
1

0.3	 Floating	 Point	 Representation	 of	 Real	 Numbers	

Most computers deal with real numbers in the binary number system, in contrast to the decimal
number system that human prefers. Computer works internally in the binary system but
communicates with its human users in the decimal system. The computer must execute conversion
procedures. Although the users do not concern with this conversion, they do involve errors.

Computer cannot operate real numbers expressed with more than a fixed number of digits. The
word length of the computer places a restriction on the precision with which real numbers can be
represented. Even a simple number like cannot be stored exactly in any binary machine. It

requires an infinite binary expression .

For example, if we read 0.1 into a 32-bit computer workstation and then print it out using decimal
system, we obtain the following result: 0.100000001490116119384765625000 00000 000000.
Usually, we won’t notice this conversion error since printing using the default format would show
us 0.1.

0.3.1 Floating point formats

In the decimal system, any real number can be expressed in the normalized scientific notation
format. This means that the decimal point is shifted and appropriate powers of 10 are supplied so
that all digits are to the right of the decimal point and the first digit displayed is not 0.

Example:

In general, a nonzero real number x can be represented in the form with r is a

number in the range and n is an integer (positive, negative or zero). Of course, if
, then . In all other cases, we can adjust n so that r lies in the given range.

There are several models for computer arithmetic of floating point numbers. The one we choose to
discuss is the so-called IEEE 754 Floating Point Standard. The IEEE standard consists of a set of
binary representations of real number. A floating point number consists of three parts, the sign, a

mantissa, which contains the string of significant bits, and an exponent. The form of a

normalized IEEE floating point number is

2

where N b’s are the mantissa, p is an M-bit binary number representing the exponent.
Normalization means that the leading it must 1.

precision sign exponent (M) mantissa (N)
single 1 8 23
double 1 11 52

Long double 1 15 64

Each floating point number is assigned (1+M+N) bits. It has the form

Definition: The number machine epsilon, denoted , is the distance between 1 and the

smallest floating point number greater than 1. For the IEEE double precision floating point

standard, .

Be sure to understand many numbers below are machine representable, even though

adding them to 1 may be no effect.

0.3.2 Rounding
Rounding is an important concept in scientific computing. Consider a positive decimal number x
of with m digits to the right of the decimal point. One rounds x to n decimal
place (n<m) in a manner that depends on the value of the (n+1)-th digit. If this digit is 0,1,2,3,or 4,
then the n-th digit is not changed and all the following digits are discarded. If it is a 5,6,7,8 or 9,
then the n-th digit is increased by one unit and the remaining digits are discarded. (The situation
with 5 as the (n+1)-st digit can be handled in a variety of ways. For example, some choose to
round up only when the previous digit is even, assuming that this happens about half time. For
simplicity, we always choose to round up in this situation).
Here are some examples of seven-digit numbers being correctly rounded to four digits

Remark: If x is rounded so that is the n-digit approximation to it. Then

 (2)

To see why this is true, we reason as follows:

3

If the digit of x is 0,1,2,3 or 4, then with , and inequality (2) follows.

If it is 5,6,7,8 or 9 then where is a number with the same n digits as x and all

digits beyond the n-th are zero. Now with and

 since . Inequality (2) follows if x is a decimal number, the

chopped or truncated n-digit approximation to it is the number obtains by simply discarding

all digits beyond the n-th. First, we have . The relationship between x and is

such that x- has 0 in the first n places and with . Hence, we have

 and inequality (3) follows.

In binary, we have a similar way to do rounding.

IEEE Rounding to Nearest Rule:
For double precision, if the 53rd bit to the right of the binary point is 0, then the round down
(truncate after the 52nd bit). If the 53rd bit is 1, then round up (add 1 to 52 bit), unless all known
bits to the right of the 1 are 0’s, in which case 1 is added to bit 52 if and only if bit 52 is 1.

Definition: Denote the IEEE double precision floating point number associated to x, using
Rounding to Nearest Rule, by fl(x).

Similar to the remark above, we have

0.3.3 Machine Representation
This section we discuss a few more details about how a floating point representation is
implemented on a computer. Each double precision floating point number is assigned an 8 byte
word, or 64 bits, to store three parts. The sign is stored in the first bit, followed by 11 bits
representing the exponent and the 52 bits following the decimal point representing the mantissa.

The sign bit s is 0 for a positive number and 1 for a negative number. The 11 bits represent the
exponent come from the positive binary integer number resulting from adding 1023 to the
exponent. For exponents between -1022 and 1023, this covers values of these 11 bits from 1 to

4

2046. The number 1023 is called the exponent bias of the double precision. The special exponent
2047 is used to represent infinity if the mantissa bit string is all zeros, and NaN, which stands for
Not a Number, if the mantissa bit string is not all zeros. The special exponent 0, is interpreted as
the non-normalized floating point form

These numbers are called subnormal floating point numbers. The smallest representable number in

double precision is . The subnormal numbers includes +0 and -0. +0 has sign 0, exponent

all zeros and mantissa 52 zeros. For -0, all is exactly same, except the sign bit is 1.

0.3.3 Addition of floating point number
Machine addition consists of lining up the decimal points of the two numbers to be added, adding
them, and then storing the result again as a floating point number. The addition itself can be done
in higher precision (with more than 52 bits) since the addition takes place in a register dedicated
just to that purpose.

Example: Compare with 1 using MATLAB

Example: Compare with 1 using MATLAB

