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Appendix F

Mathematical aspects of Ewald
summation

F.1 Three-dimensional Coulombic systems

F.1.1 Energy contributions in Ewald formulation
F.1.1.1 Real-space contribution

To derive Eq. (6.8) for the real-space part of the Ewald potential, we start
from Eq. (6.7) for the set of screened charges and apply Poisson’s formula
[see Eq. (6.3)]. This gives

0 () = 35 (5 + unlrd) (F.1)

{n} J=1
where the first term in parentheses is the usual Coulomb potential and

®in(r) = /d Pin(T) _ ( ) /d ,oXp —a2(f —7;+n)’]

|y — 7| -7
(F.2)

is the potential due to a Gaussian charge cloud (total charge —gq;) located
at 7; — n [see Eq. (6.5)]. To evaluate the integral on the far right side of
Eq. (F.2), we transform variables according to v’ — R = r’' — r; + n, which

gives
3 2 2
o exp [—a® R?
®...(r) = —q; | —= dR—1 ~ 1 F.3
I (T) % (\/7_1) / R|r5j+n—R| ( )

In Eq. (F.3) the integration is carried out over the entire three-dimensional
space.
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448 Three-dimensional Coulombic systems

The most convenient way of doing this is to transform to spherical coor-
dinates R = |R|, 8, and ¢, where 6 and ¢ are the polar and azimuthal angles,
respectively, associated with the orientation of R in a space-fixed coordinate
system. We may split the integral over R into two contributions fromn regions
characterized by the inequalities

R < |rj+nl==x (F.4a)
R > u« (F.4b)

This separation of the integral can be effected by using an expansion in terms
of spherical harmonics {Y;™}[258] valid for arbitrary vectors 7y and r,!; that
is,

1y — o ™! Z Z 2l+1 ¢+1 Y (01, 01)Yim(02, ¢2) (F.5)

=0 m=-1
where 6; and o; are polar and azimuthal angles associated with vectors r
and 7, respectively. Notice that the complex conjugate Yy, = Y _n. In
Eq. (F.5), r< (r>) is the magnitude of the smaller (larger) vector of the pair
T and ry. Setting 7y = R and r; = r;; + n, and inserting Eq. (F.5) into
Eq. (F.3), one realizes that only terms characterized by [ = m = 0 (with
Yoo = 1/V/47) survive because [258]

2n 1
/ dyp / d cos8Yjm (6, ) = VAT8;,00m.0 (F.6)
0 2

Equation (F.3) can therefore be rewritten as

®;n(ri) = —4mg; (\/_) /dRRzexp( 2R2 /dRRexp (—aZRZ)

(F.7)
where the first integral appearing in brackets can be recast by using

[ 4R oo (2R = LT 2R
/dRR exp (—a’R?) = e B dRexp (—a’R?)
0 0
181 T, 2
=~ %a 0t/duexp( u?)
1 8 [V7
= | F.8
2a O [20 erf(ax)] (F8)

1See Eq. (3.70) in Ref. 242.
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where we have employed the definition of the error function [11, 37, 330],

y
erf (y) = 2 /du exp (—u?) (F.9)
0

T

to arrive at the third line of Eq. (F.8). The remaining partial derivative can
be carried out by using

( 2

a—ay-erf (y) = G exp (-y°) (F.10)

which follows immediately from the Eq. (F.9) and Leibniz’s rule for the dif-
ferentiation of a parameter integral [11, 330]. One finally obtains

2 22y ﬁ 1 7o 2,2
/dRR exp (—a®R?) = mt.rf (az) — 2a3 T CXP (-a?z%) (F.11)
0

The second integral in Eq. (F.7) gives

/dRRexp (—asz) = —2—(1;5/ng% exp (—a2R2) = 217exp (—a21:2)

T

(F.12)
Inserting Egs. (F.11) and (F.12) into Eq. (F.7) and replacing = by |r;; + n|
the electrostatic potential at r; due to one Gaussian located at r; —n # r;

reduces to flal )
err (a|rj; +n

(I). T = —q————-———
im (T3) 7 ey o+l

(F.13)
Finally, inserting Eq. (F.13) into our initial Eq. (F.1) a.ﬁd using the identity
1 — erf (y) = erfc(y) (F.14)

we cventually arrive at Eq. (6.8).

F.1.1.2 Fourier-space contribution for nonzero wavevectors

To evaluate the electrostatic potential ®® (r) [see Eq. (6.11)] from the peri-
odic Gaussian charge distribution p'®(r) [see Eq. (6.10a)), it is most conve-
nient to start from Laplace’s equation [242], which says that

AD®(r) = —4npB(r) (F.15)
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where A = V - V is the Laplace operator. The Laplace equation is equiva-
lent to Poisson’s equation [see Eq. (6.3)] and follows directly from the first
Maxwell equation of electrostatics,

V - E(r) = 4np(r) (F.16)

using the definition
E(r) = —V&(r) (F.17)

for the electric field E. From Eq. (F.15) it is evident that the Laplace equa-
tion is a second-order differential equation that can be solved conveniently
in Fouricr space. To this cnd, we expand the charge distribution and the
corresponding potential according to the (discrete) Fourier series

PP @) = > (k)exp(ik - 7) (F.18a)
{k}

*@ (r) = Y & (k)exp(ik - 7) (F.18b)
{k}

where k is a vector of the reciprocal lattice related to the set of real-space
lattice vectors {n} [see text above Eq. (6.11)], and the quantities 5 (k) and
3@ (k) are Fourier coefficients of the charge distribution and the potential,
respectively. These Fourier cocfficients can be obtained from the correspond-
ing real-space quantitics via

(k) = Vl /drpm (r)exp (—ik - 7) (F.19a)

sys

@ (k) (—ik - 7) (F.19b)

where Vi, is the volume of the entire system consisting of the basic cell plus
its periodic replicas. Thus, Viys = Ve, where ne is the total number of
cells.

Inserting the expansions (F.18) into Eq. (F.15), we have

ADD) (r) = " &P (k) Aexp(ik-T)

{k}
= =) K0 (k)exp (ik - 7)
{k}
= ——47rZ“{2) Yexp (ik - T) (F.20)

{k}
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We now recall that Fourier expansions (F.18) are orthogonal expansions (sce,
e.g., Ref. 242). It follows that each summand on the second line of Eq. (F.20)
has to be equal to its counterpart on the third line so that

&2 (k) = 1557 (k) (F.21)

which is Laplace’s equation in Fourier space. Thus, given the Fourier coeffi-
cients of the charge distribution (see below), we can easily calculate from
Eq. (F.21) all Fourier coefficients of the corresponding potential, except
its contribution at k = 0, which will be discussed in the subsequent Ap-
pendix F.1.1.3. Replacing in Eq. (F.18b), @@ (k) by the expression given in
Eq. (F.21) permits us to calculate the desired potential @@ (r).

Having in mind this strategy we start by evaluating the Fourier co-
efficients of 5® (k). Inuserting the explicit expression for p®(r) given in
Eq. (6.10a) into Eq. (F.19a), we have

) 3 N
?2) (k) = “%vs' (\%—;) Zqu /dr exp [-ik-r—a’(r—r; + n)2]

{n} j=1
(F.22)
The spatial integral on the right side is a standard (three-dimensional) Gaus-
sian integral and can be carried out analytically [330]. Using, in addition,
the relation exp (—ik - n) = 1 (which defines k as a reciprocal lattice vector),
one finds

K2\
~(2) — = . —ik -7
P4 (k) = - Zexp ( 4(12) ZqJ exp (—ik - 75)
{n} i=1
Fon () ) ) (k.23
= —exp|——s gjexp (—ik - r; F.23
V 4a2 yr
where the second line has been obtained by employing the relation
1 1 1
Vi 2 1= _"/;;ncell =v (F.24)
Inserting Eq. (F.23) into Eq. (F.21) then yields
- 14n k2] .
¢(2)(k) = V-k—i exp [—-47;5:' Z g; €Xp [—Zk . 7']'] .k # 0 (F25)
=1

Finally, inserting the coefficients (F.25) into Eq. (F.18b) together with r = r;
gives the first term on the right side of Eq. (6.11), which is the contribution
to the electrostatic potential ®®(r;). The missing “long-range” term related
to the special case k = 0 is discussed in the subsequent Appendix F.1.1.3.
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F.1.1.3 Long-range contribution

Evaluation of the long-range part of the electrostatic potential, @fl){(r,-),
which results from the long-wavelength limit (k = 0) of the correspond-
ing Fourier expansion, is the “trickiest” part in the derivation of the Ewald
expression for the electrostatic potential of a Coulombic system. The prob-
lem is immediately apparent from Laplace’s equation in Fourier space [sce
Eq. (F.21)] which, when solved for ®@ (k) directly at k = 0, yields a di-
vergent result because of the factor 1/k%. Fortunately, we are not really
interested in the value of ®? (k) for k = 0. To realize the irrelevance of the
value of @ (k) at k = 0, consider the corresponding energy contribution
U (0) = lzq &2 (0) (F.26)

J=1

[ ]

where [see Eq. (F.19b)]

@ (0 (F.27)

is the spatial integral over the potcntlal which must be independent of (par-
ticle) index j. Now recall that we are dealing with a globally neutral system,
meaning that Z;v:, q; = 0. Couscquently, {/® (0) vanishes regardless of the
actual value of ®? (0).

Thus, in the following discussion we focus on the limit k — 0 of the
full product ®® (k) exp (ik - r) appearing in Eq. (F.18b). More explicitly,
given that we arc dealing with an isotropic systein where the direction of the
wavevector k should not matter we consider the angle—averaged quantity

@{2& (r) = y 11m/dcos€k/dcpk<l>(2)( Yexp (ik - 1)
= —1i 2 ik -
yy Lg%/dwké (k) exp (ik - 1) (F.28)
where ) and i are the angles specifying the orientation of k and wx =

(Ok, o) -

To cvaluate the right side of Eq. (F.28) we consider first the charge-
density coefficients 5 (k) that give rise to the potential @ for small, but
nonvanishing k. Expanding these coefficients in a Taylor series around k = 0
and using Laplace’s equation [see Eq. (F.21)], we obtain

3 (k) = k 2|, + k- Vi 72 (K)|, ékk.vkvk A (k)]|, + O (+*)
(F.29)
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We now consider the lowest-order expansion coefficients of 5 (k) appearing
on the right side of Eq. (F.29). Using the general definition (F.19a) for the
Fourier coefficients and performing the required derivatives, we obtain

), = o / drp® (r) = Qm (F.300)
sys svs
Vid? k)|, = @ (r) = P®  (F.30b)
SVS
ViVid? (k)|, = -7 / drrrp? (r) = NG (F.30c)
8ys sys

The quantities on the right side of Eqs. (F.30) have a simple and lucid
physical interpretation in terms of the multipole moments of the charge dis-
tribution p® () [242]. Indeed, Q™ is nothing but the monopole moment,
P® is the dipole moment, and the second-rank tensor A is related closely
to the quadrupole moment. Explicit expressions for these quantities can be
casily obtained by inserting Eq. (6.10a) into Eqs. (F.30) and carrying out the
(Gaussian) spatial integrals. For the monopole, this procedure gives

({2,:: = ( ) Zqu/drexp[—a r—rJ+n)]

Vays {n} =1
1 N 1 &
sys (n} j=1 =1

where we used Eq. (F.24). Thus, the monopole moment vanishes due to the
global charge neutrality of the system. The dipole moment of the charge
distribution p®@(r) coincides with that of the original delta-like distribution
in Eq. (6.4); that is,

et

sys {ﬂ} j= =1
M
= ZZ"J =V (F.32)
SVS {n} J 1

In wrltmg the last member of Eq. (F.32) we have used the definition M =
Z]_l gjr; for the total dipole moment of the central cell and the fact that
each replicated cell has exactly the same total dipole moment. Using similar
arguments we obtain for the cartesian components (A("’)) o (K l=x,y, or z)
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of the sccond-rank tensor A®,

A@)
( Vsys)kt - ( ) Zqu/dr (r), (r),exp [-a® (r — 7; + n)?]

‘“’b{}]l

I

[-—5k1 + qu (i) (rs), (1 - 5kl)]

Sh= <=

(D®) (F.33)

We proceed by inserting the nonvanishing multipole moments defined in
Eqgs. (F.30)-(F.33) into the expansion in Eq. (F.29), which gives

H(2 _ 2

o (k) = —sz M — ka Yk + O (k) (F.34)
As we emphasized before we are interested in the long-wavelength limit of
2 (k) times the phase factor exp (ik - 7). Expanding the latter in a Taylor
series around k = 0, that is

exp(ik-r):1+ik-r—%(k-r)2+0(k3) (F.35)

and combining this expansion with Eq. (F.34), we obtain

? (k)exp (ik - ) = k2vk M- kgka@)k
k2V k-r)(k-M)—i(k- r)——kD(z)k
+§ (k . 1‘) ( k2Vk M+ WkD(Z)k) +0 (kz)

(F.36)

We now consider separately the terms on the right side of Eq. (F.36), focus-
ing on the question whether they contribute to the desired (angle-averaged)
potential ®{?) () [defined in Eq. (F.28)]. The first term depends on 1/k and
may therefore seem to diverge as we take the limit k — 0. However, as this
first term also contains k- M., it vanishes already for nonvanishing k because
of the angle average in Eq. (F.28). To see this result, we note that the scalar
product of two arbitrary unit vectors @ and b can be expressed in terms of
spherical harmonics as [258]

a- 3 = Z (wa) Ylm (wb) (F37)
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Therefore,

/dwkk M=k |M| in ‘/dkal"l wk) Y]m (wM) = 0 (F38)

m=~1

where we have also used Eq. (F.6).

The next term on the right side of Eq. (F.36) is constant in k and involves
the product kD@k, which does not immediately vanish if averaged over
orientations. Nevertheless, we can safely neglect this term. The reason is that
it is independent of the position of particle 7, with the immediate consequence
that the corresponding energy contribution vanishes due to the global charge
neutrality of the system [see text below Eq. (F.26)).

The third term on the right side of Eq. (F.36) contains the product
(k-7) (k- M). It has an explicit positional dependence even after perform-
ing the orientational average. Indeed, expanding both scalar products ac-
cording to Eq. (F.37) and using the orthogonality of spherical harmonics
given by [258]

/dwY,;‘n(w)Ypmr (w) = (5[11(5,"' (F39)

we find

rinn ()3

m=—1m'=-1

Elz;/dwk(k-r)(k-M)
x / Ao () Yim () Vi (k) Yo (w0n1)

- il (5 ) S Vi (m) Vi (00)

m=-1
4
= —311' M (F.40)
where the last line has been obtained by using Eq. (F.37) in reverse direction.
The subsequent terms on the right side of Eq. (F.36) can be ignored
because they are at least proportlonal to k and therefore vanish in the limit
k — 0. Thus, the potential (I>[R( ) reduces to [see Eq. (F.28)]

Y (r) = / du (k- 7) (K - M)=J—‘7r M (F.41)

The above expression for the long-range part of the electrostatic potential is
consistent with a well-known result from macroscopic electrostatics regarding



456 Three-dimensional Coulombic systems

the average clectric ficld inside a large sphere containing an (arbitrary) charge
distribution. This field is given hy [242]

E = —%W—P (F.42)

where P is the polarization of the sphere. Clearly, E is independent of the
radius of the sphere. Moreover, it is constant within the sphere, implying
that the corresponding electrostatic potential is given by

o(r)=-r-E= %r -P (F.43)

We now recall that our system is represented by one unit cell that is replicated
in all three spatial directions. Thus, we can indeed take our system to be
a (macroscopically) large sphere. As a consequence, the quantity P can be
identified with the quantity P?/V,,, = M/V appearing in Eqgs. (F.30b)
and (F.32). We therefore conclude that the potential ® (r) is identical with
long-range potential @8{ (r) given in Eq. (F.41).

The above considerations are useful because they permit one to under-
stand from a macroscopic perspective why a long-range contribution to the
electrostatic potential should arise. Moreover, they are particularly helpful
because they indicate a strategy to introduce different boundary conditions
into the Ewald summation technique. Indeed, the physical picture to which
Eqgs. (F.41)-(F.43) correspond is that the (macroscopically) large spherc is
surrounded by a vacuum. In this case, any polarization in the sphere will
generate surface charges at the interface between the sphere and the vacuum,
and these charges in turn generate the average (or depolarization) field given
in Eq. (F.42). If, on the other hand, the sphere is surrounded by a dielec-
tricum with dielectric constant ¢, the average field inside the sphere has to
be corrected by the so-called reaction field [331],

_2(€ = 1)4n

= F.44
Err 2¢ +1 3 (F.44)

which, as expected, vanishes for the special case ¢ = 1 (i.e., in the vacuum).
Combining Egs. (F.42) and (F.44), the total average field inside the sphere
then becomes
4 M
AT b 47 M
2¢ +1 2/ +1V
Inserting Eq. (F.45) into Eq. (F.43) and taking r = r;, one obtains the final
expression for the long-range contribution of the electrostatic potential given
in Eq. (6.12).

E-E + Egr = (F45)
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F.1.1.4 Self-contribution

The self-part of the Ewald electrostatic potential given in Eq. (6.14) can be
derived in a fashion similar to our derivation of the real-space contribution
in Appendix F.1.1.1. Starting from Poisson’s formula [see Eq. (6.3)] and
inserting Eq. (6.10b) for the charge density p® ('), we have

@@ (r) = [ar 220D (%)3 [ L =) (g

lri — | |ri — |

The three-dimensional integral on the far right side of Eq. (F.46) can be
evaluated by transforming variables according to ' — R = r’ — r; followed
by a transformation to polar coordinates. This gives [330]

3 % .
o3 (r,) = —4ny, (70_;) /dR Rexp (——a2li’,2) (F.47)
0

which can be easily be evaluated in closed form to give Eq. (6.14).

Finally, it seems worth noting that the self-part can also be derived di-
rectly from Eq. (F.13) representing the potential @, (7;) caused by a Gaus-
sian located at r; — n # 7;. Indeed, considering ®;,, at n = 0, one obtains

. erf (ary;) _ ) 2 2 34 4
= Jim g 5 = = lim g |2~ oatr 4+ O ()

2a (6.14)

e () (F.48)
in the limit r;; — 0 wherc we have used the first few terms in a Taylor
expansion of the error function erf (z) around = = 0 given by

= 5=+ O() (F.49)

F.1.2 Force and stress tensor components

erf (z) =

F.1.2.1 Force components
Based on Egs. (6.15)—(6.17b) we can also derive the corresponding expres-
sions for the force acting on particle 2,

Féﬁ = -qu.~<1> (1‘,’) (F50)

Because of Eqgs. (6.16a) and (6.17a) we can split the total force into a sum
of three individual contributions, namely

F¥ =F3% ,+ F% + F3n, (F.51)
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The reader should realize that the sclf-part makes no contribution because
the summand in Eq. (6.17b) is independent of the coordinates of particle
i. Considering the individual contributions to the total force separately, we
obtain after straightforward differentiation

N o crc(alry; + n|)
F&, = —-Y.> 4V

|1"1',j + n|

i=1 n

= 02 50 { oy [t g

j=1 n

N crfe (o |7y + ) } Ty + "2 (F.52a)
l"'ij + nl |'I‘,‘j + 'n-l

k2 .
Fgg‘l = —47”]1 Z q] ij [Z ,(‘2V ( m) cXp (—I.k - "',‘j)]

k£0
% )
SR I DAY (sl PR
j=1 k#0
k K —
= 47rq,~z_—2—exp -— qu sin (k - 7;;) (F.52b)
} 124% 4a? ] £
k#0 j=1
N
dmq;r 4rM
d o o S —T | - g F.52
FCLILz qtvi L JZ__;V(ZC +1)] qzv(261+1) ( 5 C)

In writing Eqs. (F.52a) and (F.52b) we have taken into account that the
operator V; appearing in the original force expression [see Eq. (F.50)] can
be replaced by its counterpart V;; with respect to the distance vector r;; =
T; — r; where, of course,

0 _ Ty d
. o e — N -
Vij = - ” = . dr,, (F.53)

and r;; = |ry;| also hold. In deriving Eq. (F.52a) we also used Egs. (F.10)
and (F.14). Moreover, the last line of Eq. (F.52b) has been obtained using

ik cXp (—Ik . ’I‘,’j) = ik cos (k . ‘I','j) + ksin (k . 1‘,'1') (F54)

where the cosine term (contrary to sine term) changes sign upon inversion,
that is, k — —k, and thercfore vanishes in the sum over all wavevectors.
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F.1.2.2 Stress tensor components

By analogy with Appendix E.3 we derive molecular expressions for various
(diagonal) components of the stress tensor 7,, (v = X, y, or z) by realizing
that we may write

3d  _ _id 77.C
Ty,e = Tyt Ao (F.55)
in the grand canonical ensemble where 'r,'y‘fy is given in Eq. (E.33). From the

definition of the Clausius virial [see Eq. (E.35)] and Eq. (6.15) for the total
configurational potential energy of the three-dimensional Coulomb system in
Ewald formulation, we have

oUud  aud, + U, + U

Oy s, s, sy

W’,;’;i_c = Y=X,Yy,0rz (F.56)

3

because U3 is a constant that does not depend on the actual configuration
[see Eq. (6.17b)]. To evaluate the partial derivatives on the right side of
Eq..(F.56), it turns out to be convenient to transform to unit-cube coordi-
nates via
T / Sx
o= w/sy |. i=1,...,N (F.57)
2/,
Consider the first term on the right side of Eq. (F.56). From Eq. (6.16a)
we obtain

v, 1 al Zlq'q' 0 erfc(a|r;; + n|)
887 2 i1 = t J(‘)S.y l"','j + nl
N
1 / erfc (o |1‘,‘j + n|)
= -7 q:iq; 3
2 ; ,}; % { Irij + n
2a 1 2 8
L - — iy — |7 F.
+ il vl exp [ (alry +n|) ]} 75 |rij + n|(F.58)

which follows with the aid of Eqs. (F.10) and (F.14). We now notice that
because of Eq. (F.57)

[+l = /52 By + m)® + 52 (s +1y)2 + 52 (3 + 1) (F59)

In the previous expression we used the fact that the lattice vectors n =
(nxSx, Ny Sy, Nzs,). Therefore,

2 -~ 12
KA Iri +n| = sy (% + ) _1 [(ri; + ) - &) (F.60)
387 'T,‘j + n| Sy I"ij + n|
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where €, is a unit vector in the y-direction and v;; = 75 - €y so that

W& _ orfe (a |ry; + n|)
3 - ZZZ 1'l{ I'rij+n|

25, i=1 j=1 {n}

200

+ 7 exp [~ (a|ri; + n])z]}

(ry; +n) - &)°

(F.61)
'7',']' + n|2

follows without further ado.

Turning to the second term on the right side of Egs. (F.56), we realize that
a (k) is independent of {s,} because each term in the sum [see Eq. (6.19))
can be written as

exp (—ik - 7;) = exp [—2mi (M T; + myF; + m,2;)] (F.62)

where we used the definition of the wavevectors k [see text before Eq. (6.11)].
This leaves us with

UH 1V (2 K\ k) ey
Bsy féokz “P( w) [mz * (z * xr) a] @ (k)]
_oLim L RN (2,
Vs, o 12 PP\ T haz k2 2a?
x (k- &) (k)lz] (F.63)

from Eq. (6.18) where we have used the fact that

V = A8,y (F.64)
and
™ 2 my 2 7, 2 .
k=om/{=] +{Z) + (F.65)
Sx Sy 2 A
from which
. 2 52
aa_’" __ 2m "_’37 _ (k&) :v) L (res)
a5 + (my[5y)? + (mafs)’ 5 >
follows directly where
k.g =2 (F.67)

Sy
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is the projection of the wavevector k onto the y-axis (i.e., the y-component
of k).

To evaluate the third contribution to W, in Eq. (F.56), we realize from
Eq. (6.17a) that

U¥p 2n 9 M 2 [2MI (M\’8V (F.68)
ds,  2¢418s, V  2¢+1|Vs, V] s, '

In writing the first term on the right side of Eq. (F.68) we introduced the
projection of the total dipole moment M [see Eq. (6.13)] onto the «-axis,

namely
N

N .
M,=M e, = Z(h""i ‘€, = Zq,-s.,ﬁ - e,y (F.69)
i=1

i=1
Equation (F.68) may be rewritten to give

OU3r 1 2m
0s,  Vs,2¢ +1

[M? - 2(M -&,)"] (F.70)

for the long-range contribution to Vlr.;’ffc. Finally, putting all this together
we have from Egs. (F.55), (F.56), (F.61), (F.63), and (F.70) the somewhat
lengthy expression

fc (a |y
o = gy (23N, { el en)

i=1 j=1 {n}

L § (PR OB
+\/1—r,p[ (.I’I‘;]-i-nl)]} Irij+n|2 >
27r 2 N )
<§)k2ep( - (Bram) ev)]la(k)|>
‘}22(/+1<[M2_2(M 37)2]> Y=X,yV,0rz (F.71)

for the diagonal components of the stress tensor in a Coulombic bulk system.

F.2 Three-dimensional dipolar system

F.2.1 Self-energy

We now derive an expression for the self-contribution to the dipolar energy
in Ewald formulation given in Eq. (6.32) by recalling that the corresponding
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Coulombic contribution [sce Eq. (6.17b)] results from the interaction of the
charges ¢; at r; with the corresponding Gaussian charge clouds centered at 7;
and representing a total charge of —¢;. Moreover, we have seen at the end of
Appendix F.1.1.4 that for a given particle i the self-part of the electrostatic
potential can be calculated from the potential generated by a Gaussian at r;
by taking the limit r;; — 0. Keeping this observation in mind and replacing
the charges ¢; by operators p; - V; as suggested by Eq. (6.22), we find the
following prescription to calculate the dipolar self-contribution

N

1 £ (ars;

Uddp = —= lim  lim (i - V) (15 - V) erf (ari;) (F.72)
2 =0 Tij

Approximating erf (ar;;) /r;; hy its Taylor expansion for small distances r;;
given in Eq. (F.48), we obtain

20 2a° ,

3
(1 - Vi) (15 - V5) (ﬁ - ﬁ"u)- = ;\j——; (i - 1) (F.73)

from which
203 N
73 2 2 F.74
{ DSF 3ﬁ o K ( )

follows immediately by inserting Eq. (F.73) into Eq. (F.72) and taking the
.double limit. Equation (F.74) is identical to Eq. (6.32).
In Eq. (F.73) we used the fact that

Vi=V;=-V; (F.75)
and Eq. (F.53). Therefore,
- .., d? d?
(i - V) (- V5) = = (1 85) (15 85) gz = — (- 15) 7 (F76)
ij

iy

F.2.2 Force and torque

According to Egs. (6.26)—(6.32) the total force on particle ¢ can be expressed
as a sum of two contributions, namely

F3% = F3 , + Fig, (F.77)
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because both long-range contributions and sclf-contributions in Egs. (6.27¢)
and (6.32) turn out to be independent of the position of particle i and there-
fore do not contribute to the force. From Eq. (6.27a) it follows that

3(111: = V’JZZ {(ni - 1) B(|ri; + n|, @)
i=1 {n}

— i (rij + n)l ;- (ri + n)} C (Jr; + n|,a)}  (F.78)
where the functions B and C are defined in Egs. (6.28a). Transforming
variables according to r;; — r = r;; + n, noting that V, = V;;, and that

rd
Ve=ra

direct differentiation on the right side of Eq. (F.78) gives

(F.79)

N
B3 = 30 {lmepy)r+ pa (g ) + i (g 1) C (r,0)
j=1 {n}
— (i -7) (- 7)r D (r, @)} (F.80)

where the function D (r, a) is defined as [see Eqs. (6.28a)]
1dC 1d ( 1 dB)

brna) = -2 =t G

= 1_1., [2\2:: (15 + 10a%r? + 4a*r*) exp (—a?r?) + 15erfc (ar)]
(F.81)
The Fourier-space contribution follows from Eq. (6.27b) as
4'r k2 N .
Fg('i’-‘ v k2 (_;Ez') Z Vij (i - k) (u; - k) exp (—ik - 735)
k#0 j=1
(F.82)

where we employed Eq. (6.29). Differentiating in Eq. (F.82) with respect to
7T gives (see Appendix F.1.2 for the parallel derivation in the Coulombic
case)

an K2\ &
Fgg‘,i = (———) Z‘ik (14: - k) (25 - k) exp (—ik - 7i5)
v o k"’ 4a? =
4r 1 K .
= @ g ) Dk (k) (- k)sin (k- 7y) (F83)
k40 i=1
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where the last line is obtained via Eq. (F.54). Finally, using sin (z —y) =
sin x cos y—cos z sin y and the definitions of real and imaginary parts of M (k)
given in Eq. (6.29) we obtain

dm 1 k? —~
F, = eXp ( ——) sin (k - r;) ReM (k)
v pord k2 4a? [ ‘

—cos(k - 1) Im?ﬁ(k)] (i - k) k (F.84)
The torque acting on particle 7 is defined by [140]
T3 = —py x (V,,08) (F.85)

where @%"'i is the energy of particle i. From Egs. (6.27) we realize that (I%‘fi
can he written as a sum of three terms, namely

q’io’)(fi = ‘I’%dn,i + (I)SDdF,i + ‘I’%dm,i (F.86)

and the differentiation is perforimned with respect to p;. Referring back to
Eqgs. (6.26)—(6.32) we realize that

ng,i = TI:;(Iil,i + ng‘,i + Tg?,n,i (F.87)
where
N I
Tah, = —pi X ZZ [;B(r,0) — v (p; - 7)C (r.a)] (F.88a)
j=1 n
k2
k20
x [cos (k - ;) ReM (k) + sin (k - ;) ImM (k)] (F.88b)
4n M
Tl:;?,ll,i = —pi X [2(,+ 1T] (F.88c)

In Eq. (F.88a) we use again the shorthand notation » = r;; + n and r = |r|
as before [sce below Eq. (F.78)].

F.2.3 Stress tensor

As before in Section F.1.2.2 diagonal components of the stress tensor of a
dipolar fluid can be obtained from the relation

o gia, W) (F.89)

¥1.D v T AL 0
2l
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where the ideal-gas contribution T,iﬂ{ is given in Eq. (E.33), invoking again
the grand canonical ensemble for convenience. By analogy with Eq. (F.56)

we have

wed _ OUR _0UBL  OU . oUBle

= - F.90
™= s T @s, | 0s, ' 0s, v=xyorz  (F90)

Based on the same transformation to unit-cube coordinates employed
before [see Eq. (F.57)|, we realize that the dcpendence on s, is buried in
the argument of the functions B and C [see Egs. (6.28a)] and in the factors
Wi - (rij +n) as far as U3, is concerned. Differentiating these terms with
respect to s, it is easy to verify that terms of the form

1

Sy

(i) - &) (15 + n) - €]

arise where p;(;) stands for either p; or p;. Employing also the relation
among the functions B, C, and D [scc Eqs. (6.28a), (F.81)] as well as
Eq. (F.60), it is a simple matter to show that

u 1 N N , o
TADR = ~ou <ZZZ {1 (r- &)

i=1 j=1 {n}
(e 8) (g 7) + (5 &) (-] (75 - 8)} C (1, )
(- m) (s 1) (- &) D (r, a)> (F.91)

where we again transformed variables according to r;; — r = r;; + n and
r=lr|
Turning to the Fourier-space contribution next, we immediately see that

U, contains a factor
11 oxt k?
VE P\ 102

that has already been considered in the derivation of 739 . in Eq. (F.63). We

are then left with a derivative of the function M (k) [see Eq. (6.29)] which
depends on s, because of Eq. (F.66). Introducing

N
Qk) =) (&) (k-&)exp(ik-T,) (F.92)

=1
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one obtains

2T 1 k? 2 1 .
3d 2
Tyy,DF _iﬁ< pord —” exp (—m) { [1 - (—ﬁ + 5‘—2)] (k . eq)

x |M (k)l2 +Q (k) M* (k) + Q" (k) M (k) }> (F.93)

Finally, the long-range contribution to the energy [see Eq. (6.27c)] gives
rise to a stress contribution

I 2n
TyvDLR = ~ 1350 (M?) (F.94)

The reader should appreciate the difference between the previous expression
and the last term on the right side of Eq. (F.71). This difference arises
because, for a dipolar system, M, = Z;li] p; - €, is independent of s,,
whereas for a Coulomb system, M, depends on s, as one can verify from
Eq. (F.69). The diagonal component of the total stress tensor is then ob-
tained by adding the three contributions given in Egs. (F.91), (F.93), and
(F.94) [see Eqgs. (F.89) and (F.90)).

F.3 Slab geometry

F.3.1 Rigorous expressions
F.3.1.1 Point charges

To derive Eq. (6.34) for a system of point charges in slab geometry, we proceed
in a fashion analogous to the one employed for bulk systems in Section 6.2.1
and Appendix F.1. In other words, we divide the original charge density
related to Eq. (6.33)

N
pi(r') =) qi6(< ~ 2)5 (R - R; +my) (F.95)

ny g=1

into three contributions corresponding to a set of screened charges p,m (),
a periodic set of charge clouds screening those original ones p® (r'), and a
self-contribution p§3) (r') describing the interaction of each charge cloud with
itself. We choose the charge clouds to be spherical Gaussians? such that the

28ee Ref. 248 for other choices.
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three contributions of the charge distribution arc

AV () = p(r) - (%)3Z'iqjexp [—a2 (2’—zj)2]

n =1
X exp [-—a2 (R - R; + n;|)2} (F.96a)
0 = (%) S g [ -]
’ VT =1 ’ ’
X exp [—a2 (R - R; + n")z] (F.96b)
AV () = (%):xp [—a2 (2 - zi)2]
X exp [——(1'2 (R — R,)z] (F.96¢)

which is completely analogous to the bulk expressions given in Egs. (6.7),
(6.10a), and (6.10b). respectively. Thus, we can immediately write down
expressions for the potentials related to p_gl) (r") and pgs) (r1) [see Egs. (6.8)
and (6.14)}; that is,

AI
’ erfc(alry; +n
oM (r;) = Z qu |(r_" +Jn| ) (F.97a)
n  j=1 4
OO (r) = —gi 22 (F.97b)

qi \/7—1"
where in Eq. (F.97a), n = (n,0).
However, the potential ®@ (') related to p® (r') differs from its bulk
counterpart [see Eq. (6.14)] because the basic simulation cell of the current
slab system is repeated in only two (of the three) spatial dimensions. Nev-
ertheless, we can still apply our basic strategy detailed in Appendix F.1.1.2
to find the explicit expression for ) (7).
We start by expanding the potential in Fourier space according to

@ (r) = %Zexp [iky - R] / dk, 8@ (k) exp [ik,2] (F.98)
key o0

where ky = (2mmy/sx, 2rmy/sy) are two-dimensional reciprocal lattice vec-
tors (i.e., exp [z'k" -n||] = 1), whereas the vectors k appearing as arguments
of the coefficients ®® (k) are still three-dimensional. Equation (F.98) fol-
lows from its three-dimensional counterpart (F.19b) if we replace in the full



468 Slab geometry

sum 3o, = 3o Dok D0, ... the partial sunmation over the discrete
variable k, by an integration, that is 3, ... — (Ak,)™' [ dk,... with
Ak, = 2m/s,. This is consistent with viewing the system in slab geome-
try as threc~dimensional with a basic cell becoming infinitely large in the
z-direction (i.c., s, — 00) such that Ak, — 0.

The Fourier coefficients ®® (k) appearing in Eq. (F.98) are linked to the
corresponding coefficients of the charge density via the Fourier-transformed
Laplace equation [see Eq. (F.21))

) = —ik 1) 2 (1)
1 k + k2 :
= P (— Ve ) qu exp (—ik,z;) exp (—ik) - R;)

(F.99)

where we have inserted Eq. (F.96b) to obtain the second line of Eq. (F.99).
Combining Egs. (F.99) and (F.21) and inserting the resulting Fourier coeffi-
cients ® (k) into the expansion in Eq. (F.98), we find

o9 (r) = —ZZq]exp ik - (R - R)) ]/dk

)'—1 k“#o
ki + k?
X exp | —— 5+ ik, (2 — 2;)| + k,,-»o (z — 2;) (F.100)

where the sum in the first line is restricted to nonzero wavevectors ky and
(I);::,)—»o contains contributions from the long-wavelength limit (sce below). In
Eq. (F.100), the integral over the continuous variable k, gives [248]

ki + k2
/ exp [ VeI ik, (2 — zj)} = 2Lk“f (ky, z — zj,a)

- O

(F.101)
where the function f (k, z — zj, @) has been defined in Eq. (6.36).

From Eqgs. (F.100) and (F.101) it follows that <I>( ky—0 (z — z;) is defined
as

(Df")—oo( Z]) = 7 Z llln f k"’ zj,a) (F102)

Thus, we consider the behavior of the function f(kj,z — 2z;,a) for small
wavenumbers k). To this end we perform a Taylor expansion of both the
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exponentials and the complementary crror functions appearing on the right
side of Eq. (6.36). In this expansion, the lowest-order Taylor coefficients of
erfc (y) = 1 — erf (y) follow immediately from Eq. (F.49). We also note the
relation erf (—y) = —erf (y), which follows from the definition of the error
function in Eq. (F.9). Expanding f (kj,z — z;,) [see Eq. (6.36)] around
ky = 0, we obtain

f (k“,z - 2j, a) = 2-2ky(z— z)erf|a(z — 2;)]
-0\2/771;" exp [—a® (z — Zj)z] +0 (kﬁ) (F.103)

where we retain only linear terms in k. Combining the previous expression
with Eq. (F.102) yields

o (z=2) = A Zq’ 0 2k|| {2 -2k (z = ) erf [a (z = 2)]

—E——ﬁk" exp [—a® (2 — zj)z] +0 (k%)} (F.104)

Inspecting the right side of Eq. (F.104) we see that the first term in paren-
theses is constant. This term is irrelevant because of global charge neutraliy
(ie, SN, ¢ = 0). We therefore obtain from Egs. (F.100) and (F.104) as a
final expression for the potential from the set of Gaussians

k (R- Rj){ .
&2 (r) = _Z Z exp Ll N - J)] J(ky, 2, @)
= 1k.|,;eo i
2\/_ exp[—a?®(z — z;)?]
Z % e
or &
—_Z ‘ (z — z;)erfla(z — 2;)) (F.105)
The corresponding contribution to the energy is
1 &
2d _ B2 (.
U&= 2§q,<l> (ri) (F.106)

which coincides with Eq. (6.35).
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F.3.1.2 Point dipoles

The rigorous Ewald sum for a slab-like system of point dipoles follows from
the corresponding expression for Coulombic systems [see Egs. (6.34) and
(6.35)]. The derivation proceeds in a fashion similar to the one already
discussed for bulk systems in Section 6.2.2. That is, we replace the charges
¢; and q; in the cuergy expressions by the operators (p, - V;) and (p; - V).
As a result,

U = UM + Ut + Ue (F.107)

where both real-space and self-part have the same form as in the three-
dimensional case and are thus given by Egs. (6.27a) and (6.32), respectively.

To evaluate the Fourier part, we start by considering the first sum on
the right side of Eq. (6.35) involving nonzero wavevectors kj # 0. For each
pair i and j and each wavevector kjj, the replacement of the charge g; by the
operator (u; - V;) yields

exp (tk) - Ryj
(“j ’ VJ) #A:__]Zf (k”, Z,‘j,a)
: exp (iky - Ry;)
= —i(p; k) “—(—k"'—Jf (ki 245, @)
. exp (iky - R;; :
+ () - &) ‘_‘l_k—zll"‘—.,—)d (k||= Zij, Ot) (F.108)
where Rij = R; — R;, 2 = z — zj, the function [(ky, zij, o) is defined in

Eq. (6.36), and
d (ky, zi,0) = —-a—f (ky, zij, ) = kyexp (—kyz;) erfe LI azi;
1> <ij> bz, ll» i3> f | <ij %0 ij

Ky
ky exp (k“:ij) erfc (EZ + azij)
(F.109)

Now we need to differentiate Eq. (F.108) one more time because of the second
operator (u; - V;) replacing ¢; in the original energy expression in Eq. (6.35),
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which yields

~exp (iky - R
(i - Vi) (15 - V) ——Lk—ll'l—-Jlf (ky, 25, @)
exp (ik) - Ry;
= (wi-ky) (5 Ry) —%—QI (k. zij. )
. - exp (tk) - Ry;
+i(pi - &) (15 - Koy) ——(—Tll"—;)d (kys zijs @)
) N exp (ik) - R;;
+i (s - &) (i - Ky) ——(k:_ld (ky, 25, @)
~ . exp (iky - R;;
+ (ﬂ'i . ez) (I"j : ez) —(#Qe (k”, Zij, a) (F.llO)
where we have also used [see Eq. (F.109)]
i) ]
57 Rz a) = —5—f (ky, 25, @) = —d (y, 2, ) (F.111)
£ <j
and the function
0
(&4 (k", Z,'j, (l) = ad (k", Z,;j, a)

dak) k;‘l’ -
- E P (‘m m
k
_kﬁ [exp (k"zij) erfe (-2_:'1 + az;j)
k
+ exp (—kyz;) erfc (-2-L - az,-,-)] (F.112)
a

Keeping in mind that the total Fourier energy involves a sum over all nonzero
wavevectors kj # 0 [see Eq. (6.35)], we may employ symmetry arguments to
simplify the above expressions. For example, both (pai - k”) (1; - k”) and
the function [ (kj,z;, @) appearing on the first line of the right side of
Eq. (F.110) are invariant against inversion of the wavevectors, that is to say, a
replacement of kj — by —ky. Therefore, only the real part of exp (ik“ . R,i,-)
i.e., cos (kj - Ri;)] will contribute to the sun over all wavevectors. The
same is true for the fourth term involving the product (p; - €;) (p; - €;) and
the function e(k, z;;, a), which is again invariant against inversion of kj.
However, the second and third terms on the right side of Eq. (F.110) are
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linear in kj and thercfore change sign upon inversion of the wavevector. As
a consequence, we have

03 (&) (s Fey) + (18- &) (e - By)

by #0
xf‘ﬂ(_"%“__@d (ky, 215, @)
I
= =3 (G- &) (- k) + (15 - &) (s Foy)]
key#0
, Sin (ziﬂ - R;j) d (ky, zij, @) (F.113)
“l

We now consider the remaining (second) sum in the Coulomb Fourier
energy [see the right side of Eq. (6.35)] involving a double sum over pairs of
dipoles i and j. Replacing the products ¢; and q; by the operators (p; - V;)
and (p; - V;), respectively, as before yields

exp (—a?2%

(- V) (- V) =+ Vet (o)

2,2
~ ~\ &XP i
= (pi- &) (B;- &) %
X (—-4azz — 2a + 40’z ,J)
= —2aexp (—a’z}) (i ez)(ﬂu - &) (F.114)

Finally, putting all this together we arrive at the rigorous expression for the

Fourier-space contribution to the total configurational energy of the dipolar
system in slab geometry, namely

- cos (ky - Ryj
vy = NZZZ{ pi - ky) ( Mj'ku)#,!"—l)-f(kn’zﬁ,a)
i=1 j=1 ky#0

— [(mi - &) (m - Ry) + (w25 - &) (s - Ky

() g 1 2500
N

cos (k :
+ (I“t ea) (I—"J z) ——(—’l‘_l'l—Ri)‘P (k“, Zije a)}

\/7—1; N N
+TZZ aexp (—a®2}) (i - &) (1 - &) (F.115)
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F.3.2 Force, torque, and stress in systems with slab
geometry

F.3.2.1 Point charges

For ionic systems, the total Coulomb force acting on particle 7 within the
slab-adapted three-dimensional Ewald sum [see Eq. (6.40)] can be cast as

Fg = Foiob 4+ Foeb 4 Fgb (F.116)

where the first two contributions are identical to the corresponding ones in
a truly three-dimensional system and are thus given by Eqs. (F.52a) and
(F.52b), respectively. The last term in Eq. (F.116) arises from the correction
term in the Ewald energy, Uc [see Eq. (6.39)]. One obtains

47[' in ~
Fe = —q quez = —g 3 ME. (F.117)

Regarding the stress tensor of the system, the (Coulomb) components
corresponding to the two orthogonal directions parallel to the walls (i.e.,
v = z,y) can be calculated exactly as in the three-dimensional case (see
Appendix F.1.2.2). On the other hand, the normal component (y = 2) is
given by

slab slab slab slab
TC zz — TCR.zz + TCF 22 + TC .C,22Z (F118)

where only the real-space part 7835, = 733 ,, [sec Eq. (F.58)].

To cvaluate the Fourier-space contribution, 78g%,, we note that, because
of the artificial elongation of the basis cell in z-direction, neither the wavevec-
tors involved in the Fourier contribution to the Ewald energy [see Eq. (6.18)
with the wavevectors given in Eq. (6.41)] nor the volume V depend on s,.
The vectors r; = (x;, ¥i, $.2;), on the other hand, depend on s, if we employ

scaled z-coordinates as indicated. Differentiation thus yields

w1 JOURN 1 lgndm K
For T Ao\ Vs, [ T T 2n, Vg R P\ 12
x (B(k)@ (k +b‘(k)a(lc)> (F.119)

where the quantity a(k) is defined in Eq. (6.19) and

N
Z ik, exp (—ik - ;) (F.120)
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Finally, as the cnergy correction term given in Eq. (6.39) depends on s,
only through the z-components of the position vectors r;, the expression for
the corresponding stress in the direction normal to the confining substrates
follows as

o N N
1 aUc 1 4n
‘ezr — 7\ o | T /17 Q52525 F.121
TC. B AZO < 6Sz > AZOSZ ‘// Z Z q (I] z] ( i )

i=1 j=1

F.3.2.2 Point dipoles

For dipolar particles, all force contributions within the slab-adapted three-
dimensional Ewald sum coincide with those for truly three-dimensional sys-
tems discussed in Appendix F.2.2. This result arises because the correction
term to the total dipolar energy [see Eqs. (6.44) and (6.43)] is independent
of particle positions. There is, however, a contribution to the total torque
that we need to consider separately. The total torque can be cast as

T3y = Tohs + Tofs + Toi; (F122)

where Tpa" and T3g" are given by the bulk expressions [see Eqs. (F.88)],
whereas

T = —p; x (47/711\4,@) (F.123)

Turning next to the stress tensor we realize that its normal component
within the slab-adapted three-dimensional Ewald formalism can be written
as a sum of two contributions, namely

slab __ _slab slab
TD,zz = DR.zz + 7-DF,zz (F124)

because the correction term to the total configurational potential energy in
Eq. (6.43) does not depend on s, (note that the V is the volume of the
artificial cell including the vacuum space in the 2-direction). The real-space
part on the right side of Eq. (F.124) coincides with its threc-dimensional
analog given in Eq. (F.91). The Fourier part, ng?m, can be derived along
the same lines already discussed below Eq. (F.118). We finally obtain with

little ado the expression
1 /oUH 1 1 dn k2
slab _ _° CF - — o -
TDF 2z Azﬂ < aﬁ'z > 2AZO’SZ Vv = k2 ¢Xp ( 40(2)
x (17 (k) M* (k) + V* (k) Ei(k))
(F.125)
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where the quantity M (k) is defined in Eq. (6.29) and

N
V (k) = Z (i - k) ik,z exp (—ik - ;) (F.126)

i=1

F.3.3 Metallic substrates
F.3.3.1 Point charges

Here we derive Eq. (6.66) linking the energy of a slab-like system of point
charges between metallic walls to that of an extended system with three-
dimensional periodicity.

The basic cell of the extended system contains N charges in the original
cell plus the first set of images; that is, the N images resulting from the
presence of just the lower wall. Positions and charges of these image particles
arethen given by the relations [see Eq. (6.59) with n, = 0]

rTauN = Ti—2z€, i=1,...,N (F.127a)
qi+N = —G;. 1= 1,...,N (F127b)

Replicating the extended basic cell periodically in all three spatial directions,
the total encrgy of the resulting system is given by

2N 2N
1 1] (7
3d,ex=__§ :E :E : q:iq; F.12
v 2 =1 j=1 W Iri + 7 (F128)

where the lattice vectors 7@ are specified in Eq. (6.64) and the prime at the
sum indicates that the term related to i = j is omitted for @ = 0.
We now split the double sum in Eq. (F.128) into four terms containing

1. Particle particle contributions Y~ ;V=1,

. I N 2N
2. Image image contributions Z?=N+l Z]‘.—.N+l’

3. Particle image contributions YN, f’: N1 and

4. Image particle contributions 37y, Z?’;l
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Terns 1 and 2 give the same result as one may varify from the relations

GianGiaNn = (—a)(—4qj) = ¢ig; (F.129a)
[Pisngen + T = |1y + T — 226,

il

\/(.’L'ij + anx)2 + ('y,;j + Syﬂy)z + (ZSlez - Z,;j)z

= \ﬂ%’ + 8xm)” + (s + symy)” + (25 — 28,m5)”
= |7'ij +7 - 4827128z| (F129b)

and the fact that we sum in Eq. (F.128) over an infinite set of lattice vectors
{m} such that the term 4s,n,€, on the right side of Eqs. (F.129) is irrele-
vant. By similar reasoning, terms 3 and 4 in the above decomposition give
equivalent results because of

%%i+N = —4iqj = Gi+NG; (F.130a)
Iri,j+N + ﬁl = |1‘.‘j + 2zj€z + ﬁl

- \/(zi,- + s,(n,,()2 + (v + sy'n.,,)2 + (zi+ 2 + 2sznz)2

= \/(.'c,-j + 5em) + (i + 8yny)° + (=2 — 2 — 28.1,)°
Irien + T — 4s,1,€, (F.130b)

Putting all this together, Eq. (F.128) can be rewritten as
N N

Lrgd,exz Z E’ 4:9; 9:9; (F.131)

I'I‘gj + ﬁ' B |1‘,'J' + 22_,62 + ﬁl

i=1 j=1

We therefore see that U™ in Eq. (F.131) for a three-dimensional system
with the extended basis cell is indeed exactly twice the energy Uc given in
Eq. (6.65).

F.3.3.2 Point dipoles

To derive Eq. (6.68) for the total energy of an infinite slab of dipolar particles
between metallic substrates, we go one step back and consider a situation
where the central cell comprising N particles has not yet been replicated in
the - and y-directions. The corresponding energy can be written as

N
O = —5 i (B + B) (F.132)

i=1
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where EFf and E@® arc the clectrostatic fields arising from the inages of
particle i, on the one hand, and from the other particles 7 and their images,
on the other hand. Using short-hand notation

3rij (B - Ty) 1y
ei (1j,75) = —]-(—Tsi'—J) - (F.133)

ij i)

the fields E*f and E&® follow as
[~ o0
EX = Y e i+ 2ms,8)+ Y el i+ 2(ns, — %) &)
| Np=—o0 Ng=—00

(F.134a)

I

N oo
Edis Z {ei (1j,15) + Z' €; (1, 7 + 2n,5,€,)

J# Ny=—00

+ ) e[+ 2 (nes, — 2) &) } (F.134b)

ng=—00

where the asterisk attached to the sums indicates that terms corresponding
to n, = 0 have been omitted. '

Replicating the original cell now in the z- and y- directions essentially
implies that the sums over the integer variable n, in Eq. (F.134a) have
to be replaced by three-dimensional lattice sums over the vectors T intro-
duced in Eq. (6.64) [sce the analogous procedure for charges described below
Eq. (6.62a)]. Inserting the resulting field expressions into Eq. (F.132) and
summarizing, one obtains Eq. (6.68) after some tedious but straightforward
algebraic manipulations.

As a next step we now have to prove Eq. (6.69) where we again proceed as
before in the Coulombic case. The basic cell of the extended dipolar system
contains N dipoles in the original cell plus the first set of images, which are
the N images resulting from the presence of just the lower wall. Positions
and orientations of these N image particles are then given by

TitsN = T§— 22,‘61, 1= 1, ey N (F135a)
—Hiz

pin = | -piy |, i=1,...,N (F.135b)
Hiz

Replicating the basic cell periodically in all three spatial directions, we obtain
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for the total configurational potential energy the expression

2N 2N _ _
YD DY { Wi glw (ry +|:;)l+[;;|-5(r.j+n)l}

i=1 j=1 7 '7'11+n|
(F.136)

where the lattice vectors 7 are specified in Eq. (6.64) and the prime at the
lattice sum indicates that i = j is omitted for # = (). Separating now the
double sum in Eq. (F.136) into

1. Particle particle contributions 35 | ZJ_,,

2. Image image contributions Z —N+1 Z,— N4l

3. Particle image contributions 3" | 52 i=n+1> and

4. Image particle contributions Zf:N + Z =1

one finds that terms 1 and 2 give the same result after performing the lattice
sum. Indeed, one can easily show that

HigN - BjeN = i (F.137a)
'ri+N,j+N + ﬁl = I"'.,'j +7 - 4nzsz€z| (F.137b)

where Eq. (F.137b) is identical with Eq. (F.129b) and

[ern - (Pisngan + )] (Ban - (Tianjen + 7))
(i - (i) + T8 — 4n,5,€,)] [p,_, (rij + T — 4n,s,€,)]  (F.138)

where we recall that the terms with 4n,s,€, are irrelevant because we sum
over an infinite set of lattice vectors in Eq. (F.136). Moreover, terms 3 and 4
in the above decomposition are also equivalent because of the relations [see
also Eq. (F.130b)]

i pjan = HisN (F.139a)
|ri,j+N + ﬁl = Iri+N.j + 7T 4n,zszEz| (F139b)

and

(i (rijan + 7)) (Ban - (Tijan + 7))
[Birn - (Pisng + T — 41,8,)] (5 - (Tidn + T — 4n,€,)] (F.140)

We therefore sec that the energy Up®™ [see Eq. (F.136)] is indeed exactly
twice the energy Up given in Eq. (6. 68)





