
CHAPTER 12

Functions

You know from calculus that functions play a fundamental role in math-
ematics. You likely view a function as a kind of formula that describes

a relationship between two (or more) quantities. You certainly understand
and appreciate the fact that relationships between quantities are impor-
tant in all scientific disciplines, so you do not need to be convinced that
functions are important. Still, you may not be aware of the full significance
of functions. Functions are more than merely descriptions of numeric
relationships. In a more general sense, functions can compare and relate
different kinds of mathematical structures. You will see this as your
understanding of mathematics deepens. In preparation of this deepening,
we will now explore a more general and versatile view of functions.

The concept of a relation between sets (Definition 11.7) plays a big role
here, so you may want to quickly review it.

12.1 Functions
Let’s start on familiar ground. Consider the function f (x)= x2 from R to R.
Its graph is the set of points R = {

(x, x2) : x ∈R} ⊆ R×R.

R

R

(x, x2)

x

Figure 12.1. A familiar function

Having read Chapter 11, you may see f in a new light. Its graph
R ⊆ R×R is a relation on the set R. In fact, as we shall see, functions
are just special kinds of relations. Before stating the exact definition, we
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look at another example. Consider the function f (n)= |n|+2 that converts
integers n into natural numbers |n|+2. Its graph is R = {

(n, |n|+2) : n ∈Z}
⊆ Z×N.
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Figure 12.2. The function f :Z→N, where f (n)= |n|+2

Figure 12.2 shows the graph R as darkened dots in the grid of points Z×N.
Notice that in this example R is not a relation on a single set. The set of
input values Z is different from the set N of output values, so the graph
R ⊆Z×N is a relation from Z to N.

This example illustrates three things. First, a function can be viewed
as sending elements from one set A to another set B. (In the case of f ,
A =Z and B =N.) Second, such a function can be regarded as a relation
from A to B. Third, for every input value n, there is exactly one output
value f (n). In your high school algebra course, this was expressed by the
vertical line test: Any vertical line intersects a function’s graph at most
once. It means that for any input value x, the graph contains exactly one
point of form (x, f (x)). Our main definition, given below, incorporates all of
these ideas.

Definition 12.1 Suppose A and B are sets. A function f from A to B
(denoted as f : A → B) is a relation f ⊆ A×B from A to B, satisfying the
property that for each a ∈ A the relation f contains exactly one ordered
pair of form (a,b). The statement (a,b) ∈ f is abbreviated f (a)= b.

Example 12.1 Consider the function f graphed in Figure 12.2. According
to Definition 12.1, we regard f as the set of points in its graph, that is,
f = {

(n, |n|+2) : n ∈Z} ⊆ Z×N. This is a relation from Z to N, and indeed
given any a ∈Z the set f contains exactly one ordered pair (a, |a|+2) whose
first coordinate is a. Since (1,3) ∈ f , we write f (1)= 3; and since (−3,5) ∈ f
we write f (−3)= 5, etc. In general, (a,b) ∈ f means that f sends the input
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value a to the output value b, and we express this as f (a)= b. This function
can be expressed by a formula: For each input value n, the output value
is |n|+2, so we may write f (n) = |n|+2. All this agrees with the way we
thought of functions in algebra and calculus; the only difference is that
now we also think of a function as a relation.

Definition 12.2 For a function f : A → B, the set A is called the domain
of f . (Think of the domain as the set of possible “input values” for f .) The
set B is called the codomain of f . The range of f is the set

{
f (a) : a ∈ A

} ={
b : (a,b) ∈ f

}
. (Think of the range as the set of all possible “output values”

for f . Think of the codomain as a sort of “target” for the outputs.)

Continuing Example 12.1, the domain of f is Z and its codomain is
N. Its range is

{
f (a) : a ∈Z}= {|a|+2 : a ∈Z}= {

2,3,4,5, . . .
}
. Notice that the

range is a subset of the codomain, but it does not (in this case) equal the
codomain.

In our examples so far, the domains and codomains are sets of numbers,
but this needn’t be the case in general, as the next example indicates.

Example 12.2 Let A = {
p, q, r, s

}
and B = {

0,1,2
}
, and

f = {
(p,0), (q,1), (r,2), (s,2)

}⊆ A×B.

This is a function f : A → B because each element of A occurs exactly once
as a first coordinate of an ordered pair in f . We have f (p) = 0, f (q) = 1,
f (r)= 2 and f (s)= 2. The domain of f is

{
p, q, r, s

}
, and the codomain and

range are both
{
0,1,2

}
.
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Figure 12.3. Two ways of drawing the function f = {
(p,0), (q,1), (r,2), (s,2)

}
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If A and B are not both sets of numbers it can be difficult to draw
a graph of f : A → B in the traditional sense. Figure 12.3(a) shows an
attempt at a graph of f from Example 12.2. The sets A and B are aligned
roughly as x- and y-axes, and the Cartesian product A ×B is filled in
accordingly. The subset f ⊆ A×B is indicated with dashed lines, and this
can be regarded as a “graph” of f . A more natural visual description of f
is shown in 12.3(b). The sets A and B are drawn side-by-side, and arrows
point from a to b whenever f (a)= b.

In general, if f : A → B is the kind of function you may have encountered
in algebra or calculus, then conventional graphing techniques offer the
best visual description of it. On the other hand, if A and B are finite or if
we are thinking of them as generic sets, then describing f with arrows is
often a more appropriate way of visualizing it.

We emphasize that, according to Definition 12.1, a function is really
just a special kind of set. Any function f : A → B is a subset of A×B. By
contrast, your calculus text probably defined a function as a certain kind of
“rule.” While that intuitive outlook is adequate for the first few semesters
of calculus, it does not hold up well to the rigorous mathematical standards
necessary for further progress. The problem is that words like “rule” are
too vague. Defining a function as a set removes the ambiguity. It makes a
function into a concrete mathematical object.

Still, in practice we tend to think of functions as rules. Given f :Z→N

where f (x)= |x|+2, we think of this as a rule that associates any number
n ∈ Z to the number |n| +2 in N, rather than a set containing ordered
pairs (n, |n|+2). It is only when we have to understand or interpret the
theoretical nature of functions (as we do in this text) that Definition 12.1
comes to bear. The definition is a foundation that gives us license to think
about functions in a more informal way.

The next example brings up a point about notation. Consider a function
such as f : Z2 → Z, whose domain is a Cartesian product. This function
takes as input an ordered pair (m,n) ∈Z2 and sends it to a number f ((m,n)) ∈
Z. To simplify the notation, it is common to write f (m,n) instead of f ((m,n)),
even though this is like writing f x instead of f (x). We also remark that
although we’ve been using the letters f , g and h to denote functions, any
other reasonable symbol could be used. Greek letters such as ϕ and θ are
common.

Example 12.3 Say a function ϕ :Z2 →Z is defined as ϕ(m,n) = 6m−9n.
Note that as a set, this function is ϕ= {(

(m,n),6m−9n
)

: (m,n) ∈Z2}⊆Z2×Z.
What is the range of ϕ?
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To answer this, first observe that for any (m,n) ∈Z2, the value f (m,n)=
6m−9n = 3(2m−3n) is a multiple of 3. Thus every number in the range is
a multiple of 3, so the range is a subset of the set of all multiples of 3. On
the other hand if b = 3k is a multiple of 3 we have ϕ(−k,−k)= 6(−k)−9(−k)=
3k = b, which means any multiple of 3 is in the range of ϕ. Therefore the
range of ϕ is the set

{
3k : k ∈Z}

of all multiples of 3.

To conclude this section, let’s use Definition 12.1 to help us understand
what it means for two functions f : A → B and g : C → D to be equal.
According to our definition, functions f and g are subsets f ⊆ A×B and
g ⊆ C×D. It makes sense to say that f and g are equal if f = g, that is, if
they are equal as sets.

Thus the two functions f = {
(1,a), (2,a), (3,b)

}
and g = {

(3,b), (2,a), (1,a)
}

are equal because the sets f and g are equal. Notice that the domain of
both functions is A = {

1,2,3
}
, the set of first elements x in the ordered pairs

(x, y) ∈ f = g. In general, equal functions must have equal domains.
Observe also that the equality f = g means f (x)= g(x) for every x ∈ A.

We repackage these ideas in the following definition.

Definition 12.3 Two functions f : A → B and g : A → D are equal if
f (x)= g(x) for every x ∈ A.

Observe that f and g can have different codomains and still be equal.
Consider the functions f :Z→N and g :Z→Z defined as f (x)= |x|+2 and
g(x)= |x|+2. Even though their codomains are different, the functions are
equal because f (x)= g(x) for every x in the domain.

Exercises for Section 12.1

1. Suppose A = {
0,1,2,3,4

}
, B = {

2,3,4,5
}
and f = {

(0,3), (1,3), (2,4), (3,2), (4,2)
}
. State

the domain and range of f . Find f (2) and f (1).
2. Suppose A = {

a,b, c,d
}
, B = {

2,3,4,5,6
}
and f = {

(a,2), (b,3), (c,4), (d,5)
}
. State the

domain and range of f . Find f (b) and f (d).
3. There are four different functions f :

{
a,b

} → {
0,1

}
. List them all. Diagrams

will suffice.
4. There are eight different functions f :

{
a,b, c

}→ {
0,1

}
. List them all. Diagrams

will suffice.
5. Give an example of a relation from

{
a,b, c,d

}
to

{
d, e

}
that is not a function.

6. Suppose f :Z→Z is defined as f = {
(x,4x+5) : x ∈Z}

. State the domain, codomain
and range of f . Find f (10).
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7. Consider the set f = {
(x, y) ∈ Z×Z : 3x+ y = 4

}
. Is this a function from Z to Z?

Explain.
8. Consider the set f = {

(x, y) ∈ Z×Z : x+3y = 4
}
. Is this a function from Z to Z?

Explain.
9. Consider the set f = {

(x2, x) : x ∈R}
. Is this a function from R to R? Explain.

10. Consider the set f = {
(x3, x) : x ∈R}

. Is this a function from R to R? Explain.
11. Is the set θ = {

(X , |X |) : X ⊆Z5
}
a function? If so, what is its domain and range?

12. Is the set θ = {(
(x, y), (3y,2x, x+ y)

)
: x, y ∈R}

a function? If so, what is its domain,
codomain and range?

12.2 Injective and Surjective Functions
You may recall from algebra and calculus that a function may be one-
to-one and onto, and these properties are related to whether or not the
function is invertible. We now review these important ideas. In advanced
mathematics, the word injective is often used instead of one-to-one, and
surjective is used instead of onto. Here are the exact definitions:

Definition 12.4 A function f : A → B is:
1. injective (or one-to-one) if for every x, y ∈ A, x 6= y implies f (x) 6= f (y);
2. surjective (or onto) if for every b ∈ B there is an a ∈ A with f (a)= b;
3. bijective if f is both injective and surjective.

Below is a visual description of Definition 12.4. In essence, injective
means that unequal elements in A always get sent to unequal elements in
B. Surjective means that every element of B has an arrow pointing to it,
that is, it equals f (a) for some a in the domain of f .

A

A

A

A

B

B

B

B

b ba

x x

y y
Injective means that for any
two x, y ∈ A, this happens... ...and not this:

Surjective means that for
any b ∈ B... ...this happens:
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For more concrete examples, consider the following functions from R

to R. The function f (x)= x2 is not injective because −2 6= 2, but f (−2)= f (2).
Nor is it surjective, for if b = −1 (or if b is any negative number), then
there is no a ∈R with f (a)= b. On the other hand, g(x)= x3 is both injective
and surjective, so it is also bijective.

There are four possible injective/surjective combinations that a function
may possess. This is illustrated in the following figure showing four
functions from A to B. Functions in the first column are injective, those
in the second column are not injective. Functions in the first row are
surjective, those in the second row are not.

A
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B
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a

b

b
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b

c c

c

1

1

1

1

2

2

2

2
3 3

3
(bijective)

Injective Not injective

Surjective

Not surjective

We note in passing that, according to the definitions, a function is
surjective if and only if its codomain equals its range.

Often it is necessary to prove that a particular function f : A → B
is injective. For this we must prove that for any two elements x, y ∈ A,
the conditional statement (x 6= y) ⇒ (

f (x) 6= f (y)
)
is true. The two main

approaches for this are summarized below.

How to show a function f : A → B is injective:

Direct approach:
Suppose x, y ∈ A and x 6= y.

...
Therefore f (x) 6= f (y).

Contrapositive approach:
Suppose x, y ∈ A and f (x)= f (y).

...
Therefore x = y.

Of these two approaches, the contrapositive is often the easiest to use,
especially if f is defined by an algebraic formula. This is because the
contrapositive approach starts with the equation f (x)= f (y) and proceeds
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to the equation x = y. In algebra, as you know, it is usually easier to work
with equations than inequalities.

To prove that a function is not injective, you must disprove the statement
(x 6= y)⇒ (

f (x) 6= f (y)
)
. For this it suffices to find example of two elements

x, y ∈ A for which x 6= y and f (x)= f (y).
Next we examine how to prove that f : A → B is surjective. According

to Definition 12.4, we must prove the statement ∀b ∈ B,∃a ∈ A, f (a)= b. In
words, we must show that for any b ∈ B, there is at least one a ∈ A (which
may depend on b) having the property that f (a)= b. Here is an outline.

How to show a function f : A → B is surjective:

Suppose b ∈ B.
[Prove there exists a ∈ A for which f (a)= b.]

In the second step, we have to prove the existence of an a for which
f (a)= b. For this, just finding an example of such an a would suffice. (How
to find such an example depends on how f is defined. If f is given as a
formula, we may be able to find a by solving the equation f (a) = b for a.
Sometimes you can find a by just plain common sense.) To show f is not
surjective, we must prove the negation of ∀b ∈ B,∃a ∈ A, f (a) = b, that is,
we must prove ∃b ∈ B,∀a ∈ A, f (a) 6= b.

The following examples illustrate these ideas. (For the first example,
note that the set R−{

0
}
is R with the number 0 removed.)

Example 12.4 Show that the function f :R−{
0
}→R defined as f (x)= 1

x +1
is injective but not surjective.

We will use the contrapositive approach to show that f is injective.
Suppose x, y ∈R−{

0
}
and f (x)= f (y). This means 1

x +1= 1
y +1. Subtracting

1 from both sides and inverting produces x = y. Therefore f is injective.
Function f is not surjective because there exists an element b = 1 ∈R

for which f (x)= 1
x +1 6= 1 for every x ∈R−{

0
}
.

Example 12.5 Show that the function g : Z×Z→ Z×Z defined by the
formula g(m,n)= (m+n,m+2n), is both injective and surjective.

We will use the contrapositive approach to show that g is injective.
Thus we need to show that g(m,n)= g(k,`) implies (m,n)= (k,`). Suppose
(m,n), (k,`) ∈ Z×Z and g(m,n)= g(k,`). Then (m+n,m+2n)= (k+`,k+2`). It
follows that m+n = k+` and m+2n = k+2`. Subtracting the first equation
from the second gives n = `. Next, subtract n = ` from m+n = k+` to get
m = k. Since m = k and n = `, it follows that (m,n) = (k,`). Therefore g is
injective.
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To see that g is surjective, consider an arbitrary element (b, c) ∈Z×Z.
We need to show that there is some (x, y) ∈Z×Z for which g(x, y)= (b, c). To
find (x, y), note that g(x, y)= (b, c) means (x+ y, x+2y)= (b, c). This leads to
the following system of equations:

x + y = b
x + 2y = c.

Solving gives x = 2b− c and y = c− b. Then (x, y) = (2b− c, c− b). We now
have g(2b− c, c−b)= (b, c), and it follows that g is surjective.

Example 12.6 Consider function h :Z×Z→Q defined as h(m,n)= m
|n|+1

.
Determine whether this is injective and whether it is surjective.

This function is not injective because of the unequal elements (1,2) and
(1,−2) in Z×Z for which h(1,2)= h(1,−2)= 1

3 . However, h is surjective: Take
any element b ∈Q. Then b = c

d for some c,d ∈Z. Notice we may assume d is
positive by making c negative, if necessary. Then h(c,d−1)= c

|d−1|+1 = c
d = b.

Exercises for Section 12.2

1. Let A = {
1,2,3,4

}
and B = {

a,b, c
}
. Give an example of a function f : A → B that

is neither injective nor surjective.
2. Consider the logarithm function ln : (0,∞)→R. Decide whether this function is

injective and whether it is surjective.
3. Consider the cosine function cos :R→R. Decide whether this function is injective

and whether it is surjective. What if it had been defined as cos :R→ [−1,1]?
4. A function f : Z→ Z×Z is defined as f (n) = (2n,n+ 3). Verify whether this

function is injective and whether it is surjective.
5. A function f :Z→Z is defined as f (n)= 2n+1. Verify whether this function is

injective and whether it is surjective.
6. A function f : Z×Z→ Z is defined as f (m,n) = 3n−4m. Verify whether this

function is injective and whether it is surjective.
7. A function f : Z×Z→ Z is defined as f (m,n) = 2n−4m. Verify whether this

function is injective and whether it is surjective.
8. A function f :Z×Z→Z×Z is defined as f (m,n)= (m+n,2m+n). Verify whether

this function is injective and whether it is surjective.

9. Prove that the function f :R−{
2
}→R−{

5
}
defined by f (x)= 5x+1

x−2
is bijective.

10. Prove the function f :R−{
1
}→R−{

1
}
defined by f (x)=

(
x+1
x−1

)3
is bijective.

11. Consider the function θ :
{
0,1

}×N→Z defined as θ(a,b)= (−1)ab. Is θ injective?
Is it surjective? Bijective? Explain.
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12. Consider the function θ :
{
0,1

}×N→Z defined as θ(a,b)= a−2ab+b. Is θ injective?
Is it surjective? Bijective? Explain.

13. Consider the function f :R2 →R2 defined by the formula f (x, y)= (xy, x3). Is f
injective? Is it surjective? Bijective? Explain.

14. Consider the function θ : P(Z)→P(Z) defined as θ(X )= X . Is θ injective? Is it
surjective? Bijective? Explain.

15. This question concerns functions f :
{
A,B,C,D,E,F,G

}→ {
1,2,3,4,5,6,7

}
. How

many such functions are there? How many of these functions are injective?
How many are surjective? How many are bijective?

16. This question concerns functions f :
{
A,B,C,D,E

}→ {
1,2,3,4,5,6,7

}
. How many

such functions are there? How many of these functions are injective? How
many are surjective? How many are bijective?

17. This question concerns functions f :
{
A,B,C,D,E,F,G

}→ {
1,2

}
. How many such

functions are there? How many of these functions are injective? How many
are surjective? How many are bijective?

18. Prove that the function f :N→Z defined as f (n)= (−1)n(2n−1)+1
4

is bijective.

12.3 The Pigeonhole Principle
Here is a simple but useful idea. Imagine there is a set A of pigeons and
a set B of pigeon-holes, and all the pigeons fly into the pigeon-holes. You
can think of this as describing a function f : A → B, where pigeon X flies
into pigeon-hole f (X ). Figure 12.4 illustrates this.

Pigeons Pigeon-holes

(a)

f
Pigeons Pigeon-holes

(b)

f

Figure 12.4. The pigeonhole principle

In Figure 12.4(a) there are more pigeons than pigeon-holes, and it
is obvious that in such a case at least two pigeons have to fly into the
same pigeon-hole, meaning that f is not injective. In Figure 12.4(b) there
are fewer pigeons than pigeon-holes, so clearly at least one pigeon-hole
remains empty, meaning that f is not surjective.
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Although the underlying idea expressed by these figures has little to
do with pigeons, it is nonetheless called the pigeonhole principle:
The Pigeonhole Principle
Suppose A and B are finite sets and f : A → B is any function. Then:
1. If |A| > |B|, then f is not injective.
2. If |A| < |B|, then f is not surjective.

Though the pigeonhole principle is obvious, it can be used to prove
some things that are not so obvious.
Example 12.7 Prove the following proposition.
Proposition If A is any set of 10 integers between 1 and 100, then there
exist two different subsets X ⊆ A and Y ⊆ A for which the sum of elements
in X equals the sum of elements in Y .

To illustrate what this proposition is saying, consider the random set

A = {
5,7,12,11,17,50,51,80,90,100

}
of 10 integers between 1 and 100. Notice that A has subsets X = {

5,80
}
and

Y = {
7,11,17,50

}
for which the sum of the elements in X equals the sum of

those in Y . If we tried to “mess up” A by changing the 5 to a 6, we get

A = {
6,7,12,11,17,50,51,80,90,100

}
which has subsets X = {

7,12,17,50
}
and Y = {

6,80
}
both of whose elements

add up to the same number (86). The proposition asserts that this is always
possible, no matter what A is. Here is a proof:

Proof. Suppose A ⊆ {
1,2,3,4, . . . ,99,100

}
and |A| = 10, as stated. Notice that

if X ⊆ A, then X has no more than 10 elements, each between 1 and 100,
and therefore the sum of all the elements of X is less than 100 ·10= 1000.
Consider the function

f : P(A)→ {
0,1,2,3,4, . . . ,1000

}
where f (X ) is the sum of the elements in X . (Examples: f

({
3,7,50

})= 60;
f
({

1,70,80,95
}) = 246.) As |P(A)| = 210 = 1024 > 1001 = ∣∣{0,1,2,3, . . . ,1000

}∣∣,
it follows from the pigeonhole principle that f is not injective. Therefore
there are two unequal sets X ,Y ∈ P(A) for which f (X ) = f (Y ). In other
words, there are subsets X ⊆ A and Y ⊆ A for which the sum of elements
in X equals the sum of elements in Y . ■
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Example 12.8 Prove the following proposition.

Proposition There are at least two Texans with the same number of
hairs on their heads.

Proof. We will use two facts. First, the population of Texas is more than
twenty million. Second, it is a biological fact that every human head
has fewer than one million hairs. Let A be the set of all Texans, and
let B = {

0,1,2,3,4, . . . ,1000000
}
. Let f : A → B be the function for which f (x)

equals the number of hairs on the head of x. Since |A| > |B|, the pigeonhole
principle asserts that f is not injective. Thus there are two Texans x and
y for whom f (x)= f (y), meaning that they have the same number of hairs
on their heads. ■

Proofs that use the pigeonhole principle tend to be inherently non-
constructive, in the sense discussed in Section 7.4. For example, the above
proof does not explicitly give us of two Texans with the same number of
hairs on their heads; it only shows that two such people exist. If we were
to make a constructive proof, we could find examples of two bald Texans.
Then they have the same number of head hairs, namely zero.

Exercises for Section 12.3
1. Prove that if six numbers are chosen at random, then at least two of them will

have the same remainder when divided by 5.

2. Prove that if a is a natural number, then there exist two unequal natural
numbers k and ` for which ak −a` is divisible by 10.

3. Prove that if six natural numbers are chosen at random, then the sum or
difference of two of them is divisible by 9.

4. Consider a square whose side-length is one unit. Select any five points from
inside this square. Prove that at least two of these points are within

p
2

2 units
of each other.

5. Prove that any set of seven distinct natural numbers contains a pair of numbers
whose sum or difference is divisible by 10.

6. Given a sphere S, a great circle of S is the intersection of S with a plane
through its center. Every great circle divides S into two parts. A hemisphere
is the union of the great circle and one of these two parts. Prove that if five
points are placed arbitrarily on S, then there is a hemisphere that contains
four of them.

7. Prove or disprove: Any subset X ⊆ {
1,2,3, . . . ,2n

}
with |X | > n contains two

(unequal) elements a,b ∈ X for which a | b or b | a.
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12.4 Composition
You should be familiar with the notion of function composition from algebra
and calculus. Still, it is worthwhile to revisit it now with our more
sophisticated ideas about functions.

Definition 12.5 Suppose f : A → B and g : B → C are functions with the
property that the codomain of f equals the domain of g. The composition
of f with g is another function, denoted as g◦ f and defined as follows: If
x ∈ A, then g◦f (x)= g( f (x)). Therefore g◦f sends elements of A to elements
of C, so g◦ f : A → C.

The following figure illustrates the definition. Here f : A → B, g : B → C,
and g◦ f : A → C. We have, for example, g◦ f (0)= g( f (0))= g(2)= 4. Be very
careful with the order of the symbols. Even though g comes first in the
symbol g◦f , we work out g◦f (x) as g( f (x)), with f acting on x first, followed
by g acting on f (x).

A

A

C

CB

3
2
1
0

3
2
1
0

7
6
5
4

7
6
5
4

3
2
1

f g

g ◦ f

Figure 12.5. Composition of two functions

Notice that the composition g ◦ f also makes sense if the range of f
is a subset of the domain of g. You should take note of this fact, but to
keep matters simple we will continue to emphasize situations where the
codomain of f equals the domain of g.

Example 12.9 Suppose A = {
a,b, c

}
, B = {

0,1
}
, C = {

1,2,3
}
. Let f : A → B

be the function f = {
(a,0), (b,1), (c,0)

}
, and let g : B → C be the function

g = {
(0,3), (1,1)

}
. Then g ◦ f = {

(a,3), (b,1), (c,3)
}
.

Example 12.10 Suppose A = {
a,b, c

}
, B = {

0,1
}
, C = {

1,2,3
}
. Let f : A → B

be the function f = {
(a,0), (b,1), (c,0)

}
, and let g : C → B be the function

g = {
(1,0), (2,1), (3,1)

}
. In this situation the composition g ◦ f is not defined

because the codomain B of f is not the same set as the domain C of g.
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Remember: In order for g◦ f to make sense, the codomain of f must equal
the domain of g. (Or at least be a subset of it.)

Example 12.11 Let f :R→R be defined as f (x) = x2 + x, and g :R→R be
defined as g(x) = x+1. Then g ◦ f : R→ R is the function defined by the
formula g ◦ f (x)= g( f (x))= g(x2 + x)= x2 + x+1.

Since the domains and codomains of g and f are the same, we can in
this case do a composition in the other order. Note that f ◦ g :R→R is the
function defined as f ◦ g (x)= f (g(x))= f (x+1)= (x+1)2 + (x+1)= x2 +3x+2.

This example illustrates that even when g◦ f and f ◦ g are both defined,
they are not necessarily equal. We can express this fact by saying function
composition is not commutative.

We close this section by proving several facts about function composition
that you are likely to encounter in your future study of mathematics. First,
we note that, although it is not commutative, function composition is
associative.

Theorem 12.1 Composition of functions is associative. That is if f : A → B,
g : B → C and h : C → D, then (h◦ g)◦ f = h◦ (g ◦ f ).

Proof. Suppose f , g,h are as stated. It follows from Definition 12.5 that
both (h◦ g)◦ f and h◦ (g ◦ f ) are functions from A to D. To show that they
are equal, we just need to show(

(h◦ g)◦ f
)
(x)=

(
h◦ (g ◦ f )

)
(x)

for every x ∈ A. Note that Definition 12.5 yields(
(h◦ g)◦ f

)
(x)= (h◦ g)( f (x))= h(g( f (x)).

Also (
h◦ (g ◦ f )

)
(x)= h(g ◦ f (x))= h(g( f (x))).

Thus (
(h◦ g)◦ f

)
(x)=

(
h◦ (g ◦ f )

)
(x),

as both sides equal h(g( f (x))). ■

Theorem 12.2 Suppose f : A → B and g : B → C. If both f and g are
injective, then g◦ f is injective. If both f and g are surjective, then g◦ f is
surjective.
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Proof. First suppose both f and g are injective. To see that g◦ f is injective,
we must show that g◦ f (x)= g◦ f (y) implies x = y. Suppose g◦ f (x)= g◦ f (y).
This means g( f (x)) = g( f (y)). It follows that f (x) = f (y). (For otherwise g
wouldn’t be injective.) But since f (x)= f (y) and f is injective, it must be
that x = y. Therefore g ◦ f is injective.

Next suppose both f and g are surjective. To see that g◦ f is surjective,
we must show that for any element c ∈ C, there is a corresponding element
a ∈ A for which g ◦ f (a) = c. Thus consider an arbitrary c ∈ C. Because g
is surjective, there is an element b ∈ B for which g(b) = c. And because
f is surjective, there is an element a ∈ A for which f (a) = b. Therefore
g( f (a))= g(b)= c, which means g ◦ f (a)= c. Thus g ◦ f is surjective. ■

Exercises for Section 12.4

1. Suppose A = {
5,6,8

}
, B = {

0,1
}
, C = {

1,2,3
}
. Let f : A → B be the function f ={

(5,1), (6,0), (8,1)
}
, and g : B → C be g = {

(0,1), (1,1)
}
. Find g ◦ f .

2. Suppose A = {
1,2,3,4

}
, B = {

0,1,2
}
, C = {

1,2,3
}
. Let f : A → B be

f = {
(1,0), (2,1), (3,2), (4,0)

}
,

and g : B → C be g = {
(0,1), (1,1), (2,3)

}
. Find g ◦ f .

3. Suppose A = {
1,2,3

}
. Let f : A → A be the function f = {

(1,2), (2,2), (3,1)
}
, and let

g : A → A be the function g = {
(1,3), (2,1), (3,2)

}
. Find g ◦ f and f ◦ g.

4. Suppose A = {
a,b, c

}
. Let f : A → A be the function f = {

(a, c), (b, c), (c, c)
}
, and let

g : A → A be the function g = {
(a,a), (b,b), (c,a)

}
. Find g ◦ f and f ◦ g.

5. Consider the functions f , g : R→ R defined as f (x) = 3px+1 and g(x) = x3. Find
the formulas for g ◦ f and f ◦ g.

6. Consider the functions f , g :R→R defined as f (x)= 1
x2+1 and g(x)= 3x+2. Find

the formulas for g ◦ f and f ◦ g.
7. Consider the functions f , g : Z×Z → Z×Z defined as f (m,n) = (mn,m2) and

g(m,n)= (m+1,m+n). Find the formulas for g ◦ f and f ◦ g.
8. Consider the functions f , g : Z×Z→ Z×Z defined as f (m,n) = (3m−4n,2m+n)

and g(m,n)= (5m+n,m). Find the formulas for g ◦ f and f ◦ g.
9. Consider the functions f :Z×Z→Z defined as f (m,n)= m+n and g :Z→Z×Z

defined as g(m)= (m,m). Find the formulas for g ◦ f and f ◦ g.
10. Consider the function f :R2 →R2 defined by the formula f (x, y)= (xy, x3). Find

a formula for f ◦ f .
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12.5 Inverse Functions
You may recall from calculus that if a function f is injective and surjective,
then it has an inverse function f −1 that “undoes” the effect of f in the
sense that f −1( f (x))= x for every x in the domain. (For example, if f (x)= x3,
then f −1(x) = 3

p
x.) We now review these ideas. Our approach uses two

ingredients, outlined in the following definitions.

Definition 12.6 Given a set A, the identity function on A is the func-
tion iA : A → A defined as iA(x)= x for every x ∈ A.

Example: If A = {
1,2,3

}
, then iA = {

(1,1), (2,2), (3,3)
}
. Also iZ = {

(n,n) : n ∈Z}
.

The identity function on a set is the function that sends any element of
the set to itself.

Notice that for any set A, the identity function iA is bijective: It is
injective because iA(x)= iA(y) immediately reduces to x = y. It is surjective
because if we take any element b in the codomain A, then b is also in the
domain A, and iA(b)= b.

Definition 12.7 Given a relation R from A to B, the inverse relation
of R is the relation from B to A defined as R−1 = {

(y, x) : (x, y) ∈ R
}
. In other

words, the inverse of R is the relation R−1 obtained by interchanging the
elements in every ordered pair in R.

For example, let A = {
a,b, c

}
and B = {

1,2,3
}
, and suppose f is the

relation f = {
(a,2), (b,3), (c,1)

}
from A to B. Then f −1 = {

(2,a), (3,b), (1, c)
}

and this is a relation from B to A. Notice that f is actually a function
from A to B, and f −1 is a function from B to A. These two relations are
drawn below. Notice the drawing for relation f −1 is just the drawing for f
with arrows reversed.

A AB B

c
b
a

c
b
a

3
2
1

3
2
1

f = {
(a,2), (b,3), (c,1)

}
f −1 = {

(2,a), (3,b), (1, c)
}

For another example, let A and B be the same sets as above, but consider
the relation g = {

(a,2), (b,3), (c,3)
}
from A to B. Then g−1 = {

(2,a), (3,b), (3, c)
}

is a relation from B to A. These two relations are sketched below.



212 Functions

A AB B

c
b
a

c
b
a

3
2
1

3
2
1

g = {
(a,2), (b,3), (c,3)

}
g−1 = {

(2,a), (3,b), (3, c)
}

This time, even though the relation g is a function, its inverse g−1 is
not a function because the element 3 occurs twice as a first coordinate of
an ordered pair in g−1.

In the above examples, relations f and g are both functions, and f −1 is
a function and g−1 is not. This raises a question: What properties does f
have and g lack that makes f −1 a function and g−1 not a function? The
answer is not hard to see. Function g is not injective because g(b)= g(c)= 3,
and thus (b,3) and (c,3) are both in g. This causes a problem with g−1

because it means (3,b) and (3, c) are both in g−1, so g−1 can’t be a function.
Thus, in order for g−1 to be a function, it would be necessary that g be
injective.

But that is not enough. Function g also fails to be surjective because
no element of A is sent to the element 1 ∈ B. This means g−1 contains no
ordered pair whose first coordinate is 1, so it can’t be a function from B to
A. If g−1 were to be a function it would be necessary that g be surjective.

The previous two paragraphs suggest that if g is a function, then it
must be bijective in order for its inverse relation g−1 to be a function.
Indeed, this is easy to verify. Conversely, if a function is bijective, then its
inverse relation is easily seen to be a function. We summarize this in the
following theorem.

Theorem 12.3 Let f : A → B be a function. Then f is bijective if and only
if the inverse relation f −1 is a function from B to A.

Suppose f : A → B is bijective, so according to the theorem f −1 is a
function. Observe that the relation f contains all the pairs (x, f (x)) for x ∈ A,
so f −1 contains all the pairs ( f (x), x). But ( f (x), x) ∈ f −1 means f −1( f (x))= x.
Therefore f −1◦ f (x)= x for every x ∈ A. From this we get f −1◦ f = iA. Similar
reasoning produces f ◦ f −1 = iB. This leads to the following definitions.

Definition 12.8 If f : A → B is bijective then its inverse is the function
f −1 : B → A. Functions f and f −1 obey the equations f −1 ◦ f = iA and
f ◦ f −1 = iB.
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You probably recall from algebra and calculus at least one technique
for computing the inverse of a bijective function f : to find f −1, start with
the equation y= f (x). Then interchange variables to get x = f (y). Solving
this equation for y (if possible) produces y= f −1(x). The next two examples
illustrate this.

Example 12.12 The function f :R→R defined as f (x)= x3 +1 is bijective.
Find its inverse.

We begin by writing y = x3 +1. Now interchange variables to obtain
x = y3 +1. Solving for y produces y= 3px−1. Thus

f −1(x)= 3px−1.

(You can check your answer by computing

f −1( f (x))= 3
√

f (x)−1= 3
√

x3 +1−1= x.

Therefore f −1( f (x))= x. Any answer other than x indicates a mistake.)

We close with one final example. Example 12.5 showed that the function
g :Z×Z→Z×Z defined by the formula g(m,n)= (m+n,m+2n) is bijective.
Let’s find its inverse. The approach outlined above should work, but we
need to be careful to keep track of coordinates in Z×Z. We begin by
writing (x, y)= g(m,n), then interchanging the variables (x, y) and (m,n) to
get (m,n)= g(x, y). This gives

(m,n)= (x+ y, x+2y),

from which we get the following system of equations:

x + y = m
x + 2y = n.

Solving this system using techniques from algebra with which you are
familiar, we get

x = 2m−n
y = n−m.

Then (x, y)= (2m−n,n−m), so g−1(m,n)= (2m−n,n−m).
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We can check our work by confirming that g−1(g(m,n))= (m,n). Doing
the math,

g−1(g(m,n)) = g−1(m+n,m+2n)

= (
2(m+n)− (m+2n), (m+2n)− (m+n)

)
= (m,n).

Exercises for Section 12.5

1. Check that the function f : Z→ Z defined by f (n) = 6− n is bijective. Then
compute f −1.

2. In Exercise 9 of Section 12.2 you proved that f : R− {
2
} → R− {

5
}
defined by

f (x)= 5x+1
x−2

is bijective. Now find its inverse.

3. Let B = {
2n : n ∈ Z} = {

. . . , 1
4 , 1

2 ,1,2,4,8, . . .
}
. Show that the function f : Z→ B

defined as f (n)= 2n is bijective. Then find f −1.
4. The function f :R→ (0,∞) defined as f (x)= ex3+1 is bijective. Find its inverse.
5. The function f :R→R defined as f (x)=πx− e is bijective. Find its inverse.
6. The function f :Z×Z→Z×Z defined by the formula f (m,n)= (5m+4n,4m+3n)

is bijective. Find its inverse.
7. Show that the function f :R2 →R2 defined by the formula f (x, y)= ((x2 +1)y, x3)

is bijective. Then find its inverse.
8. Is the function θ : P(Z)→P(Z) defined as θ(X )= X bijective? If so, what is its

inverse?
9. Consider the function f : R×N→N×R defined as f (x, y) = (y,3xy). Check that

this is bijective; find its inverse.

10. Consider f :N→Z defined as f (n)= (−1)n(2n−1)+1
4

. This function is bijective
by Exercise 18 in Section 12.2. Find its inverse.

12.6 Image and Preimage
It is time to take up a matter of notation that you will encounter in future
mathematics classes. Suppose we have a function f : A → B. If X ⊆ A, the
expression f (X ) has a special meaning. It stands for the set

{
f (x) : x ∈ X

}
.

Similarly, if Y ⊆ B then f −1(Y ) has a meaning even if f is not invertible.
The expression f −1(Y ) stands for the set

{
x ∈ A : f (x) ∈ Y

}
. Here are the

precise definitions.
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Definition 12.9 Suppose f : A → B is a function.
1. If X ⊆ A, the image of X is the set f (X )= {

f (x) : x ∈ X
}⊆ B.

2. If Y ⊆ B, the preimage of Y is the set f −1(Y )= {
x ∈ A : f (x) ∈Y

}⊆ A.

In words, the image f (X ) of X is the set of all things in B that f sends
elements of X to. (Roughly speaking, you might think of f (X ) as a kind of
distorted “copy” or “image” of X in B.) The preimage f −1(Y ) of Y is the set
of all things in A that f sends into Y .

Maybe you have already encountered these ideas in linear algebra, in
a setting involving a linear transformation T : V →W between two vector
spaces. If X ⊆V is a subspace of V , then its image T(X ) is a subspace of W.
If Y ⊆W is a subspace of W, then its preimage T−1(Y ) is a subspace of V .
(If this does not sound familiar, then ignore it.)

Example 12.13 Let f :
{
s, t,u,v,w, x, y, z

}→ {
0,1,2,3,4,5,6,7,8,9

}
, where

f = {
(s,4), (t,8), (u,8), (v,1), (w,2), (x,4), (y,6), (z,4)

}
.

Notice that f is neither injective nor surjective, so it certainly is not
invertible. Be sure you understand the following statements.
1. f

({
s, t,u, z

})= {
8,4

}
2. f

({
s, x, z

})= {
4
}

3. f
({

s,v,w, y
})= {

1,2,4,6
}

4. f −1({
4
})= {

s, x, z
}

5. f −1({
4,9

})= {
s, x, z

}
6. f −1({

9
})=;

7. f −1({
1,4,8

})= {
s, t,u,v, x, z

}
It is important to realize that the X and Y in Definition 12.9 are

subsets (not elements!) of A and B. Note that in the above example we
had f −1({

4
})= {

s, x, z
}
, while f −1(4) has absolutely no meaning because the

inverse function f −1 does not exist. Likewise, there is a subtle difference
between f

({
s
})= {

4
}
and f (s)= 4. Be careful.

Example 12.14 Consider the function f : R → R defined as f (x) = x2.
Note that f

({
0,1,2

})= {
0,1,4

}
and f −1({

0,1,4
})= {−2,−1,0,1,2

}
. This shows

f −1( f (X )) 6= X in general.
Using the same f , now check your understanding of the following

statements involving images and preimages of intervals: f ([−2,3]) = [0,9],
and f −1([0,9])= [−3,3]. Also f (R)= [0,∞) and f −1([−2,−1])=;.
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If you continue with mathematics you are likely to encounter the
following results. For now, you are asked to prove them in the exercises.

Theorem 12.4 Suppose f : A → B is a function. Let W , X ⊆ A, and Y , Z ⊆ B.
Then:
1. f (W ∩ X )⊆ f (W)∩ f (X )
2. f (W ∪ X )= f (W)∪ f (X )
3. f −1(Y ∩Z)= f −1(Y )∩ f −1(Z)
4. f −1(Y ∪Z)= f −1(Y )∪ f −1(Z)
5. X ⊆ f −1( f (X ))
6. f ( f −1(Y ))⊆Y .

Exercises for Section 12.6

1. Consider the function f : R→ R defined as f (x) = x2 + 3. Find f ([−3,5]) and
f −1([12,19]).

2. Consider the function f :
{
1,2,3,4,5,6,7

}→ {
0,1,2,3,4,5,6,7,8,9

}
given as

f = {
(1,3), (2,8), (3,3), (4,1), (5,2), (6,4), (7,6)

}
.

Find: f
({

1,2,3
})
, f

({
4,5,6,7

})
, f (;), f −1({

0,5,9
})

and f −1({
0,3,5,9

})
.

3. This problem concerns functions f :
{
1,2,3,4,5,6,7

} → {
0,1,2,3,4

}
. How many

such functions have the property that
∣∣ f −1({

3
})∣∣= 3?

4. This problem concerns functions f :
{
1,2,3,4,5,6,7,8

} → {
0,1,2,3,4,5,6

}
. How

many such functions have the property that
∣∣ f −1({

2
})∣∣= 4?

5. Consider a function f : A → B and a subset X ⊆ A. We observed in Section 12.6
that f −1( f (X )) 6= X in general. However X ⊆ f −1( f (X )) is always true. Prove this.

6. Given a function f : A → B and a subset Y ⊆ B, is f ( f −1(Y )) = Y always true?
Prove or give a counterexample.

7. Given a function f : A → B and subsets W , X ⊆ A, prove f (W ∩ X )⊆ f (W)∩ f (X ).
8. Given a function f : A → B and subsets W , X ⊆ A, then f (W ∩ X )= f (W)∩ f (X ) is

false in general. Produce a counterexample.
9. Given a function f : A → B and subsets W , X ⊆ A, prove f (W ∪ X )= f (W)∪ f (X ).

10. Given f : A → B and subsets Y , Z ⊆ B, prove f −1(Y ∩Z)= f −1(Y )∩ f −1(Z).
11. Given f : A → B and subsets Y , Z ⊆ B, prove f −1(Y ∪Z)= f −1(Y )∪ f −1(Z).
12. Consider f : A → B. Prove that f is injective if and only if X = f −1( f (X )) for all

X ⊆ A. Prove that f is surjective if and only if f ( f −1(Y ))=Y for all Y ⊆ B.
13. Let f : A → B be a function, and X ⊆ A. Prove or disprove: f

(
f −1( f (X ))

)= f (X ).
14. Let f : A → B be a function, and Y ⊆ B. Prove or disprove: f −1(

f ( f −1(Y ))
)= f −1(Y ).


