elementary row operations to reduce all entries below the pivot
position to zero, (and the pivot position to 1 and entries above the pivot position to zero for reduced
row echelon form).

(4) Cover the pivot row and the rows above it; repeat (1)-(3) to the remaining submatrix.



Theorem 2.4. Fvery matriz is row equivalent to one and only one reduced row echelon matriz. In other
words, every matriz has a unique reduced row echelon form.

Proof. The Row Reduction Algorithm show the existence of reduced row echelon matrix for any matrix M.
We only need to show the uniqueness. Suppose A and B are two reduced row echelon forms for a matrix
M. Then the systems Az = 0 and Bz = 0 have the same solution set. Write A = [a;;] and B = [b;;].

We first show that A and B have the same pivot columns. Let i1, ...,4; be the pivot columns of A, and
let ji,...,7; be the pivot columns of B. Suppose i1 = ji,...,%—1 = jr—1, but i,. # j,.. Assume i, < j,.
Then the i,th row of A is

[07 ceey Oa 1a Qrig+1s « o5 Qrgy Qrg.+1; -y aT‘,n]'

While the j,.th row of B is
[0, ooy 0, 1, br g1 -, bnn}.

Since i,—1 = jr—1 and i, < j,, we have j,_1 < i, < j.. So x;, is a free variable for Bx = 0. Let

Ujy = —b17¢7‘, ceey Uq_q = _br—l,ira u;, =1, and u; =0 for 7> 1i,.

Then w is a solution of Bx = 0, but is not a solution of Ax = 0. This is a contradiction. Of course, k = [.
Next we show that for 1 < r < k =1, we have

arj =brj, Jr+1<75<jry1— 1
Otherwise, we have ayj, 7# bryj, such that ry is smallest and then jo is smallest. Set
Ujo =1, Uiy = —C14y, -+ Upy = —Qryjo, and u; =0 otherwise.
Then u is a solution of Az = 0, but is not a solution of Bz = 0. This is a contradiction. O

Solving linear system

Example 2.1. Find all solutions for the linear system

ry 222 —x3 = 1
211 +xo +4r3 = 2
3$1 +3$2 +4l‘3 = 1

Solution. Perform the row operations:

1 2 -1 1 Ry — 2R, 1 2 -1 1 (=1/3)Ry
2 1 4 2 ~ 0 -3 6 ~
| 3 3 4 1] R3—3R; |0 =3 7|-2] R3i—Ry
(1 2 -1 1]l Ri+Rs 1 2 0| -1
01 -2| 0 ~ 0 1 04| B2
| 00 1|-2| Ro+2R3 [0 O 1] -2 |
10 0| 77
0 1 0| —4
1 0 0 1] -2 ]
The system is equivalent to
r, = 7
Ty = —4
r3 = -2

which means the system has a unique solution.



Example 2.2. Solve the linear system

X1 —X2 +r3 —x4 = 2

T —x2 +xr3 +x4 = 0
4581 74.’,82 +4I3 = 4
—2x7 42z —223 +x4 = -3

Solution. Do the row operations:

1 -1 1 -1 2 Ry — R; 1 -1 1 -1 2 (1/2)Ry
1 -1 1 1 0 Rs — 4R, 0 0 0 2| =2 R3s — 2Ry
4 —4 4 0 4 ~ 0 0 0 4| —4 ~
-2 2 =2 1]-3 R4+ 2R, 0 0 0 -1 1 Ry + (1/2)Ry
1 -1 1 -1 2 (1) [-1] [1] o 1
0 0 0 1] -1 Ri+ Ro 0 0 0 ()| -1
0 0 0 0 0 ~ 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
The linear system is equivalent to
ry = 14x9—123
T4 = -1
We see that the variables xo, 3 can take arbitrary numbers; they are called free variables. Let xo = ¢y,
T3 = co, where ¢1,c0 € R. Then 1 =1+ ¢; — ¢o, x4 = —1. All solutions of the system are given by
1 = l4+ca—c
To = C1
I3 = C2
Ty4 = -1
The general solutions may be written as
T 1 1 -1
T 0 1 0
T = 33:2; = 0 +c1 0 + co E where cq,c5 € R.
T4 -1 0 0

Set ¢y = cp =0, i.e., set xo = x3 = 0, we have a particular solution
1
o — 0
o 0
-1

For the corresponding homogeneous linear system Ax = 0, i.e.,

r1 -T2 H4x3 —x4 = 0

X1 —X2 +z3 +x4 = 0

4r1 —4zo +4x3 = 0

—21}1 —|—2I2 —2I3 +r4s = 0

we have

1 -1 1 -1]0 (1) [-1] [1] -1]0
1 -1 1 110 0 0 0 (1)]o
4 -4 4 o|0| "~ 0 0 0 0]o0
-2 2 =2 110 0 0 0 00



Set ¢ =1,c0 =0, i.e., o = 1,23 = 0, we obtain one basic solution

8
I

OO = =

for the homogeneous system Ax = 0.
Set ¢ =0,c0 =1, i.e., xz2 = 0,23 = 1, we obtain another basic solution

O = O

for the homogeneous system Ax = 0.

Example 2.3. The linear system with the augmented matrix
1 2 —1]1
2 1 512
3 3 4|1

has no solution because its augmented matrix has the row echelon form

The last row represents a contradictory equation 0 = —2.

Theorem 2.5. A linear system is consistent if and only if the row echelon form of its augmented matriz
contains no row of the form
[0,...,0|b], where b # 0.

Example 2.4. Solve the linear system whose augmented matrix is

00 1 -1 2 1| 0
A 36 0 3 -3 2|7
/{12 o0 1 -1 o0f 1
2 4 -2 4 -6 —-5|—-4
Solution. Interchanging Row 1 and Row 2, we have
12 0 1 -1 0f 1]
36 0 3 -3 2 7| _N?’Rl
0 0 1 -1 2 1 0
2 4 -2 4 —6 -5|—4 | B =28
12 0 1 -1 o0 1]
00 0 0 0 2| 4| Ry—Rs
00 1 -1 2 1| 0 ~
00 -2 2 -4 5|6 |
12 0 1 -1 o0of 1]
00 1 -1 2 1| 0| Rsi+2R
oo 0 0 0 2| 4 ~
00 -2 2 -4 —5|-6 |




12 0 1 -1 0| 1 5
00 1 -1 2 1| of Hat2fs
00 0 0 0 2| 4 1p
00 0O 0 0 -3|-6 2713
12 0 1 -1 0] 1
00 1 -1 2 1| 0| Ry—Rs
00 0 0 0 1| 2 ~
00 0 0 0 0| 0

(1 22 0 1 -1 0 1

0 0 (1) [-1] [21 0 |-2

o 0 0 0 0 (1 2

0O 0 0 0 0 0 0

Then the system is equivalent to
Ty =1—2x9 — 24 + 75
I3 = 724’%4 72565
T — 2

The unknowns s, x4 and x5 are free variables.

Set xo = ¢1, T4 = co2, T5 = c3, Where ¢y, c2, c3 are arbitrary. The general solutions of the system are given
by

$1:17261762+03

To = C1

r3 = —24+cy — 2c3

Ty4 = C2

Is = C3

T — 2

The general solution may be written as

1 1 -2 -1 1
T 0 1 0 0
T -2 0 1 —2
xz = 0 + ¢ 0 + co 1 + c3 0| c1,c9,c3 € R.
Ts5 0 0 0 1
Tg 2 0 0 0

Definition 2.6. A variable in a consistent linear system is called free if its corresponding column in the
coefficient matrix is not a pivot column.

Theorem 2.7. For any homogeneous system Ax = 0,

#{variables} = #{pivot positions of A} + #{free variables}.

3 Vector Space R”
Vectors in R? and R?

Let R? be the set of all ordered pairs (uy,us) of real numbers, called the 2-dimensional Euclidean
space. Each ordered pair (uj,us) is called a point in R2. For each point (u;,us) we associate a column

Uy

U ’
called the vector associated to the point (u1,u2). The set of all such vectors is still denoted by R2. So by
a point in the Euclidean space R? we mean an ordered pair

(z,9)



and, by a vector in the vector space R? we mean a column
Y|

(ulau27u3)

Similarly, we denote by R? the set of all tuples

of real numbers, called points in the Euclidean space R3. We still denote by R? the set of all columns

Ui
U2 )
us

called vectors in R3. For example, (2,3,1), (—3,1,2), (0,0,0) are points in R*, while

2 -3 0
3, 1|, o
1 2 0

are vectors in the vector space R3.

Definition 3.1. The addition, subtraction, and scalar multiplication for vectors in R? are defined by
BN R bty

+ = ;
U2 V2 U + Vo
U1 . V1 . U] — U1
u2 (%) - U2 — Vg ’

lal-la]
U CUu9

Similarly, the addition, subtraction, and scalar multiplication for vectors in R? are defined by

(5 V1 up + 1
ug | + | v2 [ = | w2zt |,
L us ] L V3 ] L us +1}3 ]
Ui U1 Uy —v1
Uz — | V2 = Uz —v2 |,
us U3 Uz — v3
U1 Cuq
C U9 = CUs
us cus

Vectors in R"

Definition 3.2. Let R™ be the set of all tuples (u1,us,...,u,) of real numbers, called points in the n-
dimensional Euclidean space R™ . We still use R™ to denote the set of all columns

Uy

U2

Unp

10



of real numbers, called vectors in the n-dimensional vector space R". The vector

is called the zero vector in R". The addition and the scalar multiplication in R" are defined by

Uy Uy up + 1
(5) V2 Uy + vg
+ = ,

Un Un Up, + Up

(A1 Cuq

U2 ClUg

c = .
Up, Clyp,

Subtraction can be defined in R™ by
u—v=u+(—v).
Linear combinations

Definition 3.4. A vector v in R"” is called a linear combination of vectors vy, vs,...,v; in R™ if there
exist scalars ¢, ca, ..., ¢, such that

V= C1V] + CVg + -+ - 4+ CLVk.
The set of all linear combinations of vy, vs, ..., v, is called the span of vy, vs,...,vs, denoted
Span {vy,va,..., Vg }.

Example 3.1. The span of a single nonzero vector in R? is a straight line through the origin. For instance,

3 3
Span -1 =<t| -1 |:teR
2

11



is a straight line through the origin, having the parametric form

ry = 3t
xo = —t , teR.
r3 = 2t

Eliminating the parameter ¢, the parametric equations reduce to two equations about x1, s, r3,

1 +3zo = 0
200 +x3 = 0

Example 3.2. The span of two linearly independent vectors in R? is a plane through the origin. For
instance,

3 1 1 3
Span -1 1, 2 =<s 2 | +t| -1 |:steR
2 -1 -1 2
is a plane through the origin, having the following parametric form
T, = s +3t
To = 25 —t
r3 = —s +2t

Eliminating the parameters s and ¢, the plane can be described by a single equation
31‘1 - 533‘2 — 7.133 =0.

Example 3.3. Given vectors in R?,

1 1 1 4
v = 2 , Vg = 1 , V3= 0 , Vg4 = 3
0 1 1 2

(a) Every vector b = [by, b, b3]” in R? is a linear combination of vy, vg, v3.

(b) The vector v4 can be expressed as a linear combination of vy, v, vs, and it can be expressed in one
and only one way as a linear combination

v = 2V, — v + 3vs.

(c) The span of {v1,vs,v3} is the whole vector space R3.

Solution. (a) Let b = xqv1 + avs + x3v3. Then the vector equation has the following matrix form

1 1 1 x1 b1
2 1 0 xTo = b2
0 1 1 I3 b3
Perform row operations:
1 1 1|b 1 1 1 by
2 1 0]be ~ 10 =1 —=21]by—2b ~
0 1 1]|bs 0 1 1 b3
1 0 -1 by — by 1 0 0 b1 — b3
1 2 2b; — by ~ 0 1 0| —2by+ by + 2bs
0 0 —1|b3+by—2b 0 0 1 2b; — by — b3

Thus
21 =by — b3, 3= —2b; +by+2b3, x3=20; —by— bs.

So b is a linear combination of v, vo, v3.
(b) In particular, v4 = 2v7 — v2 + 3vs.
(c) Since b is arbitrary, we have Span {v1,v2,v3} = R3.

12



Example 3.4. Consider vectors in R3,

1 -1 1 1 1
vi=| —1 |, v= ,v3s=| 1 |; u=]2 |,v=]1
1 1 5 7 1

(a) The vector u can be expressed as linear combinations of vy, ve, v3 in more than one ways. For instance,
U = vy + vy + v3 = 4v, + 3vy = —2v1 — vy + 2v3.
(b) The vector v can not be written as a linear combination of vy, va, vs.
Geometric interpretation of vectors

Multiplication of matrices

Definition 3.5. Let A be an m x n matrix and B an n X p matrix,

a1l a2 A1n bin b1 blp

a1  Aa22 a2n bar b2 b2p
A= , B=| . . )

am1  Am2 Amn bnl an2 bnp

The product (or multiplication) of A and B is an m x p matrix

C11 C12 Clp

Co1 (22 Cop
C =

Cm1 Cm2 Cmp

whose (i, k)-entry c;x, where 1 <i <m and 1 < k < p, is given by
n
Cik = Z aijbjr = ajbig + apbog + - - - + ainbnk.
j=1

Proposition 3.6. Let A be an m X n matriz, whose column vectors are denoted by a1, as, .
any vector v in R",

..y Qp. Then for

U1
U2
Av = [al,ag,...,an] =0v1a1 + V202 + -+ UpQp.
Un
Proof. Write
a11 a12 A1n U1
a1 a22 a2n V2
A = v =
am1  Am2 Qmn Un,
Then
a11 a12 A1n
a1 a22 QA2n
a; = , Q2 = ) sy, Qp =
Am1 Am?2 Amn

13



Thus

a11 a2

a21  a22
Av =

Am1 Am2

a11v1 + a12vs
21v1 + 2202

A1n U1
Ao V2

Am1v1 + Amav2 + - -

+ A1nUn
+ a2,V

L + AmnUn i
a11V1 a12V2 A1nUn
a21V1 a22V2 21 Un
L Gm1V1 Am2U2 AmnUn
a11 ai2 A1n
a21 a2 A2n
= v + v + ot
Am1 Am?2 Amn

= wviay +veag + -+ v,ay.

Theorem 3.7. Let A be an m X n matriz. Then for any vectors w,v in R™ and scalar c,

(a) A(u+v) = Au + Av,
(b) A(cu) = cAu.

4 The four expressions of a linear system

A general system of linear equations can be written

1121 + a12x2 + - -
(2171 + G22T2 + - -

Am1T1 + GmaXo + - -+

We introduce the column vectors:
ail A1n
a; = y ey Qp =
am1 Amn

and the coefficient matrix:

ail @12

azi a22
A =

am1 Am2

Then the linear system (4.1) can be expressed by

as

+

A1n
a2n

amn

14

+ a1nTn
+ a2nTn

AmnTn =
Ty
xr =
In
= [al, as, ...

by
by



(a) The vector equation form:
r1a1 + 2009 + -+ xpa, = b,

(b) The matrix equation form:
Ax =b,

(¢) The augmented matrix form:
[al,ag,...,an|b].

Theorem 4.1. The system Ax = b has a solution if and only if b is a linear combination of the column
vectors of A.

Theorem 4.2. Let A be an m x n matriz. The following statements are equivalent.
(a) For each b in R™, the system Ax = b has a solution.
(b) The column vectors of A span R™.
(¢c) The matriz A has a pivot position in every row.

Proof. (a) < (b) and (¢) = (a) are obvious.
(a) = (c¢): Suppose A has no pivot position for at least one row; that is,

Pk—1 ]
AR AR A B A,

where py, 2, ..., pi are elementary row operations, and Ay, is a row echelon matrix. Let e, = [0,...,0,1]7.
Clearly, the system [A]e,] is inconsistent. Let p} denote the inverse row operation of p;, 1 < ¢ < k. Then

’ p/‘71 ’ ’
[k lem] % [Apo1|bi] TR R [Aybya] R [A]by].
Thus, for b = by, the system [A | b] has no solution, a contradiction. O

Example 4.1. The following linear system has no solution for some vectors b in R3.

2$2 +2£L’3 +3£C4 = bl
2rx1 +4xy +6x3 +Tx4 = be
T +x9 +2x3 +2x4 = b3

The row echelon matrix of the coefficient matrix for the system is given by

[0 2 2 37 1 1 2 27

2 4 6 7 By < R 9 4 ¢ 7| F22m
11 2 2 | 0 2 2 3 |

1 1 2 27 1 1 2 27

0 2 2 3 R — Is 0 2 2 3

[0 2 2 3 | | 00 0 0 |

Then the following systems have no solution.

11 2 2/07] 11 2 2(07
02 2 3|0 RBiR2 02 2 3|0 R212R1
| 000 0 01 | |02 2 3|1 |
(1 1 2 2]0] [0 2 2 3|17

2 4 6 70 Ry = B 24 6 710
002 2 3|1 | |11 2 2|0 |

Thus the original system has no solution for b =1, by = b3 = 0.

15



5 Solution structure of a linear System

Homogeneous system

A linear system is called homogeneous if it is in the form Ax = 0, where A is an m X n matrix and 0
is the zero vector in R™. Note that = 0 is always a solution for a homogeneous system, called the zero
solution (or trivial solution); solutions other than the zero solution 0 are called nontrivial solutions.

Theorem 5.1. A homogeneous system Ax = 0 has a nontrivial solution if and only if the system has at
least one free variable. Moreover,

#{pivot positions} + #{free variables} = #{variables}.

Example 5.1. Find the solution set for the nonhomogeneous linear system

X1 —X9 +x4 +2l‘5 =0
721’1 +2£L’2 —X3 741’4 731’5 = 0
T —x2 +x3 434 HFx5 = 0
—X1 +xo a3 +xy, -3z = 0

Solution. Do row operations to reduce the coefficient matrix to the reduced row echelon form:

1 -1 0 1 2 Ry + 2R,
-2 2 -1 -4 -3 Rs — Ry
1 -1 1 3 1 ~
| -1 1 11 3| Ra+R
1 -1 0 1 27 (DR
0 0 -1 -2 1 Rs + Ry
0 0o 1 2 -1 ~
| 0 0 1 2 -1]| Ri+Rs
(1) [~ o0 1 2
o 0o (1) [2] [-1]
0 0 0 0 0
| 0 0 0 0 0
Then the homogeneous system is equivalent to
T = X2 —x4 —2T5
xr3 = —2x4 +x5

The variables x5, x4, x5 are free variables. Set xo = ¢1, x4 = ¢2, x5 = c3. We have

T c1 — Co — 2c3 1 -1 —2
X9 C1 1 0 0
T3 = —2c9 + ¢3 =c1| 0 | +c -2 | +c3 1
T4 C2 0 1 O
Is C3 0 0 1
Set o = 1,z4 = 0,25 = 0, we obtain the basic solution

1

1

v = 0

0

0

16



Set x5 = 0,24 = 1,25 = 0, we obtain the basic solution

[ —1

0
Vo = —2
1
0

Set x5 = 0,24 = 0,25 = 1, we obtain the basic solution

V3 =

_= O = O N

The general solution of the system is given by
T = C1v1 + V2 + €303, €1, 02,3, E R,
In other words, the solution set is Span {vy,va, v3}.

Theorem 5.2. Let Ax = 0 be a homogeneous system. If w and v are solutions, then the addition and the
scalar multiplication
u+v, cu

are also solutions. Moreover, any linear combination of solutions for a homogeneous system is again a
solution.

Theorem 5.3. Let Ax = 0 be a homogeneous linear system, where A is an m X n matriz with p pivot
positions. Then system has n—p free variables and n— p basic solutions. The basic solutions can be obtained
as follows: Setting one free variable equal to 1 and all other free variables equal to 0.

Nonhomogeneous systems

A linear system Az = b is called nonhomogeneous if b # 0. The homogeneous linear system Ax = 0
is called its corresponding homogeneous linear system.

Proposition 5.4. Let u and v be solutions of a nonhomogeneous system Ax = b. Then the difference
u—v
is a solution of the corresponding homogeneous system Ax = 0.

Theorem 5.5 (Structure of Solution Set). Let @ponn be a solution of a nonhomogeneous system Ax = b.
Let xypom be the general solutions of the corresponding homogeneous system Ax = 0. Then

& = Tnonh T Thom
are the general solutions of Ax = b.

Example 5.2. Find the solution set for the nonhomogeneous linear system

T —X9 +x4 +2x5 = -2
—2x1 +2x9 —x3 —4dzy -3z = 3
X1 —x9 4x3 4314 +rs; = -1
—T1 +xo +x3 +xy —3x5 = 3
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Solution. Do row operations to reduce the augmented matrix to the reduced row echelon form:
1 -1 0 1 2 —-2 Ro+ 2Ry 1 -1 0 1 2|2 (-1 R2
-2 2 -1 -4 -3 3 Rs — Ry 0 0 -1 -2 1] -1 R3s + Ry

1 -1 1 3 1] -1 ~ 0 0 1 2 —1 1 ~
-1 1 1 1 -3| 3 Ry + Ry 0 0 1 2 -1 1 Ry + Ry

Then the nonhomogeneous system is equivalent to

TG = -2 x5 —x4 —2x5
r3 = 1 —2$4 +x5
The variables xo, x4, x5 are free variables. Set xo = ¢y, x4 = c2, T5 = c3. We obtain the general solutions
I —2+Cl — C2 —203 —2 1 -1 -2
To c1 0 1 0 0
T3 | = 1—2co +c3 = 1 |+ | O | +c| =2 | +c3 1],
T4 Co 0 0 1 0
Is C3 0 0 0 1

or
T =v+ v + cov2 + c3v3, c¢1,C2,c3 €ER,

called the parametric form of the solution set. In particular, setting xo = x4 = x5 = 0, we obtain the
particular solution

e
|
OO~ ON

The solution set of Ax = b is given by
S=v+ Span {1)1,’1)2,’!)3}.

Example 5.3. The augmented matrix of the nonhomogeneous system

X1 —x9 +x3 +3x4 +3x5 +drg = 2
—2x7 4+2x9 —x3 —-3xr4 —4x5 —dxrg = -1
—xI “+xo —Ts5 74356 = =5
—x7  +x9 4x3 +3x4 +T5 —x5 = —2

has the reduced row echelon form

1 0 0| -3
0 0 (1) 3] [2] 0 |-3
0 0 1) 2
0 0 0 0 0 0 0

Then a particular solution @, for the system and the basic solutions of the corresponding homogeneous
system are given by

-3 1 0 -1

0 1 0 0

r, = -3 v = 0 Vo = -3 V3 = -2
V4 O ) 1 0 ’ 2 1 bl 3 0
0 0 0 1

2 0 0 0
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The general solution of the system is given by
T =Ty “+ c1v1 + CcoV9 + C3V3.

Example 5.4. For what values of a and b the linear system

1 42z H4axz = 0
2%1 +b$2 = 0
3r1 +2x9 +x3 = 0
has nontrivial solutions. Answer: 8a + (3a — 1)(b—4) = 0.
6 Linear dependence and independence
Lecture 6
Definition 6.1. Vectors vy, vs,...,v; in R™ are said to be linearly independent provided that, whenever

c1v1 + v+ -4 v =0

for some scalars c1,co,...,ci, then ¢y =co =+ =¢ =0.
The vectors vy, vs, ..., v, are called linearly dependent if there exist constants ci,cs,...,cg, not all
zero, such that
c1v1 + covy + -+ v = 0.

1 -1 1
Example 6.1. The vectors v, = 1], v= 1 |,v3=1| 3 | in R? are linearly independent.
-1 2 1
Solution. Consider the linear system
1 -1 1 0
X1 1 + X2 1 +x3| 3 = 0
— 2 1 0
1 -1 1 1 -1 1 1 0 0
1 1 3| ~]0 2 2|~]010
-1 2 1 0 1 2 0 0 1

The system has the only zero solution 2y = z9 = 23 = 0. Thus vy, v2, v3 are linearly independent.

1 -1 -1
Example 6.2. The vector vy = | —1 |, vy = 2 |, v3= 3 | in R3 are linearly dependent.
1 2 )
Solution. Consider the linear system
1 [ —1 -1 0
X1 -1 + X2 2 + T3 3 = 0
1 |2 5 0
1 -1 -1 1 -1 -1 (1 -1 -1
-1 2 3 |~10 1 2| ~10 1 2
1 2 5 L0 3 6 L0 0 0

The system has one free variable. There is nonzero solution. Thus v, vy, v3 are linearly dependent.

1 1 -1 1
Example 6.3. The vectors 11, —-11{, 11, 3 | in R3 are linearly dependent.
-1 1 1 -3



Theorem 6.2. The basic solutions of any homogeneous linear system are linearly independent.

Proof. Let vy,vs,...,v; be basic solutions of a linear system Ax = 0, corresponding to free variables
Zj s Ly, .-, T4, Consider the linear combination

c1v1 +covg + - - + v = 0.

Note that the j; coordinate of civi + cova + -+ + cpvr is ¢;;, 1 < @ < k. It follows that ¢;, = 0 for all
1 <4 < k. This means that v1,ve, ..., v are linearly independent. O

Theorem 6.3. Any set of vectors containing the zero vector 0 is linearly dependent.
Theorem 6.4. Let v1,v2,...,v, be vectors in R"™. If p > n, then vy, vs,...,v, are linearly dependent.

Proof. Let A = [v1,v2,...,v,]. Then A is an n x p matrix, and the equation Az = 0 has n equations in p
unknowns. Recall that for the matrix A the number of pivot positions plus the number of free variables is
equal to p, and the number of pivot positions is at most n. Thus, if p > n, there must be some free variables.
Hence Az = 0 has nontrivial solutions. This means that the column vectors of A are linearly dependent. [

Theorem 6.5. Let S = {v1,v2,...,v,} be a set of vectors in R™, (p > 2). Then S is linearly dependent if
and only if one of vectors in S is a linear combination of the other vectors.

Moreover, if S is linearly dependent and vy # 0, then there is a vector v; with j > 2 such that v; is a
linear combination of the preceding vectors vi,v2,...,0;_1.

Note 2. The condition v; # 0 in the above theorem can not be deleted. For example, the set

SHESH|

is linearly dependent. But vy is not a linear combination of v;.

Theorem 6.6. The column vectors of a matriz A are linearly independent if and only if the linear system
Az =0
has the only zero solution.
Proof. Let A =laj,as,...,a,]. Then the linear system Az = 0 is the vector equation
xia1 + xr9as + - - +xa, = 0.

Then a4, as,...,a, are linear independent is equivalent to that the system has only the zero solution. [
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