
Fields Institute CommunicationsVolume 00, 0000 (Nov. 20, 1995)Elementary derivations of summationand transformation formulas for q-seriesGeorge GasperDepartment of MathematicsNorthwestern UniversityEvanston, IL 60208-2730We present some elementary derivations of summation and transformation for-mulas for q-series, which are di�erent from, and in several cases simpler or shorterthan, those presented in the Gasper and Rahman [1990] \Basic HypergeometricSeries" book (which we will refer to as BHS), the Bailey [1935] and Slater [1966]books, and in some papers; thus providing deeper insights into the theory of q-series.Our main emphasis is on methods that can be used to derive formulas, rather thanto just verify previously derived or conjectured formulas. In x5 this approach leadsto the derivation of a new family of summation formulas for very-well-poised basichypergeometric series 6+2kW5+2k ; k = 1; 2; : : : : Several of the observations in thispaper were presented, along with related exercises, in the author's minicourse on\q-Series" at the Fields Institute miniprogram on \Special Functions, q-Series andRelated Topics," June 12 {14, 1995. As is customary, we employ the notations usedin BHS for the shifted factorial(a)0 = 1; (a)k = a(a+ 1) � � � (a+ k � 1); k = 1; 2; : : : ;the q-shifted factorial(a; q)0 = 1; (a; q)k = (1� a)(1� aq) � � � (1� aqk�1); k = 1; 2; : : : ;(a; q)1 = limk!1(a; q)k = 1Yk=0(1� aqk); jqj < 1;(a; q)� = (a; q)1(aq�; q)1 ; 0 < jqj < 1;the rFs hypergeometric seriesrFs(a1; a2; : : : ; ar; b1; : : : ; bs; z) � rFs �a1; a2; : : : ; arb1; : : : ; bs ; z�= 1Xk=0 (a1)k(a2)k � � � (ar)kk!(b1)k � � � (bs)k zk;1991 Mathematics Subject Classi�cation. Primary 33D15, 33D20, 33D65; Secondary 33C05,33C20.This work was supported in part by the National Science Foundation under grant DMS-9401452. c
0000 American Mathematical Society0000-0000/00 $1.00 + $.25 per page1



2 George Gasperand the r�s basic hypergeometric seriesr�s(a1; a2; : : : ; ar; b1; : : : ; bs; q; z) � r�s � a1; a2; : : : ; arb1; : : : ; bs ; q; z�= 1Xk=0 (a1; a2; : : : ; ar; q)k(q; b1; : : : ; bs; q)k h(�1)kq(k2)i1+s�r zk;where �k2� = k(k � 1)=2; (a1; a2; : : : ; ar; q)k = (a1; q)k(a2; q)k � � � (ar ; q)k and theprincipal value of q� is taken. We also employ the compact notationr+1Wr (a1; a4; a5; : : : ; ar+1; q; z)for the very-well-poised r+1�r seriesr+1�r " a1; qa 121 ;�qa 121 ; a4; : : : ; ar+1a 121 ;�a 121 ; qa1=a4; : : : ; qa1=ar+1 ; q; z#and de�ne the bilateral basic hypergeometric r s series byr s(z) � r s � a1; a2; : : : ; arb1; b2; : : : ; bs ; q; z�= 1Xk=�1 (a1; a2; : : : ; ar; q)k(b1; b2; : : : ; bs; q)k (�1)(s�r)kq(s�r)(k2) zk:For simplicity, unless stated otherwise we shall assume that n is a nonnegativeinteger, jqj < 1 in nonterminating q-series, and that the parameters and variablesare complex numbers such that the series converge absolutely and any singulari-ties are avoided (which usually leads to isolated conditions on the parameters andvariables since the singularities are usually at poles and at limits of sequences ofpoles). For a discussion of when the above series converge, see Sections 1.2 and 5.1in BHS (in the third paragraph on p. 5 each of the ratios jb1b2 � � � bsj=ja1a2 � � �arjshould be replaced by jb1b2 � � �bsqj=ja1a2 � � �arj ).1. The q-binomial theoremThe summation formula1F0(a;|; z) = 1Xk=0 (a)kk! zk = (1� z)�a; jzj < 1; (1:1)is called the binomial theorem because, when �a = n is a nonnegative integer andz = �x=y; it reduces to the binomial theorem for the n-th power of the binomialx+ y: (x+ y)n = nXk=0�nk�xkyn�k : (1:2)Since, by l'Hôpital's rule, limq!1 1� qa1� q = aand hence limq!1 (qa; q)k(q; q)k = (a)kk! ;



Elementary derivations of summation and transformation formulas for q-series 3it is natural to consider what happens when the coe�cient (a)k=k! of zk in theseries in (1.1) is replaced by (qa; q)k=(q; q)k or, more generally, by (a; q)k=(q; q)k:Hence, let us set f(a; z) = 1Xk=0 (a; q)k(q; q)k zk; jzj < 1; (1:3)with jqj < 1: The case when jqj > 1 will be considered later. Note that, by theWeierstrass M-test, since jqj < 1 the series in (1.3) converges uniformly on compactsubsets of the unit disk fz : jzj < 1g to a function f(a; z) that is an analyticfunction of z (and of a) when jzj < 1. One way to �nd a formula for f(a; z) that isa generalization of (1.1) is to �rst observe that, since 1� a = 1� aqk + aqk � a =(1� aqk)� a(1� qk);f(a; z) = 1 + 1Xk=1 (a; q)k(q; q)k zk= 1 + 1Xk=1 (aq; q)k�1(q; q)k [(1� aqk)� a(1� qk)]zk= 1 + 1Xk=1 (aq; q)k(q; q)k zk � a 1Xk=1 (aq; q)k�1(q; q)k�1 zk= f(aq; z) � azf(aq; z) = (1� az)f(aq; z): (1:4)By iterating this functional equation n� 1 times, we �nd thatf(a; z) = (az; q)n f(aqn; z);which on letting n!1 and using qn ! 0 yieldsf(a; z) = (az; q)1 f(0; z): (1:5)Now set a = q in (1.5) to getf(0; z) = f(q; z)(qz; q)1 = (1� z)�1(qz; q)1 = 1(z; q)1 ;which, combined with (1.3) and (1.5), gives the q-binomial theorem1�0(a;|; q; z) = 1Xk=0 (a; q)k(q; q)k zk = (az; q)1(z; q)1 ; jzj < 1; jqj < 1: (1:6)This summation formula was derived by Cauchy [1843], Jacobi [1846], andHeine [1847]. Heine's proof of (1.6), which is reproduced in the books Heine [1878],Bailey [1935, p. 66], Slater [1966, p. 92], and in x1.3 of BHS along with some mo-tivation from Askey [1980], consists of using series manipulations to derive thefunctional equation (1� z)f(a; z) = (1� az)f(a; qz); (1:7)iterating (1.7) n� 1 times, and then letting n!1 to getf(a; z) = (az; q)n(z; q)n f(a; qnz) = (az; q)1(z; q)1 f(a; 0) = (az; q)1(z; q)1 ;which gives (1.6).



4 George GasperAnother derivation of the q-binomial theorem can be given by calculating thecoe�cients ck = g(k)a (0)=k!; k = 0; 1; 2; : : : ; in the Taylor series expansion of thefunction ga(z) = (az; q)1(z; q)1 = 1Xk=0 ckzk; (1:8)which is an analytic function of z when jzj < 1 and jqj < 1: Clearly c0 = ga(0) = 1:One may show that c1 = g0a(0) = (1�a)=(1�q) by taking the logarithmic derivativeof (az; q)1=(z; q)1 and then setting z = 0: But, unfortunately, the succeedinghigher order derivatives of ga(z) become more and more di�cult to calculate forjzj < 1, and so one is forced to abandon this approach and to search for anotherway to calculate all of the ck coe�cients. One simple method is to notice thatfrom the de�nition of ga(z) as the quotient of two in�nite products, it immediatelyfollows that ga(z) satis�es the functional equation(1� z) ga(z) = (1� az) ga(qz); (1:9)which is of course the same as the functional equation (1.7) satis�ed by f(a; z):In a veri�cation type proof of the q-binomial theorem, (1.9) provides substantialmotivation for showing, as in Heine's proof, that the sum of the q-binomial seriesf(a; z) satis�es the functional equation (1.7).To calculate the ck coe�cients, we �rst use (1.9) to obtain1Xk=0 ck zk � 1Xk=0 ck zk+1 = 1Xk=0 ck qk zk � a 1Xk=0 ck qk zk+1;or, equivalently,1 + 1Xk=1(ck � ck�1) zk = 1 + 1Xk=1(ckqk � ack�1 qk�1) zk;which implies that ck � ck�1 = ckqk � ack�1 qk�1and hence ck = 1� aqk�11� qk ck�1; k = 1; 2; : : : : (1:10)Iterating the recurrence relation (1.10) givesck = (a; q)k(q; q)k c0 = (a; q)k(q; q)k ; k = 0; 1; 2; : : : ;and concludes the derivation of (1.6). For a combinatorial proof of the q-binomialtheorem using a bijection between two classes of partitions, see Andrews [1969].It is of interest to note that if jqj > 1; then by replacing q in (1.6) by q�1;applying the inversion identity(a; q)k = (a�1; q�1)k(�a)kq(k2); k = 0; 1; 2; : : : ; (1:11)replacing a by a�1 and then z by az=q; it follows that when jqj > 1 the q-binomialtheorem takes the form1�0(a;|; q; z) = (z=q; q�1)1(az=q; q�1)1 ; jaz=qj < 1; jqj > 1: (1:12)



Elementary derivations of summation and transformation formulas for q-series 5In the special case when z = �x=y and a = q�n; n = 0; 1; 2; : : : ; both (1.6)and (1.12) give that (1.2) has a q-analogue of the formyn(�xq�n=y; q)n = nXk=0 (q�n; q)k(q; q)k (�1)kxkyn�k: (1:13)Another q-analogue of (1.2), which we will utilize in the next section, may beeasily derived by �rst observing that from (1.6) we have the product formula1Xj=0 (a; q)j(q; q)j zj 1Xk=0 (b; q)k(q; q)k (az)k = 1Xn=0 (ab; q)n(q; q)n zn; jzj < 1; (1:14)which is a q-analogue of (1 � z)�a(1 � z)�b = (1 � z)�a�b: Then set j = n � k inthe product on the left side of (1.14) and compare the coe�cients of zn on bothsides of the equation to get(ab; q)n(q; q)n = nXk=0 (a; q)n�k(b; q)k(q; q)n�k(q; q)k ak; (1:15)which gives a q-analogue of (1.2) in the form(ab; q)n = nXk=0 hnk iq (a; q)n�k(b; q)k ak; (1:16)where the q-binomial coe�cient is de�ned byhnk iq = (q; q)n(q; q)k(q; q)n�k ; k = 0; 1; : : : ; n:Replacing a in (1.16) by q1�n=c and manipulating the q-shifted factorials via theidentities (I.8), (I.14), and (I.42) in Appendix I of BHS shows that (1.16) is equiv-alent to the q-Chu{Vandermonde summation formula2�1(q�n; b; c; q; q) = (c=b; q)n(c; q)n bn; (1:17)which is a q-analogue of the Chu{Vandermonde summation formula (see p. 2 inBHS) F (�n; b; c; 1) = (c � b)n(c)n :By either switching the order of summation or inverting the base q via (1.11), we�nd that (1.17) is also equivalent to the summation formula2�1(q�n; b; c; q; cqn=b) = (c=b; q)n(c; q)n : (1:18)2. Analytic continuationsBy manipulating the products on the right side of (1.18) we �nd that2�1(z�1; b; c; q; cz=b) = (c=b; cz; q)1(c; cz=b; q)1 = 1Yk=0 (1� cqk=b)(1� czqk)(1� cqk)(1� czqk=b) (2:1)



6 George Gasperwith z = qn; n = 0; 1; : : : ; and jqj < 1: The in�nite product on the right side of(2.1) converges uniformly on compact subsets of the disk fz : jcz=bj < 1g to ananalytic function of z. In view of the identity(z�1; q)kzk = (z � 1)(z � q) � � � (z � qk�1); k = 0; 1; : : : ;the series on the left side of (2.1) is a sum of analytic functions of z; which alsoconverges uniformly on compact subsets of the disk fz : jcz=bj < 1g to an analyticfunction of z. Since qn ! 0 as n ! 1 when jqj < 1; it follows by analyticcontinuation that (2.1) holds for arbitrary complex values of z when jcz=bj < 1 andjqj < 1: Hence, by setting z = a�1 we have derived the Jacobi [1846] and Heine[1847] q-Gauss summation formula2�1(a; b; c; q; c=ab) = (c=a; c=b; q)1(c; c=ab; q)1 ; jc=abj < 1: (2:2)Similarly, from (1.17)2�1(a; b; c; q; q) = (a=c; b=c; q�1)1(1=c; ab=c; q�1)1 ; jqj > 1; (2:3)with a = q�n; n = 0; 1; : : : ; and, because q�n ! 0 as n ! 1 when jqj > 1; itfollows by analytic continuation that (2.3) holds for arbitrary complex values of awhen, for convergence, jab=cj < 1: Formula (2.3) also follows from (2.2) by invertingthe base q:To see that both (2.2) and (2.3) are q-analogues of Gauss' [1813] famous sum-mation formula2F1(a; b; c; 1) = �(c)�(c� a� b)�(c� a)�(c � b) ; Re (c� a� b) > 0; (2:4)it su�ces to replace a; b; c by qa; qb; qc; respectively, with 0 < q < 1 in (2.2) andq > 1 in (2.3), and then let q ! 1:The q-Gauss formula (2.2) was derived in BHS byusing the q-binomial theorem to derive Heine's [1847] 2�1 transformation formula2�1(a; b; c; q; z) = (b; az; q)1(c; z; q)1 2�1(c=b; z; az; q; b); jzj < 1; jbj < 1; (2:5)setting z = c=ab to reduce the series on the right side of this transformation formulato a 1�0 series, and then summing that series via the q-binomial theorem.If we shift the index of summation k in (1.6) by replacing it by k+n; we obtainthat if 0 < jqj < 1; 0 < jzj < 1; and n = 0; 1; 2; : : : ; then(az; q)1(z; q)1 = 1Xk=�1 (a; q)k(q; q)k zk = 1Xk=�1 (a; q)k+n(q; q)k+n zk+n= 1Xk=�1 (a; q)n(aqn; q)k(q; q)n(qn+1; q)k zk+n = (a; q)n(q; q)n zn 1Xk=�1 (aqn; q)k(qn+1; q)k zk; (2:6)where, as usual, the de�nition of (a; q)k is extended to negative integer values of kby de�ning (a; q)�k = 1(aq�k; q)k = (�q=a)k(q=a; q)k q(k2); k = 0; 1; 2; : : : :



Elementary derivations of summation and transformation formulas for q-series 7After replacing a by aq�n and then setting qn+1 = b; the left and right sides of(2.6) give 1 1(a; b; q; z) = 1Xk=�1 (a; q)k(b; q)k zk = (q; b=a; az; q=az; q)1(b; q=a; z; b=az; q)1 (2:7)for b = qn+1 when 0 < jqj < 1; 0 < jzj < 1; and n = 0; 1; 2; : : : : Since qn+1 ! 0as n ! 1 when jqj < 1; and the in�nite series and the in�nite product on theleft and right sides, respectively, of (2.7) converge to analytic functions of b whenjbj < min(1; jazj) and jzj < 1; it follows by analytic continuation that we havederived Ramanujan's 1 1 summation formula1 1(a; b; q; z) = (q; b=a; az; q=az; q)1(b; q=a; z; b=az; q)1 ; jb=aj < jzj < 1; (2:8)which reduces to the q-binomial theorem when b = q:The above derivation of (2.8) is essentially in the reverse order of Ismail's [1977]proof of (2.8), which �rst reduces the proof of (2.8) to the case when b = qn+1; wheren is a nonnegative integer, and then veri�es this case by using a shift in the indexof summation to obtain a series that is summable by the q-binomial theorem. Forother proofs of (2.8) and historical comments, see Berndt [1993], BHS, and theirreferences. It should be noted that if we set b = 0 in (2.8), replace q and z byq2 and �qz=a; respectively, and then let a ! 1; we obtain Jacobi's [1829] tripleproduct identity 1Xk=�1 qk2zk = �q2;�qz;�q=z; q2�1 : (2:9)The in�nite product representations for the theta functions #1(x); #2(x); #3(x); and#4(x) displayed on p. 13 of BHS are special cases of (2.9).It is natural to investigate what happens when the shift in index of summationmethod is applied to the q-Gauss summation formula (2.2). Proceeding as in (2.6)with the parameters a; b; c in (2.2) replaced by aq�n; bq�n; cq�n; respectively, we�nd that if jqj < 1 and d = qn+1; n = 0; 1; 2; : : : ; then2 2(a; b; c; d; q; cd=abq) = d(q; c=a; c=b; d=a; d=b; q)1qcn(q=a; q=b; c; d; cd=abq; q)1 ; (2:10)when 0 < jcd=abqj < 1 and c 6= qn�k; k = 0; 1; 2; : : : : Unfortunately, the right sideof (2.10) is not an analytic function of d in a neighborhood of the origin becauseof the cn factor and the initial d = qn+1 condition, and the term with index k inthe series on the left side of (2.10) has a pole of order �k at d = 0 when k is anegative integer. Therefore we cannot analytically continue (2.10) in d to derive anin�nite product representation for the series on the left side of (2.10) that is validfor d in a neighborhood of the origin. This helps to explain why no one has beenable to extend the q-Gauss summation formula (2.2) to derive an in�nite productrepresentation for a 2 2 series that is a q-analogue of Dougall's [1907] bilateralhypergeometric series summation formula1Xk=�1 (a)k(b)k(c)k(d)k = �(c)�(d)�(1� a)�(1� b)�(c+ d� a� b� 1)�(c � a)�(c� b)�(d� a)�(d� b) ; (2:11)



8 George Gasperwhere Re (c + d � a � b � 1) > 0 and (a)k = (�1)k=(1 � a)�k; k = �1;�2; : : : ;which reduces to Gauss' formula (2.4) when d = 1: However, see Ex. 5.20 in BHSfor two transformation formulas for 2 2(a; b; c; d; q; z) series.3. The q-Pfa�{Saalsch�utz summation formulaIn order to extend the q-Chu{Vandermonde and q-Gauss summation formulasto 3�2 series, we use (1.17) in the form(a; q)k(c; q)k = (a; q)n(c; q)n 2�1(qk�n; c=a; q1�n=a; q; q); 0 � k � n;to obtainnXk=0 (q�n; a; b; q)k(q; c; d; q)k qk = (a; q)n(c; q)n nXk=0 (q�n; b; q)k(q; d; q)k qk n�kXj=0 (qk�n; c=a; q)j(q; q1�n=a; q)j qj= (a; q)n(c; q)n nXj=0 (q�n; c=a; q)j(q; q1�n=a; q)j 2�1(qj�n; b; d; q; q)by a change in order of summation, which on using (1.17) to sum the 2�1 seriesgives the 3�2 transformation formula3�2(q�n; a; b; c; d; q; q)= (a; d=b; q)n(c; d; q)n bn 3�2(q�n; c=a; q1�n=d; q1�n=a; q1�nb=d; q; q): (3:1)This formula is a generalization of Heine's 2�1 transformation formula (2.5), whichfollows from (3.1) by setting d = q1�n=z, letting n!1; and then switching a andb. Now notice that if c=a = q1�nb=d; i.e. if the balanced condition cd = abq1�nholds, then the 3�2 series on the right side of (3.1) reduces to a terminating 2�1series that can be summed by (1.17) to give Jackson's [1910] summation formulafor a terminating balanced 3�2 series3�2(a; b; q�n; c; abc�1q1�n; q; q) = (c=a; c=b; q)n(c; c=ab; q)n : (3:2)This formula is usually called the q-Saalsch�utz or the q-Pfa�{Saalsch�utz summa-tion formula because it is a q-analogue of the Pfa� [1797] and Saalsch�utz [1890]summation formula3F2(a; b;�n; c; 1+ a + b� c� n; 1) = (c� a)n(c � b)n(c)n(c� a� b)n :Notice that letting a ! 0 in (3.2) gives (1.17), letting a ! 1 gives (1.18), andletting n!1 in (3.2) gives the q-Gauss summation formula (2.2).If, as in our derivation of the q-Gauss formula (2.2), we observe that (3.2) canbe rewritten in the form3�2(a; b; 1=z; c; abq=cz; q; q) = (c=a; c=b; cz; cz=ab; q)1(c; c=ab; cz=a; cz=b; q)1 ; jqj < 1; (3:3)with z = qn; n = 0; 1; : : : ; then the in�nite product on the right side of (3.3) clearlyconverges to an analytic function of z when jzj < min(ja=cj; jb=cj):However, because(1=z; q)k=(abq=cz; q)k; k = 1; 2; : : : ; has poles at the points z = abqj=c; 1 � j � k;



Elementary derivations of summation and transformation formulas for q-series 9there is no neighborhood of the origin in which all of the terms of the series onthe left side of (3.3) are analytic; thus (3.3) cannot be analytically continued in zto a neighborhood of the origin. Nevertheless, see equation (2.10.12) in BHS fora nonterminating extension of (3.2) with the sum of two balanced 3�2 series, andalso the bilateral nonterminating extension in Ex. 5.13 of BHS.The q-Pfa�{Saalsch�utz formula (3.2) was derived in Bailey [1935] and in Slater[1966] by �rst using an induction argument to give Jackson's [1921] veri�cation typeproof of his summation formula for a terminating 8W7 series (derived in x5)8W7(a; b; c; d; e; q�n; q; q) = (aq; aq=bc; aq=bd; aq=cd; q)n(aq=b; aq=c; aq=d; aq=bcd; q)n ; (3:4)where bcde = a2qn+1; and then replacing d by aq=d in (3.4) and letting a!1 toget (3.2) as a limit case of (3.4). In BHS, (3.2) was derived by iterating (2.5) twiceto derive another of Heine's [1847] transformation formulas2�1(a; b; c; q; z) = (abz=c; q)1(z; q)1 2�1(c=a; c=b; c; q; abz=c); (3:5)where jzj < 1 and jabz=cj < 1; using the q-binomial theorem to expand the coe�-cient of the 2�1 series on the right side of (3.5) as a power series in powers of z, andthen equating the coe�cients of zn on both sides of the resulting formula to get(3.2). Recently, Ismail [1995] used the Askey-Wilson di�erence operators to derive(3.2). For some combinatorial proofs of (3.2), see Andrews and Bressoud [1984],Goulden [1985], and Zeilberger [1987]. Also see Wilf and Zeilberger [1992] for acomputer-constructible WZ proof of (3.2).4. Summation formulas for some very-well-poised seriesLet us start by deriving some transformation formulas for 4W3(a; b; q; z) series.Let jqj < 1: Since(1� a)(1� b) (qa 12 ;�qa 12 ; q)k(a 12 ;�a 12 ; q)k = (1 � b)(1� aq2k) = 1 + abq2k � (b+ aq2k)= (1 + abq2k � aqk � bqk) � (b + aq2k � aqk � bqk)= (1� aqk)(1� bqk)� b(1� aqk=b)(1� qk);we have 4W3(a; b; q; z) = 1 + 1Xk=1 (aq; bq; q)k�1(q; aq=b; q)k (1� b)(1� aq2k)zk= 1 + 1Xk=1 (aq; bq; q)k(q; aq=b; q)k zk � bz 1Xk=1 (aq; bq; q)k�1(q; aq=b; q)k�1zk�1= (1� bz) 2�1(aq; bq; aq=b; q; z); jzj < 1: (4:1)Hence 4W3(a; b; q; b�1) = 0 when jb�1j < 1; and it follows from the special casesb = q�n; n = 1; 2; : : : ; and the fact that 4W3(a; 1; q; z) = 0 that4W3(a; q�n; q; qn) = �n;0 ; (4:2)where �n;m is the Kronecker delta function. Some recent multidimensional gener-alizations of (4.2) are given in Bhatnagar and Milne [1995].



10 George GasperThis derivation of (4.2) is substantially simpler than that in x2.3 of BHS, whichused the q-Pfa�{Saalsch�utz formula (3.2) and the Bailey [1941] and Daum [1942]q-Kummer summation formula2�1(a; b; aq=b; q;�q=b) = (�q; q)1(aq; aq2=b2; q2)1(aq=b;�q=b; q)1 ; jq=bj < 1; (4:3)derived in x1.8 of BHS. Formula (4.2) can also be derived by the �nite di�erencemethod employed in Gasper [1989] and Gasper and Rahman [1990a] to derive biba-sic extensions of (4.2), and by the method pointed out in Rahman [1990].Using (4.2), we obtain the expansion formulau0 =Xk�0uk �k;0 =Xk�0uk kXj=0 (a; qa 12 ;�qa 12 ; q�k; q)j(q; a 12 ;�a 12 ; aqk+1; q)j qjk=Xj�0 (a; qa 12 ;�qa 12 ; q)j(a 12 ;�a 12 ; aqj+1; q)j (�1)jq(j2)Xk�0 (qj+1; aqj+1; q)k(q; aq2j+1; q)k uj+k (4:4)by a change in order of summation, where fukg is a sequence of complex numberssuch that the change in order of summation is justi�ed, which is the case when fukgterminates and when the double series converge absolutely. If fukg is such that thesum over k on the right side of (4.4) can be evaluated in terms of q-shifted factorials,then (4.4) yields a summation formula for a q-series. In particular, settinguk = (b; c; q�n; q)k(q; aq; bcq�n=a; q)k qkin (4.4), the sum over k on the right side of (4.4) becomes a multiple of a termi-nating balanced 3�2 series that can be summed by means of the q-Pfa�{Saalsch�utzsummation formula (3.2), thus giving the sum of a terminating 6W5 series6W5(a; b; c; q�n; q; aqn+1=bc) = (aq; aq=bc; q)n(aq=b; aq=c; q)n ; (4:5)which reduces to (4.2) when c = aq=b: This formula was derived in BHS by �rstusing (3.2) to derive the expansion formula (2.2.4) in BHS, and then applying (4.2)to a special case of the expansion formula. As in our derivation of (2.2) from (1.18),analytic continuation of (4.5) gives its nonterminating extension6W5(a; b; c; d; q; aq=bcd) = (aq; aq=bc; aq=bd; aq=cd; q)1(aq=b; aq=c; aq=d; aq=bcd; q)1 ; jaq=bcdj < 1: (4:6)This formula was obtained in x2.8 of BHS as a limit case of the summation formula(5.6) derived in x5.In order to extend (4.6) to a summation formula for a 6 6 series, it su�cesto proceed as in the derivation of (2.8) from (2.2). Explicitly, replace the in-dex of summation, call it k; in (4.6) by k + n; replace the parameters a; b; c; dby aq�2n; bq�n; cq�n; dq�n; respectively, and manipulate the in�nite products to



Elementary derivations of summation and transformation formulas for q-series 11obtain that 6 6 " a=z; qa 12 ;�qa 12 ; b; c; dzq; a 12 ;�a 12 ; aq=b; aq=c; aq=d ; q; azqbcd#= (aq; aq=bc; aq=bd; aq=cd; zq=b; zq=c; zq=d; q; q=a; q)1(aq=b; aq=c; aq=d; q=b; q=c; q=d; zq; zq=a; azq=bcd; q)1 (4:7)with z = qn; n = 0; 1; 2; : : : ; where 0 < jazq=bcdj < 1: Since the in�nite series andthe in�nite product on the left and right sides, respectively, of (4.7) converge to an-alytic functions of z when jzj < min(j1=qj; ja=qj; jbcd=aqj); by analytic continuation(4.7) holds when jzj < min(j1=qj; ja=qj; jbcd=aqj): Thus, setting z = a=e; we havederived Bailey's [1936] summation formula for a very-well-poised 6 6 series6 6 � qa 12 ;�qa 12 ; b; c; d; ea 12 ;�a 12 ; aq=b; aq=c; aq=d; aq=e ; q; a2qbcde�= (aq; aq=bc; aq=bd; aq=be; aq=cd; aq=ce; aq=de; q; q=a; q)1(aq=b; aq=c; aq=d; aq=e; q=b; q=c; q=d; q=e; a2q=bcde; q)1 ; (4:8)where 0 < ja2q=bcdej < 1. Also see the proofs referred to in x5.3 of BHS and, inparticular, the extension of Ismail's [1977] proof of (2.8) to a proof of (4.8) presentedin Askey and Ismail [1979].Notice that, when d = a 12 and e = �a 12 ; (4.8) reduces to the following summa-tion formula for a 2 2 series that is di�erent from the series considered in (2.10)2 2(b; c; aq=b; aq=c; q;�aq=bc)= (aq=bc; q)1(aq2=b2; aq2=c2; q2; aq; q=a; q2)1(aq=b; aq=c; q=b; q=c;�aq=bc; q)1 ; 0 < jaq=bcj < 1: (4:9)5. Additional summation and transformation formulasIn view of the important formulas that were derived in x4 from the expansionformula (4.4), which followed from the summation formula (4.2), it is of interestto investigate what formulas can be derived by replacing (4.2) by the more generalsummation formula (4.8). To introduce an integer parameter k, let us start byreplacing a; b; c; d; e in (4.8) by aq2k; bqk; cqk; dqk; eq2k; respectively, to rewrite (4.8)in the form6 6 � qk+1a 12 ;�qk+1a 12 ; bqk; cqk; dqk; eq2kqka 12 ;�qka 12 ; aqk+1=b; aqk+1=c; aqk+1=d; aq=e ; q; a2q1�kbcde �= A (aq=b; aq=c; aq=d; be=a; ce=a; de=a; q)k(a; q)2k(b; c; d; bcde=a2; q)k(aq; e; q)2k ��bcda �k q(k2) (5:1)with A = (aq; aq=bc; aq=bd; aq=be; aq=cd; aq=ce; aq=de; q; q=a; q)1(aq=b; aq=c; aq=d; aq=e; q=b; q=c; q=d; q=e; a2q=bcde; q)1 : (5:2)



12 George GasperUsing (5.1) with A written as a (constant) function of k and with j as the index ofsummation in the 6 6 series, we �nd thatA 1Xk=�1uk = 1Xk=�1Auk = 1Xj=�1 (qa 12 ;�qa 12 ; b; c; d; e; q)j(a 12 ;�a 12 ; aq=b; aq=c; aq=d; aq=e; q)j � a2qbcde�j� 1Xk=�1 (bcde=a2; eqj; eq�j=a; q)k(be=a; ce=a; de=a; q)k uk (5:3)after replacing j by j�k and changing the order of summation, where it is assumedthat fukg1k=�1 is a bilateral sequence of complex numbers such that the doubleseries on the right side of (5.3) converges absolutely.If we let e = a in (5.3), which is equivalent to starting with the 6�5 special caseof (5.1), and set uk = (b; c; d; aq=ef ; q)k(q; aq=e; aq=f; bcd=a; q)k qk; (5:4)where at least one of numerator parameters b; c; d; aq=ef is of the form q�n; n =0; 1; 2 : : : ; so that the sequence fukg has compact support, then the sum over k onthe right side of (5.3) becomes a terminating balance 3�2 series that is summablevia (3.2). This gives the transformation formula8W7(a; b; c; d; e; f ; q; a2q2=bcdef)= (aq; aq=bc; aq=bd; aq=cd; q)1(aq=b; aq=c; aq=d; aq=bcd; q)1 4�3 � b; c; d; aq=efaq=e; aq=f; bcd=a ; q; q� (5:5)provided that the 4�3 series on the right side terminates and ja2q2=bcdef j < 1; sothat the series on the left side converges. Watson [1929] used induction to prove(5.5) when both of the series terminate; and he commented that it should extend tothe case when the series on the left converges and the series on the right terminates,which was subsequently proved by Bailey (see p. 70 in Bailey [1935]). Fifty yearsafter Watson's paper was published, Askey and Ismail [1979] showed that (5.5)follows from Watson's terminating case by analytic continuation in the variablez = 1=f: Formula (5.5) can also be derived by observing that the proof of theexpansion formula (2.5.2) in BHS extends to the case when q�n is replaced by acomplex variable f and aq=bc is a negative integer power of q; so that using (4.6)to sum the resulting nonterminating very-well-poised 6�5 series on the right side ofthe expansion formula yields (5.5). For a proof via orthogonal polynomials of (5.5)when both series terminate, see Andrews and Askey [1977].When b = q�n and a2q = bcdef the 4�3 series in (5.5) reduces to a terminatingbalanced 3�2 series that can be summed by (3.2) to derive, after replacing f by b,Jackson's [1921] summation formula for a terminating 8W7 series8W7(a; b; c; d; e; q�n; q; q) = (aq; aq=bc; aq=bd; aq=cd; q)n(aq=b; aq=c; aq=d; aq=bcd; q)n ; (5:6)where a2qn+1 = bcde: Letting n!1 in (5.6) gives (4.6). Note that the restrictionsthat the series in (5.6) and the series on the right side of (5.5) terminate cannot beremoved by analytic continuation in a neighborhood of the origin of the z-plane bystarting with the z = qn; n = 0; 1; 2; : : : ; cases because there is no neighborhood ofthe origin in which all of the terms of the series are analytic. The 4�3 series in (5.5)also reduces to a terminating balanced 3�2 series that is summable by (3.2) when



Elementary derivations of summation and transformation formulas for q-series 13f = aqn+1=e and c = a=b; which leads to a summation formula for a nonterminating8W7 series8W7(a; b; a=b; d; e; aqn+1=e; q; q1�n=d)= (q; aq; aq=bd; bq=d; q)1(bq; aq=b; aq=d; q=d; q)1 (aq=be; bq=e; q)n(aq=e; q=e; q)n ; jq1�n=dj < 1; (5:7)where n = 0; 1; 2; : : : :In order to use (5.7) to derive some new summation formulas, we �rst in-troduce a nonnegative integer parameter k by replacing a; b; c; d; e in (5.7) byaq2k; bqk; cqk; dqk; eqk; respectively, to get8W7(aq2k; bqk; aqk=b; dqk; eqk; aqk+n+1=e; q; q1�k�n=d)= Bn (bq; aq=b; aq=d; aq=e; eq�n; q)k(aq; q)2k(d; e; aqn+1=e; q)k (�d)kq(k2)+kn (5:8)with Bn = (q; aq; aq=bd; bq=d; q)1(bq; aq=b; aq=d; q=d; q)1 (aq=be; bq=e; q)n(aq=e; q=e; q)n : (5:9)Then, proceeding as in the derivation of (5.3) with (5.1) replaced by (5.8), we obtainthe expansion formulaBn 1Xk=0uk = 1Xj=0 (a; qa 12 ;�qa 12 ; b; a=b; d; e; aqn+1=e; q)j(q; a 12 ;�a 12 ; aq=b; bq; aq=d; aq=e; eq�n; q)j �q1�nd �j� jXk=0 (aqj; q�j; q)k(b; a=b; q)k uk; (5:10)where fukg1k=0 is a sequence of complex numbers such that the double series on theright side of (5.10) converges absolutely.If we let uk = (b; a=b; q�m; q)k(q; aq=f; fq�m; q)k qk (5:11)in (5.10), where m is a nonnegative integer, then the sums over k on both the rightand left sides of (5.10) are summable via (3.2), yielding the summation formula10W9(a; b; a=b; d; e; aqn+1=e; f; aqm+1=f ; q; q1�n�m=d)= (q; aq; aq=bd; bq=d; q)1(bq; aq=b; aq=d; q=d; q)1 (aq=be; bq=e; q)n(aq=e; q=e; q)n (aq=bf; bq=f ; q)m(aq=f; q=f ; q)m ; (5:12)where n;m = 0; 1; 2; : : : ; and jq1�n�m=dj < 1: Moreover, by iterating this proce-dure, it follows that (5.7) extends to the family of summation formulas6+2kW5+2k(a; b; a=b; d; e1; : : : ; ek; aqn1+1=e1; : : : ; aqnk+1=ek; q; q1�(n1+���+nk)=d)= (q; aq; aq=bd; bq=d; q)1(bq; aq=b; aq=d; q=d; q)1 kYj=1 (aq=bej ; bq=ej; q)nj(aq=ej ; q=ej; q)nj ; k = 1; 2; : : : ; (5:13)where n1; : : : ; nk are nonnegative integers and jq1�(n1+���+nk)=dj < 1:For applications of (5.6) and additional summation, transformation, and ex-pansion formulas, see BHS. The latest list of errata for BHS is available over theWorld Wide Web at: http://www.math.nwu.edu/preprints/gasper/index.html
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