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Euler-Maclaurin summation formula
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Last modified: March 29, 2016

Euler-Maclaurin summation formula gives an estimation of the sum
∑N

i=n f (i) in terms of the integral∫ N
n f (x)dx and “correction” terms. It was discovered independently by Euler and Maclaurin and

published by Euler in 1732, and by Maclaurin in 1742.

The presentation below follows[1], [2, Ch Y], [3, Ch 1].

1 Preliminaries. Bernoulli numbers

The Bernoulli numbers Bn are rational numbers that can be defined as coefficients in the following
power series expansion:

x
ex − 1

=

∞∑
n=0

Bn
xn

n!
. (1)

These numbers are important in number theory, analysis, and differential topology.

Unless you are using a computer algebra system for series expansion 1 it is not easy to find the
coefficients in the right hand side of Eq. (1). However, it is easy to write Taylor series for the
reciprocal of the left hand side of Eq. (1):

ex − 1
x
=

1
x

∞∑
k=1

xk

k!
=

∞∑
k=0

xk

(k + 1)!
= 1 +

x
2
+

x2

6
+

x3

24
+ . . . . (2)

Thus, the Bernoulli numbers can be computer recurrently by equating to zero the coefficients at
positive powers of x in the identity

1 =
x

ex − 1
·

ex − 1
x
=

∞∑
n,k=0

Bn

(k + 1)! n!
xk+n

=

(
1 +

x
2
+

x2

6
+

x3

24
+ . . .

)
·

(
B0 +

B1

1!
x +

B2

2!
x2 + . . .

)
= B0 +

(
B0

2! 0!
+

B1

1! 1!

)
x +

(
B0

3! 0!
+

B1

2! 1!
+

B2

1! 2!

)
x2 + . . . . (3)

1For example, Series[x/(Exp[x] - 1), x, 0, 6] in Mathematica
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From here, B0 = 1, B1 = −
1
2 B0 = −

1
2 , B2 = −

1
3 B0 − B1 =

1
6 , etc.

B1 = −
1
2

(4)

is the only non-zero Bernoulli number with an odd subscript. The first Bernoulli numbers with even
subscripts are as following:

B0 = 1, B2 =
1
6
, B4 = −

1
30
, B6 =

1
42
, B8 = −

1
30
, B10 =

5
66
, . . . . (5)

The first few terms in the Expansion Eq. (1) are as following:

x
ex − 1

= 1 −
x
2
+

x2

12
−

x4

720
+

x6

30240
−

x8

1209600
+

x10

47900160
+ . . . . (6)

2 Preliminaries. Operators D̂ and T̂

If f (x) is a “good” function (meaning that we can apply formulas of differential calculus without
’reservations’), then the correspondence

f (x) −→ f ′(x) ≡
d

dx
f (x) (7)

can be regarded as the operator of differentiation

D̂ ≡
d

dx
(8)

that act on the function and transforms it into derivative. Given D̂, we can naturally define the
powers of the operator of differentiation

D̂2 f (x) = D̂
(
D̂ f (x)

)
=

d
dx

d
dx

f (x) =
d2

dx2 f (x) i.e. D̂2 =
d2

dx2 , (9)

or in general,

D̂n =
dn

dxn . (10)

We can define functions of the operator of differentiation as following: if g(x) is a “good” function
that can be expanded into power series,

g(x) =
∞∑

n=0

anxn, (11)

then the operator function g(D̂) is defined as following.

g(D̂) =
∞∑

n=0

anD̂n (12)
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Let’s consider the exponential function of the differential operator:

T̂ ≡ eD̂ =

∞∑
n=0

D̂n

n!
. (13)

When applied to a “good” function f (x),

T̂ f (x) =
∞∑

n=0

1
n!

(
D̂n f (x)

)
=

∞∑
n=0

1
n!

dn f
d xn . (14)

The last expression in Eq. (14) is just a Taylor series for f (x + 1). Thus,

T̂ f (x) = f (x + 1). (15)

and T̂ can be regarded as the shift operator. Shifting by 2 can be considered as a composition of
two shift by one operations:

f (x + 2) = T̂ f (x + 1) = T̂
(
T̂ f (x)

)
= T̂2 f (x). (16)

Similarly, shifting by a positive value s can be considered as the result of operator T̂ s:

f (x + s) = T̂ s f (x). (17)

3 Summation of series in terms of operator D̂

We can now formally write

∞∑
n=0

f (x + n) = f (x) + f (x + 1) + f (x + 2) + . . . = f (x) + T̂ f (x) + T̂2 f (x) + . . .

=
(
1 + T̂ + T̂2 + . . .

)
f (x) =

1
1 − T̂

f (x) =
1

1 − eD̂
f (x), (18)

where the expression for the sum of geometric progression was used.

Treating D̂ as an ordinary variable, and using Bernoulli numbers, we obtain the expansion:

1

1 − eD̂
= −

1
D̂

D̂

eD̂ − 1
= −

1
D̂

*
,
1 −

1
2

D̂ +
∞∑

n=2

Bn

n!
D̂n+

-

= −
1
D̂
+

1
2
−

∞∑
n=2

Bn

n!
D̂n−1 (19)

The question remaining before Eq. (19) can be applied is what does D̂−1 mean.

It is natural to assume that D̂ satisfies the relation

D̂
(

1
D̂

f (x)
)
=

D̂
D̂

f (x) = f (x). (20)
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Therefore 1
D̂

has to be an inverse operator to differentiation, that is integration.

1
D̂

f (x) =
∫

f (x) dx + C. (21)

We still need to fix an integration constant i.e. to chose the integration limits. As we see later, we
obtain consistent results, if

1
D̂

f (x) =

x∫
∞

f (x) dx, (22)

or

−
1
D̂

f (x) =

∞∫
x

f (x) dx. (23)

Collecting the results together,

∞∑
n=0

f (x + n) =

∞∫
x

f (x) dx +
1
2

f (x) −
∞∑

n=2

Bn

n!
dn−1 f (x)

d xn−1 . (24)

4 The Euler-Maclaurin summation formula

Equation (24) is the Euler-Maclaurin summation formula. It can be rewritten for the case of a finite
sum as following:

N∑
k=n

f (k) =
∞∑

k=n

f (k) −
∞∑

k=N+1

f (k)

=

∞∑
k=n

f (k) −
∞∑

k=N

f (k) + f (N )

=

∞∑
k=0

f (k + n) −
∞∑

k=0

f (k + N ) + f (N )

=

∞∫
n

f (x) dx −

∞∫
N

f (x) dx +
1
2

f (n) −
1
2

f (N ) + f (N )

+

∞∑
n=2

Bn

n!
dn−1 f (n)

d xn−1 +

∞∑
n=2

Bn

n!
dn−1 f (N )

d xn−1

=

N∫
n

f (x) dx +
1
2

[
f (n) + f (N )

]
+

∞∑
n=2

Bn

n!

[
dn−1 f
d xn−1

�����x=N
−

dn−1 f
d xn−1

�����x=n

]
. (25)
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5 Stirling’s formula

As an application of Euler-Maclaurin summation formula, let’s consider the Stirling’s approximation
for Γ(n) for positive integer n � 1.

Γ(n + 1) = n!, (26)

ln
(
Γ(n + 1)

)
= ln n! = ln

(
1 · 2 · 3 · . . . · (n − 1) · n

)
=

n∑
k=1

ln k . (27)

The first two terms in Eq. (25) give us the following approximation:

ln
(
Γ(n + 1)

)
= ln(n!) =

n∫
1

ln(x) dx +
1
2

(ln(1) + ln(n))

= x ln(x) |n1 −

n∫
1

x
x

dx +
1
2

ln(n)

= n ln(n) − n + 1 +
1
2

ln(n). (28)

The next correction requires more efforts.

Let’s notice first that the term with the derivatives of ln(x) at x = n in Eq. (25) are proportional to
negative powers of n and thus→ 0 as n → ∞. On the other hand, the sum of the term with the
derivatives of ln(x) at x = 1 is a constant independent of n. Thus,

ln Γ(n + 1) = ln n! = ln
(n

e

)n
+ ln

√
n + ln(C) = ln

[
C
√

n
(n

e

)n]
, (29)

or

Γ(n + 1) = n! = C
√

n
(n

e

)n
= Cnn+ 1

2 e−n. (30)

In order to find the constant in Eq. (30), we are going to use the duplication formula for Gamma
function, Eq. (47). We first rewrite eq. (47) as following:

Γ(2n + 1) =
22n
√
π
Γ(n + 1) Γ

(
n +

1
2

)
, (31)

or

(2n)! =
22n
√
π

n! Γ
(
n +

1
2

)
, (32)

Let’s accept without proof that Eq. (30) that we derived for integer n works also for any large
positive argument. Indeed, if Eq. (30) is a good approximation for Γ(n) and for Γ(n + 1) it is
reasonable to assume that it works in between n and n + 1. Therefore,

Γ

(
n +

1
2

)
= Γ

(
n −

1
2
+ 1

)
≈ C

(
n −

1
2

)n

e−n+ 1
2 . (33)
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For n � 1, (
n −

1
2

)n

= nn



(
1 −

1
2n

)2n


1
2

≈ nne−
1
2 . (34)

Thus,

Γ

(
n +

1
2

)
≈ Cnne−n. (35)

Substituting Eq. (30), (35) into Eq. (32), we obtain:

C (2n)2n+ 1
2 e−2n =

22n
√
π

Cnn+ 1
2 e−n Cnne−n. (36)

After simplification,
C =

√
2π. (37)

Finally,

Γ(n + 1) = n! =
√

2πn
(n

e

)n
=
√

2πnn+ 1
2 e−n. (38)

Figure 1: Stirling’s approx-
imation Eq. (38), solid line,
compared with Gamma func-
tion, dashed line, and facto-
rial, circular markers.
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6 Examples

Example 1. Lets consider the following sum:

S(α, k) =
∞∑

n=−∞

e−α(n2)k , α > 0, k > 0. (39)
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The case of small α, α � 1, is most difficult for a numerical summation, since many terms need to
be added in the sum Eq. (39). Small α is where the Euler-Maclaurin approximation works the best.

S(α, k) ≈

∞∫
−∞

e−α(x2)k dx =

∞∫
0

e−αx2k
dx. (40)

Introduction of a new integration variable,

u = αx2k → x =
( u
α

) 1
2k

→ dx =
1

2k
α−

1
2k u

1
2k −1du, (41)

transforms the integral as following:

1
k
α−

1
2k

∞∫
0

e−uu−
1

2k u
1

2k −1 du =
α−

1
2k

k
Γ

(
1

2k

)
, (42)

so that

S(α, k) ≈
α−

1
2k

k
Γ

(
1

2k

)
. (43)

The approximation Eq. (43) is compared with the results of numerical calculations in Fig. 2 and
Fig. 3.

Figure 2: Euler-Maclaurin ap-
proximation Eq. (43), dashed
line, compared with numeri-
cal value of the sum S(α,1),
solid line.
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Example 2. Euler-Maclaurin summation formula can produce exact expression for the sum if
f (x) is a polynomial. Indeed, in this case only finite number of derivatives of f (x) is non zero.
Thus there is only a finite number of ’correction’ terms in Eq. (25).
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Figure 3: Euler-Maclaurin ap-
proximation Eq. (43), dashed
line, compared with numeri-
cal value of the sum S(α,2),
solid line.
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Let’s consider the following sum:

S3 ≡

n∑
k=1

k3. (44)

Euler-Maclaurin expression for the sum is exactly as following,

S3 =

n∫
1

x3 dx +
1
2

(
n3 + 1

)
+

B2

2

(
3n2 − 3

)
+

B4

4!
(6 − 6)

=
1
4

(
n4 − 1

)
+

1
2

(
n3 + 1

)
+

1
4

(
n2 − 1

)
, (45)

where we used B2 =
1
6 . After some algebra,

S3 =
1
4

n2(n + 1)2, (46)

which is indeed the correct result.

Appendix A. Duplication formula for Gamma function

The duplication formula for the Gamma function is

Γ(2z) =
22z−1
√
π
Γ(z) Γ

(
z +

1
2

)
(47)

It is also called the Legendre duplication formula.
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We start from the definition of Beta function, B(z, z).

B(z, z) =

1∫
0

xz−1(1 − x)z−1dx. (48)

Let’s change the integration variable to t, x = 1+t
2 , so that −1 ≤ t ≤ 1 and dx = 1

2dt. This transforms
Eq. (48) into

B(z, z) = 22−2z 1
2

1∫
−1

(1 − t)z−1(1 + t)z−1dt = 22−2z

1∫
0

(1 − t2)z−1dt. (49)

Changing the integration variable in the last integral to u = t2, so that 0 ≤ u ≤ 1 and dt = 1
2u−

1
2 , we

transform the integral to

B(z, z) = 21−2z

1∫
0

u−
1
2 (1 − u)z−1du = 21−2z B

(
1
2
, z

)
, (50)

i.e.

B(z, z) = 21−2z B
(

1
2
, z

)
. (51)

In terms of Gamma function,

B(z, z) =
Γ(z) Γ(z)
Γ(2z)

, (52)

B
(

1
2
, z

)
=
Γ

(
1
2

)
Γ(z)

Γ
(
z + 1

2

) , (53)

so that
Γ(z)Γ(z)
Γ(2z)

= 21−2z
Γ

(
1
2

)
Γ(z)

Γ
(
z + 1

2

) . (54)

Rearranging, and using the value of Γ(1/2) =
√
π, we see that

Γ(2z) =
22z−1
√
π
Γ(z)Γ

(
z +

1
2

)
, (55)

which is the duplication formula.
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