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1. Function spaces

When working with numbers such as real numbers x ∈ R or complex numbers
z ∈ C, there is an unambiguous notion of a magnitude |x| or |z| of a number,
with which to measure which numbers are large and which are small. One can also
use this notion of magnitude to define a distance |x − y| or |z − w| between two
real numbers x, y ∈ R, or between two complex numbers z, w ∈ C, thus giving a
quantitative measure of which pairs of numbers are close and which ones are far
apart.

The situation becomes more complicated however when dealing with objects with
more degrees of freedom. Consider for instance the problem of determining the
“magnitude” of a three-dimensional rectangular box. There are several candidates
for such a magnitude: length, width, height, volume, surface area, diameter (i.e.
length of the long diagonal), eccentricity, and so forth. Unfortunately, these mag-
nitudes do not give equivalent comparisons: box A may be longer and have more
volume than box B, but box B may be wider and have more surface area, and so
forth. Because of this, one abandons the idea that there should only be one notion
of “magnitude” for boxes, and instead accept that there are instead a multiplicity
of such notions, all of which have some utility. Thus for some applications one may
wish to distinguish the large volume boxes from the small volume boxes, while in
others one may wish to distinguish the eccentric boxes from the round boxes. Of
course, there are several relationships between the different notions of magnitude
(e.g. the isoperimetric inequality allows one to obtain an upper bound for the vol-
ume in terms of the surface area), so the situation is not as disorganized as it may
first appear.

Now we turn to functions with a fixed domain and range (e.g. functions f :
[−1, 1] → R from the interval [−1, 1] to the real line R). These objects have
infinitely many degrees of freedom, and so it should not be surprising that there
are now infinitely many distinct notions of “magnitude”, all of which provide a
different answer to the question “how large is a given function f?”, or to the closely
related question “how close together are two functions f, g?”. In some cases, certain
functions may have infinite magnitude by one such measure, and finite magnitude
by another; similarly, a pair of functions may be very close by one measure and very
far apart by another. Again, this situation may seem chaotic, but it simply reflects
the fact that functions have many distinct characteristics - some are tall, some are
broad, some are smooth, some are oscillatory, and so forth - and depending on the
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application at hand, one may need to give more weight to one of these characteris-
tics than to others. In analysis, this is embodied in the variety of standard function
spaces, and their associated norms, which are available to describe functions both
qualitatively and quantitatively. While these spaces and norms are mostly dis-
tinct from each other, they are certainly interrelated, for instance through such
basic facts of analysis such as approximability by test functions (or in some cases
by polynomials), by embeddings such as Sobolev embedding, and by interpolation
theorems; we shall discuss these statements in more detail later.

More formally, a function space is a class X of functions (with fixed domain and
range), together with a norm1 which assigns a non-negative number ‖f‖X to every
function f in X; this number is the function space’s way of measuring how large
a function is. It is common (though not universal) for the class X of functions
to consist precisely of those functions for which the definition of the norm ‖f‖X

makes sense and is finite; thus the mere fact that a function f has membership in
a function space X conveys some qualitative information about that function (e.g.
it may imply some regularity, some decay, some boundedness, or some integrability
on the function f), while the norm ‖f‖X supplements this qualitative information
with a more quantitative measurement of the function (e.g. how regular is f? how
much decay does f have? by which constant is f bounded? what is the integral of
f?). Typically we assume that the function space X and its associated norm ‖ · ‖X

obey a certain number of axioms; for instance, a rather standard set of axioms is
that X is a real or complex vector space, that the norm is non-degenerate (‖f‖X >
0 for non-zero f), homogeneous of degree 1, and obeys the triangle inequality
‖f + g‖X ≤ ‖f‖X + ‖g‖X ; furthermore, the space X when viewed using the metric
d(f, g) := ‖f−g‖X is a complete metric space. Spaces satisfying all of these axioms
are known as Banach spaces, and enjoy a number of good properties. A majority
(but certainly not all) of the standard function spaces considered in analysis are
Banach spaces.

We now present a selected sample of commonly used function spaces. For simplicity
we shall consider only spaces of functions from [−1, 1] to R.

• The space C0([−1, 1]) of continuous functions. This is a very familiar
space of functions, and one which is regular enough to avoid many of the
technical subtleties associated with very rough functions. Given that con-
tinuous functions on a compact interval such as [−1, 1] are automatically
bounded, it is perhaps not surprising that the most natural norm to place
on this space is the supremum norm2

‖f‖L∞([−1,1]) := sup{|f(x)| : x ∈ [−1, 1]};

1Strictly speaking, this only describes normed function spaces, which are a major and important

sub-class of function spaces, but not the only one. For instance one can consider the weaker notion

of a topological function space, in which there is no precise notion of magnitude to determine which
functions are large and which are small, but instead there is just the notion of convergence, to
determine which sequences (or nets) of functions converge to zero, and which ones do not.

2Strictly speaking, the supremum (or least upper bound) should be replaced by the essential

supremum (or essential least upper bound), i.e. the least L > 0 which is an essential upper bound

in the sense that |f(x)| ≤ L for almost every x rather than every x, so that we allow a measure
zero set of exceptional x. This subtle distinction is only necessary when we generalize beyond the
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this is also the norm associated with uniform convergence, thus a sequence
f1, f2, . . . converges uniformly to f if and only if ‖fn − f‖L∞([−1,1]) → 0
as n → ∞. A basic result here is the Weierstrass M -test, which as-
serts that if a sequence f1, f2, . . . is absolutely convergent in C0([−1, 1])
(i.e.

∑∞
n=1 ‖fn‖∞ < M for some finite M) then it is also condition-

ally convergent in C0([−1, 1]) (i.e. there exists f ∈ C0([−1, 1]) such that
‖f −

∑N
n=1 fn‖L∞([−1,1]) → 0 as N →∞). Actually, the same statement is

true for any Banach space (and is in fact one of the defining characteristics
of such spaces). This space is also a basic example of a Banach algebra - a
Banach space which is also closed under multiplication.

• The space C1([−1, 1]) of continuously differentiable functions. This
is a space which has more restrictive membership than C0([−1, 1]); func-
tions must not only be continuous but continuously differentiable. (Merely
being differentiable is not as useful trait as continuous differentiability; for
instance, it is not enough to guarantee the fundamental theorem of calculus
f(b)− f(a) =

∫ b

a
f ′(x) dx). The supremum norm here is no longer natural,

because a sequence of continuously differentiable functions (e.g. the partial
sums of the Fourier series

∑∞
n=1

sin(nx)
n2 ) can converge in this norm to a

non-differentiable function. Instead, the natural norm here is the C1 norm

‖f‖C1([−1,1]) := ‖f‖L∞([−1,1]) + ‖f ′‖L∞([−1,1]);

thus the C1 norm measures both the size of a function and the size of its
derivative. (Merely controlling the latter would be unsatisfactory, since
it would give constant functions a norm of zero). Thus this is a norm
which gives more weight to regularity than the supremum norm. One can
similarly define the space C2([−1, 1]) of twice continuously differentiable
functions, and so forth, all the way up to the space C∞([−1, 1]) of infinitely
differentiable functions; there are also fractional versions of these spaces,
such as C0,α([−1, 1]), the space of α-Hölder continuous functions (with
C0,1([−1, 1]) being the space of Lipschitz continuous functions). We will
not discuss these variants here.

• The Lebesgue spaces Lp([−1, 1]) of pth-power integrable functions.
The supremum norm ‖f‖∞ mentioned earlier gives uniform control on the
sizes of |f(x)| for all x ∈ [−1, 1]. However, it has the feature of being
unstable: if one changes the value of f on a very small set to be very large,
this can dramatically increase the supremum norm of f even if f is very
small elsewhere. It is thus sometimes more advantageous to work with
norms that are less susceptible to such fluctuations, such as the Lp norms

‖f‖Lp([−1,1]) := (
∫ 1

−1

|f(x)|p dx)1/p

which we define for 1 ≤ p < ∞ and for any measurable f . (One can also
define these norms for 0 < p < 1 but they are less useful, for instance they
no longer obey the triangle inequality). The function space Lp([−1, 1]) is
then the class of measurable functions for which the above norm is finite.
The L∞([−1, 1]) norm is the limiting case of the Lp norms as p →∞ (more

case when f is continuous, since for continuous functions the supremum and essential supremum
coincide.
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precisely, if f is bounded and measurable then ‖f‖Lp([−1,1]) converges to
‖f‖L∞([−1,1]) as p → ∞). A particularly important norm is the L2 norm
which is the norm which most resembles the familiar Pythagorean norm in
Euclidean space; indeed, there is an inner product

〈f, g〉 :=
∫ 1

−1

f(x)g(x) dx

which is to the L2 norm as the Euclidean dot product is to the Pythagorean
norm. This space is exceptionally rich in symmetries; there is a wide va-
riety of unitary transformations which preserve this space. While the L∞

norm is concerned solely with the “height” of a function, the Lp norms
are instead concerned with a combination of the “height” and “width” of
a function. Other such combinations are possible, leading to a wider class
of rearrangement-invariant spaces which include Lorentz and Orlicz spaces
(which we will not discuss here).

• The Sobolev space W k,p([−1, 1]) of pth-power integrable functions
with k degrees of regularity. The Lebesgue norms control to some
extent the height and width of a function, but say nothing about regularity;
there is no reason why a function in Lp should be differentiable or even
continuous. To incorporate such information one often turns to the Sobolev
norms ‖f‖W k,p([−1,1]), defined for 1 ≤ p ≤ ∞ and k ≥ 0 by3

‖f‖W k,p([−1,1]) :=
k∑

j=0

‖djf

dxj
‖Lp([−1,1]),

and then W k,p([−1, 1]) is the space of functions for which this norm is fi-
nite. Thus, a function lies in W k,p if it and its first k derivatives are pth

power integrable. There is one subtlety, which is that we do not require f
to be k times differentiable in the classical sense, but merely in the weak
sense (the sense of distributions). For instance, the function f(x) = |x| has
a weak derivative f ′(x) = sgn(x), which lies (for instance) in L∞([−1, 1]),
and thus f lies in W 1,∞([−1, 1]) (which is the space of Lipschitz-continuous
functions). We require these generalized differentiable functions in order to
ensure that the space W k,p([−1, 1]) is complete. Sobolev norms are par-
ticularly natural and useful in the analytical study of partial differential
equations and mathematical physics, for instance the W 1,2 norm can be in-
terpreted as (the square root of) an “energy” of a function. While we only
defined these norms for k a non-negative integer, one can in fact generalize
these norms to arbitrary real exponents k by means of fractional differen-
tiation and fractional integration, or via the Fourier transform. One of the
basic tools in this theory is the Sobolev embedding theorem, which describes
which Sobolev norms control which other norms; for instance, a function
which is in W 1,1([−1, 1]) (so it is integrable, and its weak derivative is also
integrable) will automatically lie in C0([−1, 1]). There are also many spaces
of a similar flavor to Sobolev spaces (in that they quantify both integra-
bility and regularity), such as Besov spaces, Triebel-Lizorkin spaces, and
Hölder spaces, or the space of functions of bounded variation.

3This is not the only definition used in the literature; many other formulations exist, but they

are all equivalent up to constants, which is usually good enough for most applications in analysis.
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There are many ways in which knowledge of the structure of function spaces can
assist in the study of functions. For instance, if one has a good basis for the
function space, so that every function in the space is a (possibly infinite) linear
combination of basis elements, and one has some quantitative estimates on how
this linear combination converges to the original function, then this allows one to
represent that function efficiently in terms of a number of co-efficients, and also
allows one to approximate that function by smoother functions. For instance, one
basic result about L2([−1, 1]) is the Plancherel theorem, which asserts among other
things that for every function f ∈ L2([−1, 1]), the Fourier series

∑∞
n=−∞ f̂(n)eπinx,

where f̂(n) := 1
2

∫ 1

−1
f(x)e−πinx are the Fourier coefficients of f , is convergent to

f in the L2 sense, or in other words that

‖f(x)−
N∑

n=−N

f̂(n)eπinx‖L2([−1,1]) → 0 as N →∞.

In particular, this shows that any function in L2([−1, 1]) can be approximated to
arbitrary accuracy in the L2 sense by a trigonometric polynomial

∑N
n=−N f̂(n)eπin

of finite degree. This result can be viewed as a statement about the extent to which
the functions eπin, n ∈ Z form a basis of L2([−1, 1]); in this case, they form a very
good basis (they are essentially an orthonormal basis, in fact) and are very useful.

Another very basic fact about function spaces is that certain function spaces embed
into others, so that membership in one space automatically conveys membership
in other spaces also, and furthermore there is often some inequality that controls
one norm by the other. For instance, membership in a high-regularity space such
as C1([−1, 1]) automatically implies membership in a low regularity space such as
C0([−1, 1]), whereas membership in a high-integrability space such as L∞([−1, 1])
implies membership in a low integrability space such as L1([−1, 1]) (although this
statement is false if [−1, 1] is replaced by a set of infinite measure, such as the
real line R). These inclusions are not reversible; however one does have the Sobolev
embedding theorem, which allows one to “trade” regularity for integrability, showing
that spaces with lots of regularity but low integrability automatically embed into
spaces with low regularity but high integrability; a sample estimate of this type is

‖f‖L∞([−1,1]) ≤ ‖f‖W 1,1([−1,1]).

Another very useful concept is that of duality. Given a function space X, one can
define the dual space X∗, which formally is defined as the class of all continuous
linear functionals on X, or more precisely all maps ω : X → R (or ω : X → C, if
the function space is complex-valued) which are linear and continuous with respect
to the norm of X. While linear functionals are not, strictly speaking, functions,
in many cases one can canonically identify linear functionals with functions (or
to some generalized concept of function, such as a distribution). For instance, if
1 < p < ∞ and ω : Lp([−1, 1]) → R is a continuous linear functional on Lp([−1, 1]),
then there exists a unique4 function g ∈ Lq([−1, 1]), where 1 < q < ∞ is the dual

4More precisely, unique up to sets of measure zero. When dealing with Lebesgue spaces such

as Lp([−1, 1]), one often declares two functions to be equivalent if they agree except on sets of
Lebesgue measure zero.
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exponent of p (so 1
p + 1

q = 1), such that

ω(f) :=
∫ 1

−1

f(x)g(x) dx for all f ∈ Lp([−1, 1]).

The integral on the right-hand side turns out to always be absolutely convergent,
thanks to Hölder’s inequality. Because of this fact, we can canonically identify
the dual Lp([−1, 1])∗ of Lp([−1, 1]) with Lq([−1, 1]). One can sometimes analyze
functions in a function space by instead studying how the linear functionals in the
dual space act on those functions; related to this, one can often analyze a continuous
linear operator T : X → Y from one function space to another by first considering
the adjoint operator T ∗ : Y ∗ → X∗, defined for all linear functionals ω : Y → R by
letting T ∗ω : X → R be the functional T ∗ω(x) := ω(Tx).

We mention one more important fact about function spaces, which is that certain
function spaces X “interpolate” between two other function spaces X0, X1. The
precise definition of this is technical, but roughly means that every function in X
can be decomposed5 in a number of specific ways as the sum of a function in X0 and
a function in X1, and conversely any function which lies in both X0 and X1 will then
lie in X. For instance, given any function f ∈ L2([−1, 1]) and any cutoff parameter
λ > 0, we can partition f := f≤λ + f>λ, where f≤λ(x) is defined to be equal to
f(x) when |f(x)| ≤ λ and zero otherwise, whereas f>λ(x) is equal to f(x) when
|f(x)| > λ and zero otherwise. One can then verify that f≤λ lies in L∞([−1, 1])
with a norm of at most λ, whereas f>λ lies in L1([−1, 1]) with a norm of at most
‖f‖2

L2([−1,1])/λ. Conversely, if a function g lies in L∞([−1, 1]) with norm at most λ

and also lies in L1([−1, 1]) with norm at most A2/λ, then one can easily verify that
g will also lie in L2([−1, 1]) with norm at most A. These two facts basically assert
that L2([−1, 1]) is an interpolation space between L∞([−1, 1]) and L1([−1, 1]); this
has a number of consequences, notably the Marcinkiewicz interpolation theorem,
which among other things asserts that any linear operator which is bounded from
L∞([−1, 1]) to L∞([−1, 1]), and also bounded from L1([−1, 1]) to L1([−1, 1]), is
automatically also bounded from L2([−1, 1]) to L2([−1, 1]). Interpolation methods
are remarkably powerful. For instance, they can be used to give a short proof of
Young’s inequality

(
∫ ∞

−∞
|f ∗ g(x)|r dx)1/r ≤ (

∫ ∞

−∞
|f(x)|p dx)1/p(

∫ ∞

−∞
|g(x)|q dx)1/q

whenever 1 ≤ p, q, r < ∞ are such that 1
p + 1

q = 1
r + 1, and f and g are measurable

functions for which the right-hand side is finite, and f ∗g(x) :=
∫∞
−∞ f(y)g(x−y) dy

is the convolution of f and g. It is more difficult (though not impossible) to prove
this inequality without the aid of interpolation theory.
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5Strictly speaking, this is what it means for X to be a real interpolation space of X0 and X1.

There is also the notion of being a complex interpolation space, which roughly means that every

function in X can be embedded in an analytic family of functions, which lie in X0 for some values
of an analytic parameter and lie in X1 for other values.


