
Appendix F 

Mathematical aspects of Ewald 
sumrnat ion 

F. 1 Three-dimensional Coulombic systems 

F.l.l 
F. 1.1.1 Real-space contribution 

To derivc Eq. (6.8) for tho rod-spaw part, of tho Ewald potcnt#ial, wc start 
from Eq. (6.7) for the set of scrcciied charges axid apply Poissori’s formula 
[see Eq. (6.3)]. This gives 

Energy contributions in Ewald formulation 

where the first term in parentlieses is the usual Coulomb potent>ial and 

(F.2) 

is the potential due to a Gaussian charge cloud (total charge -q j )  located 
at T~ - n [see Eq. (6.5)]. To evaluat.e the integral on the far right side of 
Eq. (F.2), we transform variables according to T’ -+ R = T’ - rj + n, which 
givw 

In Eq. (F.3) the integration is carried out over the entire three-dimensional 
space. 
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448 Three-dimensional Coulombic systems 

Thc inost coiivwicnt way of doing this is to trarisforrn to spherical coor- 
dinates R = lRl, 8, and (9, where 0 and q are the polar and azimuthal angles, 
respectively, associated with the orientation of R in a spacefixed coordinate 
system. We may split the integral over R into two contributions from regions 
characterized by the inequalities 

(F.4a) 

(F.4b) 

This separation of the integral can be effected by using an expansion in terms 
of spherical harmonics {y,tn}[258) valid for arbitrary vectors TI and r2'; that 
is, 

where r9i and cp, are polar and azimuthal angles associated with vectors rl 
and ~ 2 ,  respcctivcly. Notkc that thc complex conjugate q:n = &,-m. In 
Eq. (F.5), T< ( r , )  is the magnilade of the smaller (larger) vector of the pair 
r1 and r2. Setting T I  = R and 7 3  = rU + n, and inserting Eq. (F.5) into 
Eq. (F.3), one realizes that oiily terms characterized by 1 = m = 0 (with 
Yo0 = l/&) survive because [258] 

2n 1 

(F.6) 

Equation (F.3) can therefore be rewritten as 

where the first integral appearing in brackets can he recast by wing 
2 z 

2a aa " I  dRR exp (-a 2 2  R ) = dRexp (-cr2R2) 

S 2  n 0 

- - --- a [ 1 [duexp ( -u2)]  
2 a a a  a 

'See Eq. (3.70) in Ref. 242. 



Mathematical aspects of Ewald summation 449 

whcrc we have employed tlic defiiiitioii of ~ l i c  crror functiori 111, 37, 3301, 

(F.9) 

to arrive at the third line of E.1. (F.8). The remaining part,ial derivative can 
be carried out by using 

(F.lO) 

which follows immediately from the Eq. (F.9) and Leibniz’s rule for t,he dif- 
ferentiation of a parameter integral [ 11, 330). One finally obtains 

The second integral in Eq. (F.7) gives 

exp ( -a2x2)  2 2  T d R g e x p  ( -a2R2)  = - 1 dRRexp (-a R ) = -- 
2 t r2  2 u 2  

2 X 

(F.12) 
Inserting Eqs. (F.ll) and (F.12) into Eq. (F.7). and replacing z by l r i j  + n1 
the elech-ostatic potential at ri due to one Gaussian located atb rj - n # ~i 
reduces to 

(F.13) 

Finally, inserting Eq. (F.13) into our initial Eq. (F.l)  a.nd using the identity 

1 - erf (9) = erfc (y) (F.14) 

wc eventually arrive ata Eq. (6.8). 

F.1.1.2 

To evaluate the electrostatic potential ck(2)(r) [see Eq. (6.11)] from the peri- 
odic Gaussian charge distribution P ( ~ ) ( T )  [see Eq. (6.10a)], it is most conve- 
nient, to start from Laplace’s equation [242], which says that 

Fourier-space contribution for nonzero wavevectors 

ACp(2)(~) = - 4 ~ p ( ~ ) ( ~ )  (F.15) 
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where A = V . V is t h  Laplacc operator. The Laplacc cquation is cqiiiva- 
lent to Poisson's equation [see Eq. (6.3)) and follows directly from the first 
Maxwell equation of electrostatics, 

v . E(T) = 47rp(r) (F. 16) 

using the definition 
E ( r )  = -V@(T) (F.17) 

for the electric field E. Roin Eq. (F.15) it is evident that the Laplace equa- 
tion is a second-order differential equation that can be solved convetiiently 
in Fourier spacc. To this (xidl w c  cxparitl tlic cliarge distribution and the 
corresponding potential according to the (discrete) Fourier series 

where k is a vector of thca reciprocal lattice related to the set of real-spacc 
lattice vectors {n} [see text. above J3q. (6.11)], and the quantities g2) (k) and 
6(2) (k) are Fourier coefficients of the charge distribution and the potential. 
rmpcctivcly. Thcisc Foiiricr rocfficicnt,s can bc obtaincd from the corrcspond- 
irig rcal-space quantities via 

g2) (k) = / drp(2) ( T )  exp ( - ik  . T )  
Ky, 

(F.19a) 

(F. 19b) 

where KF is the volunie of thc mtzw system consisting of the basic cell plus 
its periodic replicas. Thus, &,, = Vnce,l, where n,l1 is the total number of 
cells. 

Inserting thc cxpnnsions (F.18) into Eq. (F.15), wc havc 

(F.20) 
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We now rccall that. Fouricr expalisions (F. 18) are orthogorial cxparisioiis (sce, 
e.g., Ref. 242). It follows that, each summand on the second line of Eq. (F.20) 
has to be equal to its counterpart, on the third line so that 

(F.21) 

which is Laplace’s equation in Fourier space. Thus, given t8he Fourier coeffi- 
cients of the charge distribution (see below): we can easily calculate from 
Eq. (F.21) all Fourier coefficients of the corresponding potential, except 
its contrihiition at, k = 0, which will he disciissed in the siibsequent Ap- 
pciiclix F. 1.1.3. Replacing in Eq. (F. lab), 6(2) (k) bv tfic expression givcri in 
E ~ J .  (F.21) permits 11s to calculate t,he desired potential a(*) ( r ) .  

Having in mind this strategy we start by evaluating the Fourier CCF 

efficients of p(2)(k) .  Inserting the explicit expression for p @ ) ( r )  given in 
Eq. (6.10~~) into Eq. (F.l9a), we have 

3 N  $”(k)>= 1 (5) C C q j S d c e x p [ - i k . r - a 2 ( r - r j + n ) 2 ]  

{n} j=l 

(F.22) 
The spatial integral on the right side is a standard (three-dimensional) Gaus- 
sian intcgal and can be carried oiit. analytically [330]. Using, in addition, 
the relatioii exp ( - ik  . n) = 1 (wliicli defines k as a reciprocal lattice vector), 
one finds 

N 
1 
v - - - exp (-5) c qj exp (-ik rj) 

j=l 

where the second line has been obtained by employing the relation 
1 -.  1 1 

(F.23) 

(F.24) 

Inserting Eq. (F.23) iiit.0 Eq. (F.21) t,heii yields 

Finally, inserting the coefficients (F.25) into Eq. (F.18b) together with T = ~i 

gives the first term on the right side of Eq. (6.11), which is the contribution 
to the electrostatic potential (r i ) .  The missing “long-range” term related 
to the special case k = 0 is discussed in the subsequent Appendix F.1.1.3. 
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F. 1.1.3 Long-range contribution 

Evaluation of the long-range part of the electrostatic potential, @fi(ri), 
which results from the long-wavelength limit (k = 0) of the correspond- 
ing Fourier expansion! is the “trickiest.” part) in the derivation of the Ewald 
expression for tohe alsctrostatic potential of a Coulombir system. Thc prok  
lem is iriirncdiatcly apparciit frorii Laplacc’s cquation iii E’ouricr space [see 
Eq. (F.21)] which, when solved for $’) (k) directly at k = 0, yields a di- 
vergent result because of the factor l/k2. Fortunately, we are not really 
interested in the value of %c2) (k) for k = 0. To realize the irrelevance of the 
value of 

- 
(k) at, k = 0, consider thc corresponding cncrgy corit2ribut8ion 

where [see Eq. (F.19b)l 

(F.26) 

(F.27) 

is the spatial integral over the potential which must be independent of (par- 
ticle) index j .  Now recall that we are dealing with a globally neutral system, 
rrieauirig that XI=, 9j = 0. Consequently, (0 )  vmislics regardless of the 

actual value of $2) (0). 
Thus, in the following discussion we focus on the limit k + 0 of the 

full product %(2) (k) axp (ik . r )  appearing in Eq. (F.18b). More cxpliritly, 
given that wc arc dealing with mi isotropic systcin whcrc thc direction of the 
wavevector k should not mat,ter, we consider the angleaveraged quantity 

aLn ( r )  = - lini J d cos 8, J dVk6(’) ( I C )  exp ( ik . T )  

N 

1 2n 
(2 )  1 

4lr k-0 
- 1  0 

duk&(’) (k) exp (ik . r) 
4lr k-0 

(F.28) 

where 8k and q k  are the angles specifying the orientation of k and wk = 

To cvaluatc t.hc riglit, sidc of J3q. (F.28) wc coiisidcbr first thc chargcL 
density coefficients fi(2)(k) that. give rise t.0 the potential @(’) for small, but 
nonvanishing k. Expanding these coefficients in a Taylor series around k = 0 
and using Laplare’s equation [see Eq. (F.21)], we obtain 

( o k ~  (Pk). 

I 41r 1 
(k) = - [g2)lo -I- k . V k  i;’2)(k)10 + j k k .  V k V k  g2)(k)I0 + 0 (k3)] 

k2 
(F.29) 
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we riow considcr the lowest-order expansion coc:fficicrits of F2) ( I C )  appcaring 
on the right side of Eq. (F.29). Using the general definition (F.19a) for the 
Fourier coefficients and performing the required derivatives, we obtain 

(F.30a) 

The quantities on the right, side of Eqs. (F.30) have a simple and lucid 
physical interpretation in terms of the midtipole moments of the charge dis- 
tribution p(2) ( T )  [242]. Indeed, Q@) is nothing but the monopole moment, 
P(') is the dipole moment, and the second-rank teilsor A(2) is related closely 
to the quadrupole moment. Explicit expressions for these quantities can be 
easily obtained by inscrtirig Eq. (6.lOa) into Eqs. (F.30) and carrying out the 
(Gaussian) spatial integrals. For the monopole, this procedure gives 

(F.31) 

where we used Eq. (F.24). Thus, the riionopole ~iiome~it~ vanishes due to the 
global charge neutrality of the system. The dipole moment of t.he charge 
distribution ~ ( ~ ) ( r )  coincides with that, of the original delta-like distribution 
in Eq. (6.4); that is, 

M 
v 

N 
1 

{n) j=1  

(F.32) 

In writing the last member of Eq. (F.32) we have used the definition M = 

Cy!, q,rj for the total dipole monient of the central cell aiid the fact that 
each replicated cell has exactly the same total dipole moment. Using similar 
arguments we obtain for the cartesiari components (A(2)),l (k? b = x, y, or z) 
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of thc sccond-rank tcrisor A(2), 

1 
V 

= - (D(2))k, (F.33) 

We proceed by inserting the nonvanishing multipole moments defined in 
Eqs. (F.30)-(F.33) into the expansion in Eq. (F.29), which gives 

27r 4n 
k2V k2 V 

(F.34) $(2) (k) = -2-k. M - -kD(')k + 0 (k) 

As we emphasized before we are interested in the long-wavelength limit of 
g(2) (k) times the phase factm cxp (ik . T ) .  Expanding the l a t h  in a Taylor 
series around k = 0, that is 

(F.35) 
1 
2 

exp (ik . r )  = 1 + ik T - - (k . T ) ~  + o (k3)  

and combining this expansioii with Eq. (F.34), we obtain 

4n 2T 
= - i - k .  M - -kD(2)k 

k2 V k2 V 
6(2) (k) exp (ik . T )  

4a 2n 
k2 V k2 V 

+-(k * T )  (k . M )  - i (k 1 T )  -kD(2)k 

2a 

(F.3G) 

We now consider separately the terms on the right side of l3q. (F.36), focus- 
ing on the question whether they contribute to the desired (angle-averaged) 
potential ( T )  [defined in Eq. (F.28)]. The first. t,erm depends on l / k  and 
may therefore seem to diverge as we take the limit k - 0. However, as this 
first term also contains k . M .  it vanishes already €or nonvanishing k because 
of the angle average in Eq. (F.28). To see this result, we note that the scalar 
product of two arbitrary unit vectors iz and b can be expressed in terms of 
spherical harmonics as [258) 

(F.37) 
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Thcreforc, 

Jdwkk. M = k [MI 6 Jdw*Y;, (Ldk) Ylm (wM) = 0, (F.38) 
m=-1 

3 

where we have also used Eq. (F.6). 
The next term on the right. side of Eq. (F.36) is constant in I; and involves 

the product kD(2)k, which does not immediately vanish if averaged over 
orientations. Nevertheless, we can safely neglect this term. The reason is that 
it is independent of the position of particle i, with the immediate consequence 
that the corrwponding energy contrihiition vanishes dire to thc global charge 
neutrality of the systeni [see text below Eq. (F.26)]. 

The third term on the right side of Eq. (F.36) contains the product, 
(k . r) (k . M). It has an explicit, positional dependence even after perform- 
ing the orientational average. Indeed, expanding both scalar products ac- 
cording to Eq. (F.37) and using the orthogonality of spherical harmonics 
given by [258] 

(F.39) 

we find 

4lr 
3 

= - r . M  (F.40) 

where the last line has been ohtairied by using Eq. (F.37) in reverse direction. 
The subsequent terms on the right side of Eq. (F.36) can be ignored 

because they are at least proportional to k arid therefore vanish in the limit 
k + 0. Thus, the potential @i:i ( r )  reduces to [see Eq. (F.28)] 

(F.41) 

The above expression for the long-range part of the electrostatic potential is 
consistent with a well-known result from macroscopic electrostatics regarding 
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the average electric field irisidc a largc sphcrc coiitaining an (arbitrary) charge 
distribution. This field is given hy [242] 

- 4lr E=--p 
3 

(F.42) 

where P is the polarization of the sphere. Clearly, F is independent of the 
radius of the sphere. Moreover, it is constant within the sphere, implying 
that the corresponding electrostatic potential is given by 

- 4x 
3 

* ( r )  - - r . F -  - r . P  (F.33) 

Wc: iiow recall that our systeiii is rcprmmtctl by one unit cell that, is replicatcd 
in all three spatial directions. Thus, we can indeed take our system to be 
a (macroscopically) large sphere. As a consequence, the quantity P ca.n be 
identified with the quantity P(*)/C',,, = M / V  appearing in Eqs. (F.30b) 
arid (F.32). We therefore conclude that t,he poteiitial m(r) is identical with 

The above considerations are useful because they permit one Lo under- 
stand from a macroscopic perspective why a long-range contribution to the 
electrostatic potential should arise. Moreover, they are particularly helpful 
because they indicate a strategy to introduce different boundary conditions 
i1it.o the Ewald summation technique. Indeed, the physical picture to  which 
Eqs. (F.41 )-(F.43) corrcspond is that thc (macroscopically) largc! spharc! is 
surroundcd by a V~CUUIII. In this cwc, any polarizatiori in tlic splicrc: will 
generate surface charges a t  t,he interface between the sphere and the vacuum, 
and these charges in turn generat,e the average (or depolarization) field given 
in Eq. (F.42). If: on the other hand, the sphere is surrounded by a dielec- 
tricum with dielectric constant 8,  the average field inside the sphere has to 
be corrected by tlie so-called reaction field [331], 

long-range potential QLR (2) ( r )  given in Eq. (F:41). 

2 (d - 1) 47r 
-P  

2c'+ 1 3 ERF = (F.44) 

which, as expected, vanishes for the special case 6' = 1 (i.e., in the vacuuiii). 
Combining Eqs. (F.42) and (F.44), the total average field inside the sphere 
thcn hrcomcs 

(F.45) 

Inserting Eq. (F.45) into Eq. (F.43) and taking r = ri, one obtains the final 
expression for the long-range contribution of the electrostatic potential given 
in Eq. (6.12). 
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F. 1.1.4 Self-contribution 

The self-part of the Ewald electrostatic potential given in Eq. (6.14) can be 
derived in a fashion similar to our derivation of the real-space contribution 
in Appendix F . l . l . l .  Starting from Poisson's forniula [see Eq. (6.3)) and 
inserting Eq. (&lob) for thc charge dansitv p(3) ( T I ) ,  wa have 

The threedimensional integral on the far right side of Eq. (F.46) can be 
evaluated bv transforming variables according to T' 4 R = T' - r, followed 
by a transformation to  polar coordinates. This gives 13301 

(F.47) 

which can be easily be evaluated in closed form to give Eq. (6.14). 
Finally, it seems worth noting that the self-part can also be derived di- 

rectly from Eq. (F.13) rcprcscritiiig thc potmtial (Pj,,, (ri) caused by a Gaus- 
sian located at, rj - n # ri. Indeed, considering @j,n at  n = 0, one obtains 

2a 2 3 2  

J;r 3 f i  
- - -0 rij + 0 (r:) 

erf (arij) 
- lim qi 

T l j - + 0  Ti j Tij'0 

2a (6.14) (3) = -91- - cp (Ti)  
fi 

(F.48) 

ill thc limit rij + 0 whcrc we havc used the first few terms iri i\ Taylor 
expansion of the error function erf (x) around z = 0 given by 

2 2 
erf (z) = -z - -x3 + ~ ( 2 )  

J;; 3J;; 
(F.49) 

F.1.2 Force and stress tensor components 

F.1.2.1 Force components 

Based on Eqs. (6.15)-(6.17b) we can also dcrivc: thc: corrcspotiding cxprcs 
sions for the force acting 011 particle i ,  

F$ = -q*Vt@ ( ~ z )  (F.50) 

Because of Eqs. (6.16a) and (6.17a) we can split the total force into a sum 
of three individual contributions, namely 

F g  = FZ.i + F%,* + Fc"dLR,, (F.51) 
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The reader should rcalixc that thc sclf-part rriakcs 110 contribution bccausc 
the summand in Eq. (6.17h) is independent of the coordinates of particle 
i. Considering the individual contributions to thc total force separately, we 
obtain after straightforward differentiation 

(F.52a) 

(F.52~) 
4n9jT-j 4 n M  " j=l  

I =  -qi IT (2€' + 1) 
FEni = -q,V, rj.C v (2d + 1) 

In writing h s .  (F.52a) and (F.52b) we have taken into account that the 
operator Vi appearing in the original force expression [see &. (F.50)] can 
be replaced by its counterpart Vij with respect to the distance vector r i j  = 
ri - rj whcrc, of coiirsc, 

(F.53) 

aid ~ i j  = Irijl also hold. In deriving Eq. (F.52a) we also used Eqs. (F.lO) 
and (F.14). Moreover, the last line of Eq. (F.52b) has been obtained using 

. 

ikcxp(-ik.r,,) = ikcos(k.r i j )  + ks in (k . r i j )  (F.54) 

where the cosine term (coiitrary to sine term) changes sign upon inversion, 
that is, k -, -k, and therefore vanishes in the sum over all wavevectors. 
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F.1.2.2 Stress tensor components 

By analogy wit8h Appendix E.3 we derive molecular expressions for various 
(diagonal) components of the stress tensor rTr (y = x, y, or z) by realizing 
that we may write 

(F.55) 

in the grand canonical ensemble where r$ is given in Eq. (E.33). From the 
definition of the Clausius virial [see Eq. (E.35)] and Eq. (6.15) for the total 
configurational potential energy of the three-dimensional Coulomb system in 
Ewald formulation, we have 

because U g  is a constant that does not depend on the actual configuration 
[see Eq. (6.17b)l. To evaluate the partial derivatives on the right side of 
Eq.. (F.5G), it. tiirns out to bc convmiant to t.ransform to imit,-ciibc coordi- 
nates via 

(F.57) 

Consider thc first tcrni on the right side of Eq. (F.50;). From Eq. (6.16a) 
we obtain 

N N  a erfc (a Jrij + nl) 
- -  

i ) S ,  - 1 2 c i=l c j=l C ’ q i q j K  {n} I r i j  -t nl 

erfc (a lr,j + nl) 
Irij + n1 

N N  

2 

which follows with tho aid of Eqs. (F.10) aid (F.14). Wo now noticc that, 
because of Eq. (F.57) 

l r i j  + nl = 4 s ;  (%j + n x ) 2  + S; (&j  + 7 ~ ~ ) ~  + S: (5j + n2)2 (F.59) 

In thc: previous cxprmsion we uscd the fact that the lattice vectors n = 
(nXs,, n,,sy, n,s,). Therefore, 
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whcrc Z, is a unit, vcctor iii thc y-dircctioii a i d  yij = Fij . Z-, so that 

follows without further ado. 
Turning to  the second term on the right side of Eqs. (F.56), we realize that 

a ( k )  is indcpcndcnt of {s,} t)ccaiisc cach tmm in tlic slim [SCC Q. (6.19)] 
can bc written as 

- 

exp ( - i k .  ri) = exp [-27ri (,mxEi + myci + m,B)] (F.62) 

where we used the defiriitioii of the wavevectors k [see text before Eq. (6.1 l)]. 
This leaves us with 

1 x ( k  . Z,)2 17i.(k)I2 

from Eq. (6.18) where we have used the fact that 

V = A,~s,  

and 

from which 

nz2 ( k .  i57)2 1 - _  y - -  - 8k 
a s ,  J(mx/s.)2 + (my/sy)2 + (nz,/sz)2 k s? 

27r _ -  -- 

follows directly where 
k - e ^ , = -  27rm, 

S? 

(F.63) 

(F.64) 

(F.65) 

(F.66) 

(F.67) 
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is thc projcctioii of thc wavcvcctor k onto thc y-axis (i.c.. thc ~-componerit 
of k). 

To evaluate the third contribution to W7, in Eq. (F.56), we realize from 
Eq. (6.17a) that. 

(F.68) 

In writing the first term on the right side of Eq. (F.68) we introduced the 
projection of the total dipole moment. M [see Eq. (6.13)] onto the y-axis, 
namely 

N N 

Equation (F.68) may he rewritten to givc 

["2 - 2 ( M  * Z,)*] 
1 27r - = --- 

8% I's, 2€' + 1 

(F.69) 

(F.70) 

for the long-range contribution to \Vz,c. Finally, putsting all this together 
we have from Eqs. (F.55), (F.56), (F.61), (F.63), arid (F.70) the somewhat 
lengthy expression 

(F.71) 

for the diagonal components of the stress tensor in a Coulombic bulk system. 

1 2n 
v 2  2t' + 1 ( [ M ~  - 2 ( M .  g 7 ) * ] ) ,  y = x, y, or z 

F.2 Three-dimensional dipolar system 

F.2.1 Self-energy 
We now derive an expression for the self-contribution to the dipolar energy 
in Ewald formulation given in Q. (6.32) by recalling that the corresponding 
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Coulorrilic coritributiou [we Eq. (6.17b)l rcsults from the interaction of the 
charges qi at r, with the cor~espondiiig Gaussian charge clouds centered at T, 

and representing a total charge of -q,. Moreover, we have seen at the end of 
Appendix F.1.1.4 that for a given particle i the self-part of the electrostatic 
potential can be calculated from the potential generated by a Gaussian at rJ 
by taking the limit T , ~  -+ 0. Keeping this observation in mind and replacing 
thc chargc-s 4% by oparators pa . V, as siiggcst,cd I)y Eq. (6.22). wc find thc 
following prcscriptioii to calculate tlic dipolar self-contribution 

Approximating erf ( ~ 7 . i ~ )  /riJ hv its Taylor expansion for small distances rij 

given in Eq. (F.48), we obtain 

from which 

(F.74) 

follows immediately by inserting Eq. (F.73) into Eq. (F.72) and taking the 
double limit. Equation (F.74) is identical to Eq. (6.32). 

In Eq. (F.73) we used the fact that 

and Eq. (F.53). Therefore, 

F.2.2 Force and torque 

According to Eqs. (6.26)-(6.32) the total force on particle i can be expressed 
as a suin of two cont,ributions, namely 

F$ = FG,i + FE,i (F.77) 
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bccause both long-rangc contributions arid sclf-coritributioris in Eqs. ( 6 . 2 7 ~ )  
and (6.32) turn out to be independent of the position of particle i and there- 
fore do not contribute to the force. From Eq. ( 6 . 2 7 ~ ~ )  it follows that. 

N 

Fs,i = -vij C' {(pi * pj) R (~rij + nli a) 

- [pi * (rij + n)] [pj * (rij + n)] C (Irij + nly 0)) 

j=l  {n} 

(F-78) 

where the functions B and C are defined in Eqs. (6.28a). Transforniing 
variables according to Tij  -+ r = rij + nl noting that V, = Vij, and that 

r d  v, = -- 
r dr 

direct diffcrcntiat,ion on the right side of Fd. (F.78) gives 

(F.79) 

(F.80) 

where the function D (rl a) is defined as [see Eqs. (6.28a)I 

1dC I d  1dB 
r d r  y % ( F z )  

- - 
U(r1LY) = - 

(15 + 100%' + 40"') exp (-a2r2) + 15erfc (ar) 

(F.81) 

Thc Foiiricr-sparc contxibution follows from Eq. (6.27b) as 

(F.82) 
where we employed Eq. (6.29). Differentiating in Eq. (F.82) with respect to 
r,j gives (see Appendix F.1.2 for the parallel derivation in the Coulombic 
case) 

47r 1 k.2 

FD3dF.i = - C p exp (-2) c a k  (p i .  k) (pj . k) exp (-ik. ri,) 

k#O j=l  

N 
47r 1 

= 7 c 2 cxp (-5) c k (pi . k) (pj . k) sin (k . ri j )  (F.83) 
k#O j=l  
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whcrc the last line is obtained via Eq. (F.54). Finally, using sin (x - ?I) = 

sin ir cos y-cos z sin y and the definitions of real and imaginary parts of M (k) 
given in Eq. (6.29) w e  obtain 

- 

- cos (k . ri) I& (k)] (pi . k) k 

The t,orquc acting on particlc .i is clcfirictl l y  [I401 

(F.84) 

T D , ~  3 d -  = -Pi x (vp,@!i) (F.85) 

where @gi is the energy of particle i. Froin Eqs. (6.27) we realize that @gi 
can he written as a siini of three t.erms, namely 

@gi = @?Rj -k @ g F , i  -k @ k 3 , , i  (F.86) 

and the differentiation is perforined with respect to pi. Referring back to 
Eqs. (6.26)-(6.32) we realize that 

(F.87) 

where 

x cos (k . r,) R e E  (k) + sin (k ri) I m E ( k ) ]  (F.88b) [ 
(F.88~) 

In Eq. (F.88a) we iise again the shorthand notattion r G rij + n and T = ( T I  
as bcforc [sco below Eq. (F.78)]. 

F.2.3 Stress tensor 

As before in Section F.1.2.2 diagonal coniponents of the stress tensor of a 
dipolar fluid can be obtained from the relation 

(F.89) 
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wherc the idcal-gas conitributiori ri!, is giveri in Eq. (E.33), invoking again 
the grand canonical ensemble for convenience. By analogy with Eq. (F.56) 
we have 

a(JF aU,3d, aU& 
W,,,D = as = - + - + - , y = x, y, or z (F.90) , as, asy as, 

Based on the same transformat,ion to iinit-cube coordinate9 employed 
before [see Eq. (F.57)]. we realize. that the dependence on s, is buried in 
the argument of the functions B and C [see Eqs. (6.28a)I and in the factors 
P,,~ . (riJ + n) as far as UZR is concerned. Differentiating t,hese terms with 
respect to sy, it is easy to verify that terrns of the form 

arisc whcrc  pi^) stands for either pi or pj .  Employing also the relation 
ani&ig thc functions R ,  C, arid D (sce Eqs. (0;.28a), (F.81)] as wcll as 
&. (F.60), it is a simple matter to show that 

where we again transformed variables according to ~ i j  --f P = ~ i j  + n and 
1' = 1.1. 

Turning to the Fourier-space contribution next, we immediately see that 
Ug contains a factor 

--t?xp 1 1  (-5) 
V k2 

that has already been considered in the derivation of rz,CF in &. (F.63). We 

are then left with a derivative of the function z ( k )  [see Eq. (6.29)] which 
depends on s, because of Eq. (F.66). Introducing 
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oiic obtains 

Finally, the long-range contribution to the energy [see Eq. (6.27c)I gives 
rise to a stress contribution 

(F.94) 

The reader should appreciate the difference between the previous expression 
and the last term on the right side of‘ Eq. (F.71). This difference arises 
bccausc, for a dipolar systcm, Ad, = pi . i?, is independent of s7. 
whereas for a Coulonh systcin, hJ7 dcpcn& on s7 as one can verify from 
Eq. (F.69). The diagonal component of the total stress tensor is then o h  
tained by adding the t,hree contributions given in Eqs. (F.91), (F.93), and 
(F.94) [see Eqs. (F.89) and (F.90)]. 

N 

F.3 Slab geometry 

F.3.1 Rigorous expressions 

F.3.1.1 Point charges 

To derive Eq. (6.34) for a system of point charges in slab geometry, we proceed 
in a fashion analogous to the one employed for bulk systems in Section 6.2.1 
and Appendix F. l .  In other words, we divide the original charge density 
related to J3q. (6.33) 

(1) into three contributions correspoiidiiig to a set of screened charges pi (r’), 
a periodic set of charge clouds screening those original ones p(2) (T‘ ) ,  and a 
self-contribution p,!“’ (r’) describing the interaction of each charge cloud with 
itself. We cliomc thc charge clouds to Lc spherical Gaussians’ with that the 

2See Ref. 248 for other choices. 
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t h e  contributiorls of tlic cliargc distribution arc 

x exp [ -a2 (R' - Rj + rill) '1 (F.96a) 

(F.96b) 

(F. 96c) 

which is completely analogous to the bulk expressions given in Eqs. (6.7), 
(6.iOa), and (6.10b). respectively. Thus, we can immediately write down 
expressions for bhe potentials related to pi1) ( T I )  and pi3' (T I )  [see Eqs. (6.8) 
and (6.14)]; that is, 

(F .97a) 

(F.97b) 
2a 

d 3 )  (Ti )  = -9iJ;;, 

where in Eq. (F.97a), n = (nll,O). 
However, the potential @(') ( T I )  related to p(2)  ( T I )  differs from its bulk 

counterpart [see Eq. (6.14)] because the basic simulation cell of the current 
slab system is repeated in only two (of the three) spatial dimensions. Nev- 
crthclcss, wc can still apply our lmsic strat,cgv datailcd in Appcndix F. 1.1.2 
to find the cxplicit exprcssioii for a(') (r'). 

We start by expanding the potential in Fourier space according to 
00 

( T )  = 5 1 exp [ik~l - R] d$6(') (k) exp [ik,z] (F.98) 
2n J 

kil -m 

where kll = (2nmx/sx, 2nnt,/s,) are two-dimensional reciprocal lattice vec- 
tors (i.e., exp [ikll . n11] = l), whereas the vectors k appearing as arguments 

of the coefficients 6(2) (k) are still three-dimensional. Equation (F.98) fol- 
lows from its three-dimensional counterpart (F.19b) if we replace in the full 
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SUIII Ck . . . = Ck, '& Ck, . . . t-he partial summation over tlie discrete 

variable k, by an integration, that is Ck.. . . - (Arcz)- s-, dk, . . . with 
Ak, = 27r/s,. This is consistent with viewing the system in slab geome- 
try as thrcc-dimcnsiond wit,h a basic. ccll lxconiing anfin,atch/ largc in tho 
Z-dirLxAion (i.c-., s, + 00) such that Akz -+ 0. 

The Fourier coefficients &(')(k) appearing in Eq. (F.98) are linked to the 
corresponding coefficients of the charge density via the Fourier-transformed 
Laplace equation [see Eq. (F.21)] 

1 m  

q2) (k) = - d r  exp (-zk - T )  p(') ( f )  v,, ' J  
1 k; + k: 
V 

- - - exp (--.;.-) qj exp ( -zk,zj) exp (-ikll . Rj) 

j=l 

(F.99) 

where we have inserted Eq. (F.96b) to obtain the second line of Eq. (F.99). 
Coinbirling Eqs. (F.99) and (F.21) and inserting the resulting Fourier coeffi- 
cients &*)(k) into the expansion in Eq. (F.98), we find 

whcrc thc SUIII in llic first liric is rcstrictcd to no~ixcro wavevectors kll aid ~ t ) + ~  contains coiitrii)utions froxu the long-wavclcngtli liiiiit (see ~xlow). 111 
Eq. (F.lOO). the integral over the continuous variable kz gives [248] 

(F.lO1) 

( z  - z j )  is defined 
where the function f (kll, z - z j ,  a) lias been defined in Eq. (6.36). 

From EQs. (F.lOO) and (F.lO1) it. follows that 
as 

N 

Thus, we consider tlie behavior of the function f(kll,z - zj, a) for small 
wavenumbers kll. To this end we perform a Taylor expansion of both the 
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cxporiciitids arid the coriiplcineritary crror fuiictions appearing OII the right 
side of Eq. (6.36). In this expmsion, the lowest-order Taylor coefficients of 
erfc (y) = 1 - erf (9 )  follow immediately from Eq. (F.49). We also note the 
relation erf (-y) = -erf (y), which follows from the definition of the error 
function in Eq. (F.9). Expanding f (kll, z - z,, a )  [see Eq. (6.36)] around 
kll = 0, we obtain 

where we retain only linear terms in kll. Conibining the previous expression 
with Eq. (F.102) yields 

Inspecting the right side of Eq. (F.104) we see that the first term in paren- 
theses is constant,. This term is irrelevant because of global charge neutraliy 
(i.e., Cc, qi = 0). We therefore obtain from Eqs. (F.lOO) and (F.104) as a 
final expression for the potential from the set of Gaussians 

N 2 2 f i  exp[-a ( z  - zj) ']  
(12 -- 

The corresponding contribution to the energy is 

(F. 105) 

(F.106) 

which coincides with Eq. (6.35). 
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F.3.1.2 Point dipoles 

The rigorous Ewald sum for a slab-like system of point dipoles follows from 
the corresponding expression for Conlonibic systems [see Eqs. (6.34) and 
(6.35)). The derivation proceeds in a fashion similar to  the one already 
rlisciissed for hiilk syst,rms in Section 6.2.2. That is, we replace thci charges 
4i arid qj in trhc cncrgy cxprcssiotis by the operators (pt . Vi) and (pJ . Vj). 
As a result, 

where both real-space and self-part. have the same form as in the three- 
dimensional case and are thus given by Eqs. (6.27a) and (6.32), respectively. 

To evaluate the Fourier part, we start by considering the first sum on 
the right side of Eq. (6.35) involving nonzero wavevectors Icll # 0. For each 
pair .i and j and each wavevector kll, thc replmcmcnt of the cliargc? qj hy t8he 
operator (pj Vj) yields 

(F.108) 

( F. 109) 

Now we need to differentiate Eq. (F.108) one more time because of the second 
operator (pi + Vi) replacing qi in the original energy expression in Eq. (6.35), 
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which yields 

where we have also used [see Q. (F.109)] 

and the funct,ion 

+ exp (-kllzij) erfc (i: - - azi j ) ]  (F.112) 

Keeping in milid that the total Fourier energy involves a sum over all nonzero 
wavevectors lcll # 0 [see Q. (6.35)], we may employ symmetry arguments to 
siinplify the above expressions. For example, both (pi kil) (p, kll) and 
the function j' (kill z,,, (Y) appaaring on tho first. linc of the right side of 
Eq. (F.llO) are invariant, against inversion of the wavevectors, that is to say, a 
replacement of kll + by -kll. Therefore, only the red part of exp (ilcll . & j )  

[i.e., cos (kll . &j)] will contribute to  the sum over all wavevect.ors. The 
same is true for the fourth term involving the product (pi + Zz) (pj - ê J and 
the function e( k!l, zij ~ a) which is again invariant against inversion of kll. 
However, the second and third terms on the right. side of Eq. (F.llO) are 
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(F. 113) 

We tiow consider the remaining (second) siiin in the Coiilomb Fourier 
energy (SLW the right side of Eq. (6.35)) involving a double ~ L U I I  over pairs of 
dipoles z and j .  Replacing the products qt and qI by the operators (pi . Vi) 
and (pj  Vj), respectively, as before yields 

Finally, putting all this together we arrive at, the rigorous expression for the 
Fourier-space contribution to the total configiirational energy of the dipolar 
system in slab geometry. namely 

(F. 11 5) 
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F.3.2 Force, torque, and stress in systems with slab 
geometry 

F.3.2.1 Point charges 

For ionic systems, the total Coulomb force acting on particle i within the 
slabadapted three-dimensional Ewald sum [see Eq. (6.40)] can be cast, as 

FEY = qz :  + F;!: + q:! (F.116) 

whcrc t,hc first, two cont,ribiit,ion.s arc identical to thc: rorrwponding ones in 
a truly threedimensional systeni and are tlius given by Eqs. (F.52a) and 
(F.52b), respectively. The last term in Eq. (F.116) arises from the correction 
term in the Ewald energy, U C , ~  [see Eq. (6.39)]. One obtains 

(F. 117) 

Regarding the stress tensor of the systeni, the (Coulomb) components 
corresponding to the two orthogonal directions parallel to the walls (i.e., 
y = z,y) can bc calciilatctl exactly as in the thrccdiincnsional caw (sec 
Appendix F.1.2.2). On thc other hand, tlic noriiial component (y = z )  is 
given by 

(F. 118) 

whcrc only t,hc rcal-space part T ~ ~ ' &  = T$,= [see Eq. (F.58)]. 
To cvaluatc thc Fourier-spaw contribution, T&!'&. wc iiotc that, bccause 

of the artificialelongation of the basis cell in z-direction, neither the wavevec- 
tors involved in the Fourier contribution to the Ewald energy [see Eq. (6.18) 
with the wavevectors given in Eq. (6.41)] nor the volume V depend on sz. 
The vectors ri = (zz, yi, szZ), on the other hand, depend on s, if we employ 
scaled z-coordinates as indicated. Differentiation thus yields 

slab - Tslnb + Tslilb + Tslab 
7C,zz - C R m  CF;n C.c,zz 

x ( g ( k ) Z ( k )  +k ( k ) Z ( k ) )  (F.119) 

where the quantity Z(k) is defined ill Eq. (6.19) aid 

N - 
b (k) = ikzi exp (-A . ri) 

i=l 

(F.120) 
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Filially, as Llic cncrgy correctioii tcrrn givcii in J3q. (6.39) dcpends on s, 

only through the t-components of the position vectors ri, the expression for 
the corresponding stress in the direction normal to the confining substrates 
follows as 

(F.121) 

F.3.2.2 Point dipoles 

For dipolar particlcs, all force contdmtions within the slahczrlaptcd thrw- 
diinensiorial Ewald sum coiricide with those for truly three-dimensional sys- 
tems discussed in Appendix F.2.2. This result arises because the correction 
term to the total dipolar energy [see Eqs. (6.44) and (6.43)] is independent 
of particle positions. There is, however, a coritribut,ion to the total torque 
that we need to consider separately. The total torque can be cast as 

2 g ; h  = T$$ + qg't qgi (F.122) 

are given by the bulk expressions [see Eqs. (F.88)], where %',$ and 
whereas 

(F. 123) 

Turning next to the stress tensor we realize that its normal component 
mit>hin the slab-adapted three-dimensional Ewald formalism can be written 
as a sum of two contributions, namely 

p l a h  D.zz - - Tdsb DR..zz + 7s1ab DF,zz (F.124) 

because t,he correction term to t,he total configurational potential energy in 
Eq. (6.43) does not depend on s, (note that t,he V is the volume of the 
artificial cell includzng the vacuum space in the z-direction). The real-space 
part. on t.hc right, sidc of El. (F. 124) coincidcs with its t,hrac-dimcnsional 
aiialog givcn in Ey. (F.91). Tlic Fourier part, T$$'', can be derived along 
the same lines already discussed below Eq. (F.118). We finally obtain with 
little ado the expression 

x (v (k) P (k) + 17" (k) G(k))  
(F. 125) 
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N 

(k) = (p i .  k) ilC,z, exp ( - i k f  T ~ )  

i=l 

(F.126) 

F .3.3 Metallic substrates 

F.3.3.1 Point charges 

Here we derive Eq. (6.66) linking the energy of a slahlike system of point 
charges between metallic walls to that of an extended system with three- 
dimensional periodicity. 

The basic cell of the exteiided systeru contains N cliarges ill the original 
cell plus the first set of images; that is, the N images resulting from the 
presence of just the lower wall. Positions arid charges of these image particles 
we-then given by the relations [see Eq. (6.59) with nz = 0) 

r i + N  = ri - 2%&, i = l , . .  . ,  N (F. 127a) 
qi+N = -qi. i = l , . .  . !  N (F .127b) 

Replicating thc cxtcnded hasic cell periodically in all three spatial directions, 
t,he total energy of the resultiiig system is given by 

(F.128) 

where the lattice vectors ?z are specified in Eq. (6.64) arid the prime at the 
surii indicates that the term related to 1: = j is oriiitted for Ti = 0. 

We now split the double slim in Ecl. (F.128) into four terms containing 

N 1. Particle particle cont,ributions EL1 Cj=l, 

3. Particle image contributions ELl xi!&+, , and 
2N 4. Image particle contributions Ci=N+l xLl. 
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Tcrins 1 arid 2 givc thc same rcsult on(: iriay varify from thc rclatioiis 

(F. 12%) 

and the fact that we slim in Eq. (F.128) over an infinite set of lattice vectors 
{K} such that the term 4s,n.,E2 on the right side of Qs. (F.129) is irrele- 
vant. By similar reasoning, terms 3 and 4 in the above decomposition give 
eqnivalant results because of 

(F. 1304 

Putting all this together, &. (F.128) can be rewritten as 

We therefore see that UFYex in Eq. (F.131) for a three-dimensional system 
with the extended basis cell is indeed exactly twice the energy Uc given in 
Eq. (6.65). 

F.3.3.2 Point dipoles 

To derive Eq. (6.68) for the total energy of an infinite slab of dipolar particles 
between nietallic substrates, we go one step back and consider a situation 
where thc central cell comprising N particles has not yet been replicated in 
the .I:- arid ?/-directioiis. Tlic corresponding energy can lie written as 

N 

(F. 132) 
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where EpeIf arid qiS arc thc clcctrostatic fields arisiiig from the images of 
particle i, on the one hand, and from the other particles j and their images, 
on the other hand. Using short-hand notation 

(F. 133) 

tbe fields EYlf and E,dis follow as 

54 00 

11.=--00 Tk=-Oo 

(F. 134a) 

where the asterisk attached to the slims indicates t,hat terms corresponding 
to n, = 0 haw bcrn omitted. 

Replicating the original cell now in the z- and 9- directions essentially 
implies that the sums over the integer variable n, in Eq. (F.134a) have 
to be replaced by three-dimensional lattice sums over the vectors E intro- 
duccd in J3q. (6.64) [scc the arialogous proctdurc for charges described below 
Eq. (6.62a)l. Inserting the resulting field expressions into Eq. (F.132) and 
summarizing, one obtains Eq. (6.68) after some tedious but straightforward 
algebraic manipulations. 

As a next step we now have to prove Eq. (6.69) where we again proceed as 
before in the Coulombic case. The basic cell of the extended dipolar system 
contains N dipoles in the original cell plus the first set of images, which are 
the N images resulting from the presence of just the lower wall. Positions 
and orientations of these N image particles are then given by 

R.eplicating the basic cell periodically in all three spatial directions, we obtain 
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for the total configurational potential energy thc cxpressiori 

1 2N 2N 
pt ' pJ - 3 1111 . (rlJ + b'J * (TtJ + 

= - 2 c r = l  c j = I  F' { lTV + ~ 1 3  lTtJ + ~1~ 
(F.136) 

where the lattice vectors n are specified in Eq. (6.64) arid the prime at the 
lattice slim indicatcs that i = j is omitted for f i  = 0. Separating now the 
doublr sum in a. (F.136) i1it.o 

N 1. Particle particle contrilmtions c ~ N _ ,  zj=, , 

2. Image iniage contributions CtzN+, z5EN+1, 
N 2N 3. Particle image contributioris Cj=N+,,  and 

2 N  N 4. Image particle contributions Cj=, 
one finds that terms 1 and 2 give tht: same result after performing the lattice 
sum. Indeed, onc can easily show t,hat 

whcrc Eq. (F.137b) is idciit,ical with Eq. (F.129b) a11d 

where we recall that the terms with 4 ~ ~ s , &  are irrelevant because we sum 
over an infinite set of la,ttice vectors in Eq. (F.136). Moreover, terms 3 and 4 
in the above decomposition are also equivalent because of the relations [see 
also Eq. (F.130b)l 

and 

We therefore see t,hat the energy Uf7" [see Eq. (F.136)] is indeed exactly 
twice the energy UD given in E.1. (6.68). 




