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UNIT II 

Evolutionary Algorithms 

 

Theory of Evolution 
 

The theory of evolution is the body of thought that examines evidence and uses it 

to deduce the consequences of the fact that evolution is going 

on all the time. You do not need to accept the theory of evolution in biology to do 

evolutionary computation. Evolutionary computation uses the ideas in the theory of 

evolution, asserting nothing about their validity in biology. 

 

There are two opposing forces that drive evolution: variation and selection. 

Variation is the process that produces new alleles and, more slowly, genes. 

Variation can also change which genes are or are not expressed in a 

given individual. Selection is the process whereby some alleles survive and others 

do not. Variation builds up genetic diversity; selection reduces it. 

 

Evolutionary computation operates on populations of data structures. 

It accomplishes variation by making random changes in these data structures and 

by blending parts of different structures. These two processes are called mutation 

and crossover, and together are referred to as variation operators. Selection is 

accomplished with any algorithm that favors data structures with a higher fitness 

score.  

There are many different possible selection methods. “evolution is the result of 

survival of the fittest” is a pretty good description of many evolutionary 

computation systems. When we use evolutionary computation to solve a problem, 

we operate on a collection(population) of data structures (creatures).These 

creatures will have explicitly computed finesses used to decide which creatures 

will be partially or completely copied by the computer (have offspring) 

 

Mutations of data structures can be “good” or “bad.” A good mutation is one that 

increases the fitness of a data structure. A bad mutation is one that reduces the 

fitness of a data structure. The representation used in a given example of 

Evolutionary  algorithm is the data structure used together with the choice of 

variation operators. The data structure by itself is the chromosome 



(or gene) used in the evolutionary computation. The fitness function is the method 

of assigning a heuristic numerical estimate of quality to members of the evolving 

population. In some cases, it decides only which of two structures is better without 

assigning an actual numerical quality. 
 

 

A Typical Evolutionary Algorithm Cycle 

 Step 1: Initialize the population randomly or with potentially good solutions. 

 Step 2: Compute the fitness of each individual in the population. 

 Step 3: Select parents using a selection procedure. 

 Step 4: Create offspring by crossover and mutation operators. 

 Step 5: Compute the fitness of the new offspring. 

 Step 6: Select members of population to die using a selectionprocedure. 

 Step 7: Go to Step 2 until termination criteria are met. 

Biology 

A gene is a sequence of DNA bases that code for a trait, e.g., eye color or ability to 

metabolize alcohol. An allele is a value of a trait. The eye color gene could have a 

blue allele or a hazel allele in different people. Evolution is the variation of allele 

frequencies in populations over time. 

 

 

Global Optimization 

 



Global optimization is the branch of applied mathematics and numerical analysis 

that deals with the optimization of single or maybe even 

multiple, possible conflicting, criteria. These criteria are expressed as a set of 

mathematical functions F = {f1, f2, . . . , fn}, the so-called objective functions. 

The result of the optimization process is the set of inputs for which these objective 

functions return optimal values. The difference between optimization algorithms 

and search algorithms is that when performing a search algorithm. 

 

we know the element xi we are looking for and just want to find its position in a 

structured set. In global optimization algorithms on the other  hand we do not even 

know the characteristics of the xi beforehand and are only given some criteria 

which describe if a given configuration is good or not. 
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Global Maximum and Minimum 

 
 

 
 

Global and Local Optima 

 
 

 

 

Simple Functions 



 

 

 

 
 

 

 

History of Evolutionary Algorithms 

 
Several efforts were started in parallel during 1960s.Evolutionary Strategies 

(Berlin Technical University). Genetic Algorithms (University of 

Michigan).Evolutionary Programming (UCLA). During 1990s the above 

communities agreed to the term “Evolutionary Computation 

 
Evolutionary Strategies 

 
At the Technical University Berlin, Rechenberg and Schwefel (1965 paper) began 

formulating ideas about how evolutionary processes could be used to solve 

difficult real-valued parameter optimization problems. From these early ideas 

emerged a family of algorithms called “evolution strategies” which today represent 

some of the most powerful evolutionary algorithms for function optimization. 

 



Evolutionary Programming 

At UCLA during the same period Fogel (1966 paper) saw the potential of 

achieving the goals of artificial intelligence via evolutionary techniques. 

These ideas were initially explored in a context in which intelligent agents were 

represented as finite state machines, and an evolutionary framework called 

“evolutionary programming” was developed which was quite effective in evolving 

better finite state machines (agents) over time. 
 

Genetic Algorithms 

 

At the University of Michigan, Holland (1962 paper) saw evolutionary processes 

as a key element in the design and implementation of robust adaptive systems, 

capable of dealing with an uncertain and changing environment. 

His view emphasized the need for systems which self adapt over time as a function 

of feedback obtained from interacting with the environment in which they operate. 

This lead to an initial family of “reproductive plans” which formed the basis for 

what we call “simple genetic algorithms” today. 

 
Components of Evolutionary Algorithms 

• Representation (definition of individuals) 

• Evaluation function (or fitness function) 

• Population 

• Parent selection mechanism 

• Variation operators, recombination and mutation 

• Survivor selection mechanism (replacement) 
 

Representation 

 

The first step in defining an EA is to link the “real world” to the “EA world”. 

Objects forming possible solution within the original problem context are referred 

to as phenotypes, while their encoding in the EA are called genotypes. Within the 

EC literature many synonyms can be found. Candidate solution and individuals 

denote points in the phenotype space. Chromosome and individuals denote 

points in the genotype space. A placeholder is commonly called a variable, a 

locus, or –in a biology-oriented terminology – a gene. An object in such a place 

can be called a value or an allele. 

 



Representation Example 
An individual is typically described as a fixed length vector of L features which are 

chosen presumably because of their (potential) relevance to estimating an 

individual’s fitness. 

For example, 

– <hair color, eye color, skin color, height, weight> 

 

Evaluation Function 

 
The role of the evaluation function is to represent the requirements the 

population should adopt to. Technically, it is a function or procedure that 

assigns a quality measure to genotypes. The evaluation function is 

commonly called the fitness function in EC. This might cause a 

counterintuitive terminology if the original problem requires minimization, 

because the term fitness is usually associated with maximization. 

 
Parent Selection Mechanism 

 
The role of parent selection is to distinguish among individuals based on their 

quality, and, in particular, to allow the better individuals to become parents of the 

next generation. An individual is a parent if it has been selected to undergo 

variation in order to create offspring. In EC, parent selection is typically 

probabilistic. 

 

Variation Operators 

 
The role of variation operators is to create new individuals from old ones. 

In the corresponding phenotype space this amounts to generating new candidate 

solutions. Variation operators in EC are divided into two types. 

 

Mutation 

Crossover 

 
Mutation 
Mutation is a unary variation operator. It is applied to one genotype and delivers 

a (slightly) modified mutant, the child or offspring. A mutation operator is 



always stochastic: its output – the child – depends on the outcomes of a series of 

random choices. 

 

Crossover 
A binary variation operators is called recombination or crossover. This operator 

merges information from two parent genotypes into one or two offspring 

genotypes. Like mutation, recombination is a stochastic operator. The choices of 

what parts of each parent are combined and how this is done, depend on random 

drawings. The principle behind recombination is simple – by mating two 

individuals with different but desirable features, we can produce an offspring that 

combines both of those features. 

 
Crossover OR Mutation? 

 

Exploration: Discovering promising areas in the search space, i.e. gaining 

information on the problem 

Exploitation: Optimizing within a promising area, i.e. using information 

• There is co-operation AND competition between them 

• Crossover is explorative, it makes a big jump to an area somewhere “in 

between” two (parent) areas 

• Mutation is exploitative, it creates random small diversions, thereby staying 

near (in the area of ) the parent 

• Only crossover can combine information from two parents 

• Only mutation can introduce new information (alleles) 
 

Survival Selection Mechanism 

The role of survival selection (replacement) is to distinguish among individuals 

based on their quality. It is similar to parent selection, but it is used I 

a different stage of the evolutionary cycle. In contrast to parent selection, which is 

typically stochastic, survivor selection is often deterministic. 

 

Initialization and Termination 

Initialization is kept simple in most EA applications, the first population is seeded 

by randomly generated individuals. Problem specific heuristics can also be used in 

this step to create an initial population with higher fitness. The following options 

are used for termination. The maximally allowed CPU time elapses. The fitness 



improvement remains under a threshold value for a given period of time. The 

population diversity drops under a given threshold. 

 

Traveling Sales Person Problem 

 

Given a number of cities and the costs of traveling from one city to any 

other city, what is the cheapest round-trip route that visits each city 

exactly once and then returns to the starting city? 

 

 

 
 

 



Permutation Representation: TSP 
Problem: 

 Given n cities. Find a complete tour with minimal length 

Encoding: 

Label the cities 1, 2, … , n. One complete tour is one permutation (e.g. for n =4 

[1,2,3,4], [3,4,2,1] are OK).Search space is BIG for 30 cities there are 30! ≈ 

1032 possible tours 

 

TSP: Nearest Neighbor 
 

A B C D E F G H 

A 0 8 3 1 4 9 3 6 

B 8 0 5 10 11 4 3 6 

C 3 5 0 8 7 1 5 12 

D 1 10 8 0 9 11 6 4 

E 4 11 7 9 0 5 17 3 

F 9 4 1 11 5 0 4 1 

G 3 3 5 6 17 4 0 7 

H 6 6 12 4 3 1 7 0 

 

Start with A: A – D – H – F – C – B – G – E Cost? 

Start with E: E – H – F – C – A – D – B – G Cost? 

Start with G: G – B – F – H – E – A – D – C Cost? 

 

Initialize the Population 

 

 

 
 

 



 
 

 

 
 

 

 



 
 

 
 

 
 

 

 

 

 



 
 

The 8-Queen Problem: Fitness  

 
Penalty of one queen: the number of queens she can check. 

Penalty of a configuration: the sum of the penalties of all queens. 

Note: penalty is to be minimized 

Fitness of a configuration: 

inverse penalty to be maximized 

 

 
 

 

 



 
 

 

 

Evolutionary Algorithm Cycle 

 

Step 1: Initialize the population randomly or with potentially good solutions. 

Step 2: Compute the fitness of each individual in the population. 

Step 3: Select parents using a selection procedure. 

Step 4: Create offspring by crossover and mutation operators. 

Step 5: Compute the fitness of the new offspring. 

Step 6: Select members of population to die using a selection procedure. 

Step 7: Go to Step 2 until termination criteria are met. 

 

 

Selection 

 

Selection is one of the main operators in EAs, andrelates directly to the Darwinian 

concept of survival of the fittest. A new population of candidate solutions is 

selected at the end of each generation to serve as the population of the next 

generation. The selection operator should ensure that good individuals do survive 

to next generations. 

Reproduction: Offspring are created through the application of crossover and/or 

mutation operators. 

 



Selective Pressure 

 

Selection operators are characterized by their selective pressure, also referred to as 

the takeover time, which relates to the time it requires to produce a uniform 

population. It is defined as the speed at which the best solution will occupy the 

entire population by repeated application of the selection operator alone. An 

operator with a high selective pressure decreases diversity in the population more 

rapidly than operators with a low selective pressure, which may lead to premature 

convergence to suboptimal solutions. A high selective pressure limits the 

exploration abilities of the population. 

 

Selection Procedure 

 

Selection in evolutionary algorithms is the process of choosing which individuals 

reproduce offspring and which individuals survive to the next generation. When 

selection is used to choose which individuals reproduce, the process is referred to 

as pre-selection(parent(s) selection).When it is used to select the individuals that 

survive to the next generation it is called post-selection(survival selection). 

 

• Deterministic selection tends to behave more like greedy hill climbing algorithms 

and exploits the nearest areas with promising solutions. 

• Probabilistic selection schemes are more exploratory and search the landscape. 

Schemes based on exploration are said to have a low selection pressure, while 

schemes based on exploitation are said to have greater selection pressure.In other 

words, selection pressure is a vague measure of how often more fit individuals are 

selected to reproduce and/or live to the next generation. Selection schemes can be 

further categorized into generational or steady-state schemes. A selection scheme 

is generational when the entire current population is replaced by its offspring to 

create the next generation A scheme is referred to as steady-state when a selected 

few offspring replace a few members of the current generation to form the next 

generation. 

 

Selection Schemes 

• Fitness Proportional 

• Rank Selection 

• Tournament Selection 

• Truncation 

• Elitist 

• Uniform Stochastic 

 



Parent Selection Mechanism 

 

Assigns variable probabilities of individuals acting as parents depending on their 

fitness. Usually probabilistic high quality solutions more likely to become 

parents than low quality. Even worst in current population usually has nonzero 

probability of becoming a parent. This stochastic nature can aid escape from local 

optima. 

 

Fitness Proportional Selection 

 

Proportional selection, proposed by Holland, biases selection towards the most fit 

individuals. A probability distribution proportional to the fitness is created, and 

individuals are selected by sampling the distribution. Because selection is directly 

proportional to fitness, it is possible that strong individuals may dominate in 

producing offspring, thereby limiting the diversity of the new population. This is 

known as premature convergence. In other words, proportional selection has a 

high selective pressure. When fitness values are all very close together, there is 

almost no selection pressure. Therefore, later in a run, when some convergence has 

taken place and the worst individuals are gone, the performance only increases 

very slowly. Also known as Roulette Wheel Selection. 

 

Rank Based Selection 

 

Attempts to remove problems of FPS by basing selection probabilities on relative 

rather than absolute fitness. Rank population according to fitness and then base 

selection probabilities on rank where fittest has rank m and worst rank 1.This 

imposes a sorting overhead on the algorithm, but this is usually negligible 

compared to the fitness evaluation time. Selection is independent of actual fitness 

values, with the advantage that the best individual will not dominate in the 

selection process. It preserves a constant selection pressure by sorting the 

population on the basis of fitness, and then allocating selection probabilities to 

individuals according to their rank, rather than according to their actual fitness 

values. 

 

Tournament Selection 

 

FP and R selection methods and the algorithms used to sample from their 

probability distribution relied on a knowledge of the entire population. 



In certain situations, if the population is very large, or if the population is 

distributed in some way (perhaps on a parallel system), obtaining this knowledge is 

either highly time consuming or at worst impossible.  

 

In other cases, there might not be a universal fitness definition at all. For instance, 

think of an application  evolving game playing strategies. In this case we might not 

be able to quantify the strength of a given strategy but we can compare any two of 

them by simulating a game played by these strategies as opponents. Pick nts 

members at random then select the best of these.  

 

Repeat to select more individuals. Inherits the advantage of rank selection. Does 

not require global reordering. For crossover with two parents, tournament. 

selection is done twice, once for the selection of each parent. Provided that the 

tournament size, nts , is not too large, tournament selection prevents the best 

individual from dominating, thus having a lower selection pressure. On the other 

hand, if nts is too small, the chances that bad individuals are selected increase.  

 

Thus, the the selective pressure is directly related to nts .If nts = ns , the best 

individual will always be selected, resulting in a very high selective pressure. 

On the other hand, if nts = 1, random selection is obtained. There also exists a non-

deterministic variant of this selection where this is not necessarily the case. 

Therefore, a probability p is defined. The best individual in the tournament is 

selected with probability p, the second best with probability p(1 −p), the third best 

with probability p(1 − p)2 and so on. 

 

Tournament selection is perhaps the most widely used selection operators in the 

modern applications of EAs, due to its extreme simplicity and the fact that the 

selection pressure is easy to control by varying the tournament size. 

 

Random Selection 

 

Random selection is the simplest selection operator, where each individual has the 

same probability to be selected. No fitness information is used, which means 

that the best and the worst individuals have exactly the same probability of 

surviving to the next generation. Random selection has the lowest selective 

pressure. Random selection returns elements by chance. A possible preceding 

fitness assignment process as well as the objective values of the individuals play no 

role at all. This hinders the optimization algorithm to follow any gradient in the 

fitness landscape – it is effectively turned into a random walk. 



• Random selection is thus not applied exclusively, but can serve as mating 

selection scheme in conjunction with a separate environmental selection. 

• It maximally preserves the diversity and can be a good 

choice if used to pick elements from an optimal set. 

 

Survivor Selection 

 

 Most EAs use fixed population size so need a way of going from (parents + 

offspring) to next generation .Often deterministic Fitness based : e.g., rank 

parents+ offspring and take best Age based: make as many offspring as parents and 

delete all parents. Sometimes do combination (elitism) 

 

Age-Based and Fitness-Based 

Replacement 

 

The basis of these schemes is that the fitness of individuals is not taken into 

account during the selection of which individuals to replace in the population, 

rather they are designed so that each individual exists in the population for the 

same number of EA iterations. A wide number of strategies have been proposed 

for choosing which m of the m + l parents and offspring should go forward to the 

next EA iteration. 

 

Replace Worst/Truncation 

 

In this scheme the worst lambda members of the population are selected for 

replacement. Although this can lead to very rapid improvements in the mean 

population fitness, it can also lead to premature convergence as 

the population tends to rapidly focus on the fittest member currently present. 

 

Elitism 

 

Elitism refers to the process of ensuring that the best individuals of the current 

population survive to the next generation. The best individuals are copied to the 

new population without being mutated. The more individuals that survive to the 

next generation, the less the diversity of the new population. 

 

Elitist Selection 

 

In elitism at least one copy of the best individual in the population is always passed 



onto the next generation. The main advantage is that convergence is guaranteed 

(i.e., if the global maximum is discovered, the EA converges to the maximum). 

– By the same token, however, there is a risk of being trapped in a local maximum. 

 

Hall of Fame 

 

The hall of fame is a selection scheme similar to the list of best players of an 

arcade game. For each generation, the best individual is selected to be inserted into 

the hall of fame. The hall of fame will therefore contain an archive of the best 

individuals found from the first generation. The hall of fame can be used as a 

parent pool for the crossover operator, or, at the last generation, the best individual 

is selected as the best one in the hall of fame. 

 

Elitism 

 

This scheme is commonly used in conjunction with age-based and stochastic 

fitness-based replacement schemes, in an attempt to prevent the loss of the 

current fittest member of the population. In essence a trace is kept of the current 

fittest member, and it is always kept in the population. The main advantage is that 

convergence is guaranteed (i.e., if the global maximum is discovered, the EA 

converges to the maximum). By the same token, however, there is a risk of being 

trapped in a local maximum. 

 

No Free Lunch Theorem 

 

Wolpert and Macready published a paper with a very strong title: “No Free Lunch 

Theorems for Optimization”. The key contents of the paper can be quoted as 

follows: For both static and time dependent optimization problems, the average 

performance of any pair of algorithms across all possible problems. 

 

 

 

Genetic Algorithms 

 
In EP and ES schemes, individuals die off only when replaced by younger 

individuals with higher fitness. This results in a significant loss of diversity in the 

population and can increase the likelihood of becoming trapped on a false peak. 

One way to handle this problem is to allow new individuals to replace existing 

individuals with higher fitness. A more direct method is to use generational model 



in which parent survive for exactly one generation and are completely replaced by 

their offspring. This is the form that standard GA take and also the 

form that (μ , λ) – ES model take. 

GA also implement the biological notion of fitness in a somewhat different 

fashion than we have seen so far (fitness proportional scheme).The EP and ES 

systems all used objective fitness to determine which offspring survive to 

adulthood. However, once in the parent pool, there is no additional bias with 

respect to which individuals get to reproduce – all parents have an equal 

chance. Another important difference between Gas and the other models is the 

way in which offspring are produced. The basic idea is that offspring inherit gene 

values from more than one parent. This mixing of parental gene values along with 

an occasional mutation provides the potential for a much more aggressive 

exploration of the space. 

Crossover provides an additional source of variation involving larger initial 

steps, improving the initial rate of convergence. Since crossover does not 

introduce new gene values, its influence diminishes as the population becomes 

more homogenous, and the behavior of GA with crossover becomes nearly 

identical to a GA with no crossover. 

 

Universal Genetic Code 

 

Holland emphasized the importance of a universal string-like “genetic” 

representation to be used internally by a GA to represent the genome of an 

individual. He initially suggested a binary string representation in which each bit 

internally is viewed as a gene, and the mapping to the external phenotype left 

unspecified and problem specific. Crossover and mutation operate as before at 

the gene level except at a much finer level of granularity. In the case of a binary 

representation, mutation simplifies to a “bit flipping” operator. 

 

Example (Goldberg) 

 

• Simple problem: max x2 over {0,1,…,31} 

• GA approach: 

– Representation: binary code, e.g. 01101 ↔13 

– Population size: 4 

– 1-point crossover, bitwise mutation 

– Roulette wheel selection 



– Random initialization 

• We show one generational cycle done by hand 

 

 
 

 

 
 

 



 
 

 

 

Evolutionary Programming 
 
 First developed by Lawrence Fogel in 1966 for use in pattern learning. Real-

valued approach to problem encoding. Models only the behavioral linkage between 

parents and their offspring, rather than seeking to emulate specific genetic 

operators from nature such as the encoding of behavior in a genome and 

recombination by genetic crossover. 

 

Evolutionary Programming Procedure 

 

1. Initialize the population 

2. Expose the population to the environment 

3. Calculate the fitness for each member 

4. Randomly mutate each “parent” population member 

5. Evaluate parents and children 

6. Select members of new population 

7. Go to step 2 until some condition is met 

 

 

 

 

 



Population Initialization 

Component variables are usually real-valued .Dynamic range constraints usually 

exist and are observed. Random initial values within dynamic ranges are used. 

Population is often a few dozen to a few hundred. 

 

 
 



 
 

 

 

 
 

 



 
 

 



 


