
Function Design Recipe

(Revised)

1. Header Write the function header.

def is_even(num):

2. Type Contract Inside an indented triple-quoted string, write a type contract that identifies name and
type of each parameter. Choose a meaningful name for each parameter. Also identify the return type of
the function.

def is_even(num):

"""

@type num: int

@rtype: bool

"""

3. Example Write some examples of calls to your function1 and the expected returned values. Include an
example of a standard case (as opposed to a tricky or corner case.)

 def is_even(num):

"""

@type num: int

@rtype: bool

>>> is_even(2)

True

>>> is_even(17)

False

"""

4. Description In the same line as the opening triple-quote mark, put a one-line summary of what the
function does. If necessary, you can put an optional, longer description above the type contract. Mention

each parameter by name.

def is_even(num):

"""Return whether <num> is evenly divisible by 2.

@type num: int

@rtype: bool

>>> is_even(2)

True

>>> is_even(17)

False

"""

1 Do not include examples for functions that involve randomness or user input.

5. Body Write the body of the function by remembering to indent it to match the docstring. To help

yourself write the body, review your example cases from step 1 and how you determined the return
values. You may find it helpful to write a few more example calls in the docstring.

def is_even(num):

"""Return whether <num> is evenly divisible by 2.

@type num: int

@rtype: bool

>>> is_even(2)

True

>>> is_even(17)

False

"""

return num % 2 == 0

6. Test Your Function Test your function on all your example cases including any additional cases you
created in step 5. Additionally try it on extra tricky or corner cases.

