
Function Spaces

A function space is a topological space whose points are functions. There are many
different kinds of function spaces, and there are usually several different topologies
that can be placed on a given set of functions. These notes describe three topologies
that can be placed on the set of all functions from a set X to a space Y : the product
topology, the box topology, and the uniform topology.

Sets of Functions

We will be using the following notation for sets of functions:

Notation: Sets of Functions
If X and Y are sets, let Y X denote the set of all functions from X to Y .

This notation may seem a bit confusing: in what sense is the set Y X a power
of Y ? The idea is that Y X is a generalization of the finite powers Y n. The following
example should explain this connection.

EXAMPLE 1 Let Y be a set, and let X = {x1, . . . , xn} be a finite set with n
elements. Then the set Y X consists of all functions {x1, . . . , xn} → Y . Any such
function can be thought of as an n tuple of points in Y :

f =
(
f(x1), f(x2), . . . , f(xn)

)
.

Thus we can identify Y X with the Cartesian power Y n = Y × · · · × Y .
In fact, the nth Cartesian power Y n is sometimes defined as the set Y {1,...,n} of all

functions {1, . . . , n} → Y . Using this definition, every ordered n-tuple (y1, . . . , yn) is
actually a function, with yk being an alternative notation for y(k). ¥
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In general, the set Y X can be viewed as a product of copies of Y :

Y X =
∏
x∈X

Y

EXAMPLE 2 Let N be the natural numbers. If Y is a set, then Y N (denoted Y ω

in the book) is the set of all functions N→ Y . This can be thought of as an infinite
product:

Y N =
∏

n∈N
Y = Y × Y × Y × · · · .

Every element of Y N can be viewed as an infinite tuple (or sequence) of elements of Y :

(y1, y2, y3, . . .) ¥

EXAMPLE 3 Consider the set RR of all functions R→ R. This set can be viewed
as a product of copies of R:

RR =
∏

x∈R
R.

The idea here is that a function f : R → R can be thought of as a vector with one
coordinate for each x ∈ R. ¥

Of course, we have yet to define a topology on the function space Y X . Among
other things, such a topology would give us a notion of convergence for functions—
given a sequence of functions fn ∈ Y X , we would be able to say whether it converges
to a function f ∈ Y X .

Pointwise Convergence

We are used to the idea of a sequence xn of real numbers converging to some real
number x. More generally, we know what it means for a sequence xn of points in a
topological space to converge to a point x. But what does it mean for a sequence of
functions to converge to a function?

The following example should be illuminating:

EXAMPLE 4 Consider the sequence of functions fn : [0, 2π] → R defined as follows:

f1(x) = sin(x), f2(x) = 2 sin
(x

2

)
, f3(x) = 3 sin

(x

3

)
, . . .

The graphs of the first 20 functions in this sequence is shown below, along with the
line y = x:
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As you can see, the graphs of successive functions in this sequence become closer and
closer to the graph of the function f(x) = x. Thus, it is reasonable to say that the
sequence fn converges to the function f . ¥

Definition: Pointwise Convergence
Let X be a set, let Y be a topological space, and let fn : X → Y be a sequence of
functions. We say that fn converges pointwise to a function f : X → Y if for
every x ∈ X the sequence fn(x) converges to f(x) in Y .

That is, the sequence of functions fn converges pointwise to f if

lim
n→∞

fn(x) = f(x)

for each individual value of x.

EXAMPLE 5 The functions

fn(x) = n sin
(x

n

)

from the previous example converges pointwise to the function f(x) = x. In particu-
lar,

lim
n→∞

n sin
(x

n

)
= x

for every x ∈ [0, 2π]. ¥
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EXAMPLE 6 Here is an example involving functions N → R, which we write as
infinite tuples. Consider the following sequence of functions:

f1 = (1, 2, 3, 4, 5, . . .)

f2 =
(

1
2
, 2

2
, 3

2
, 4

2
, 5

2
, . . .

)

f3 =
(

1
3
, 2

3
, 3

3
, 4

3
, 5

3
, . . .

)
...

For any fixed k ∈ N, the sequence fn(k) consists of the numbers k/n, and thus
converges to 0. (Each of these sequences corresponds to a column of numbers above.)
Therefore, the functions fn converge pointwise to the zero function:

f = (0, 0, 0, 0, 0, . . .). ¥

The Product Topology

Our next task is to define a topology on Y X under which convergence of sequences
corresponds to pointwise convergence of functions.

Definition: The Product Topology
Let X be a set, and let Y be a topological space. Given any x ∈ X and any open
set U ⊂ Y , define

S(x, U) = {f ∈ Y X | f(x) ∈ U}.
Then the sets S(x, U) form a subbasis for a topology on Y X , known as the product
topology.

As the following example illustrates, this product topology agrees with the product
topology for the Cartesian product of two sets defined in §15.

EXAMPLE 7 If Y is a topological space, then the product Y ×Y can be viewed as
a function space Y X , where X = {1, 2}. If U ⊂ Y is open, then

S(1, U) = U × Y and S(2, U) = Y × U.

It is easy to see that sets of this form are a subbasis for the product topology on
Y ×Y as defined in §15. Thus the definition above agrees with our existing definition
of the product topology. ¥
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Be aware that the sets S(x, U) are a subbasis for the product topology, not a
basis. A basic open set would be a finite intersection of subbasic open sets:

S(x1, U1) ∩ · · · ∩ S(xn, Un).

Because this intersection is finite, a basic open set can include restrictions on only
finitely many different function values.

Although our definition of a subbasic S(x, U) involves an arbitrary open set U , it
is often helpful to restrict to the case where U is a basic open set:

Theorem 1 Subbasis for the Product Topology

Let X be a set, let Y be a topological space, and let B be a basis for the topology
on Y . Then the collection

{S(x,B) | x ∈ X, B ∈ B}

is a subbasis for the product topology on Y X .

PROOF Consider an element S(x, U) of the standard subbasis for the product topol-
ogy. Then U is an open subset of Y , so U can be expressed as the union of some
family {Bα}α∈J of elements of B. Therefore

S(x, U) =
⋃
α∈J

S(x,Bα),

which proves S(x, U) lies in the topology generated by the sets S(x,B). ¥

EXAMPLE 8 Consider the space RN (or Rω) of infinite sequences in R. This space
can be thought of as an infinite product:

RN = R × R × R × · · · .

If (c, d) is an open interval in R, then

S(3, (c, d)) = R × R × (c, d) × R × R × · · ·

is an example of a subbasic open set in RN. If (a, b) is another open interval in R,
then

S(1, (a, b)) ∩ S(3, (c, d)) = (a, b) × R × (c, d) × R × R × · · ·
is an example of a basic open set in RN. In general, a basic open set in RN may
involve restrictions on any finite number of coordinates of a tuple. ¥
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As we have indicated, convergence in the product topology is the same as pointwise
convergence of functions:

Theorem 2 Convergence in the Product Topology

Let X be a set, let Y be a topological space, let fn be a sequence in Y X , and let
f ∈ Y X . Then fn → f under the product topology if and only if the functions
fn converge pointwise to f .

PROOF Suppose first that fn converges to f under the product topology, and let
x ∈ X. If U is a neighborhood of f(x) in Y , then S(x, U) is a neighborhood of f
in Y X , so fn ∈ S(x, U) for all but finitely many n. It follows that fn(x) ∈ U for all
but finitely many n, which proves that fn(x) → f(x).

For the converse, suppose that fn converges pointwise to f , and let S(x, U)
be a neighborhood of f in Y X . Then U is a neighborhood of f(x) in Y . Since
fn(x) → f(x), it follows that fn(x) ∈ U for all but finitely many n. Then fn ∈ S(x, U)
for all but finitely many n, which proves that fn → f under the product topology. ¥

Because of this theorem, the product topology on a function space is sometimes
referred to as the topology of pointwise convergence.

The product topology has several other nice properties. Here is one of the most
important:

Theorem 3 Continuous Functions in the Product Topology

Let X be a set, and let Y be a topological space. For each x ∈ X, let πx : Y X → Y
be the projection function πx(f) = f(x). Then:

1. Each function πx is continuous under the product topology.

2. The product topology is the smallest topology on Y X for which all of the
functions πx are continuous.

3. If A is a topological space and g : A → Y X is a function, then g is continuous
under the product topology if and only if every function πx ◦ g : A → Y is
continuous.
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PROOF Observe that, if x ∈ X and U ⊂ Y is open, then

π−1
x (U) = S(x, U).

Thus the subbasic open sets S(x, U) for the product topology are precisely the preim-
ages of open sets under the projections πx. This proves assertions (1) and (2).

For the last assertion, let g : A → Y X be a function, and suppose that each compo-
sition πx◦g is continuous. Then g−1(S(x, U)) = (πx◦g)−1(U) is open for each subbasic
open set S(x, U) in Y X , which proves that g is continuous. The converse follows from
(1) and the fact that the composition of continuous functions is continuous. ¥

The Box Topology

We now discuss a second possible topology on Y X .

Definition: The Box Topology
Let X be a set and let Y be a topological space. Given a family {Ux}x∈X of open
sets in Y , the product

∏
x∈X

Ux = {f ∈ Y X | f(x) ∈ Ux for every x ∈ X}

is called an open box in Y X . The collection of all open boxes forms a basis for a
topology on Y X , known as the box topology.

As with the product topology, it is not necessary to use arbitrary open subsets of
Y to form the basis for Y X :

Theorem 4 Basis for the Box Topology

Let X be a set, let Y be a topological space, and let B be a basis for the topology
on Y . Then the collection of sets

{∏ Bx | Bx ∈ B for each x ∈ X}

is a basis for the box topology on Y X .

PROOF Let U =
∏

Ux be an arbitrary open box in Y X , and let f ∈ U . Then
f(x) ∈ Ux for each x ∈ X, so there exists a Bx ∈ B such that x ∈ Bx and Bx ⊂ Ux.
Then f ∈ ∏

Bx, and
∏

Bx ⊂ U . ¥
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EXAMPLE 9 Consider again the function space RN. For any sequence of open
intervals (a1, b1), (a2, b2), . . . in R, the set

(a1, b1)× (a2, b2)× (a3, b3)× · · ·

is an example of a basic open set in the box topology. Note that such a set is not
open in the product topology. ¥

Though the box topology may seem more natural than the product topology, it
not actually very useful. In particular, very few sequences of functions converge in
the box topology:

EXAMPLE 10 Consider the following sequence in RN:

f1 = (1, 1, 1, 1, 1, . . .)

f2 =
(

1
2
, 1

2
, 1

2
, 1

2
, 1

2
, . . .

)

f3 =
(

1
3
, 1

3
, 1

3
, 1

3
, 1

3
, . . .

)

...

This sequence converges to the point f = (0, 0, 0, . . .) in the product topology, and
seems that fn should converge to f under any “reasonable” notion of convergence.

However, the sequence fn does not converge to f in the box topology. In particular,
the open box

(−1, 1)× (−1
2
, 1

2

)× (−1
3
, 1

3

)× (−1
4
, 1

4

)× · · ·
contains f , but does not contain fn for any value of n. ¥

Because the box topology does not correspond to a useful notion of convergence
of functions, it is hardly ever used for applications in functional analysis. Its primary
purpose is to serve as a counterexample for statements about arbitrary topological
spaces. For example, one might ask whether every topological space is homeomor-
phic to a metric space. The answer is no, with the box topology providing an easy
counterexample:

Theorem 5 A Non-Metrizable Space

There does not exist a metric for the box topology on RN.
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PROOF We give an argument involving neighborhoods of the origin. See pg. 132
of Munkres for a proof involving sequences.

Suppose that d were a metric on RN whose corresponding metric topology were
the same as the box topology. Let 0 denote the zero function (0, 0, 0, . . .) in RN, and
consider the following sequence of open balls:

Bd(0, 1) ⊃ Bd(0, 1/2) ⊃ Bd(0, 1/3) ⊃ · · ·
By assumption, each of these balls is open in the box topology, so each ball Bd(0, 1/n)
must contain a basic open box around 0. Thus, there exist positive real numbers aij

such that:

Bd(0, 1) ⊃ (−a11, a11)× (−a12, a12)× (−a13, a13)× · · ·
Bd(0, 1/2) ⊃ (−a21, a21)× (−a22, a22)× (−a23, a23)× · · ·
Bd(0, 1/3) ⊃ (−a31, a31)× (−a32, a32)× (−a33, a33)× · · ·

...

Without loss of generality, we may assume that the intervals in each column are
shrinking, i.e. that a1k ≥ a2k ≥ a3k ≥ · · · for each k. Now consider the open box
formed by the intervals along the diagonal:

(−a11, a11)× (−a22, a22)× (−a33, a33)× · · · .

This set is a neighborhood of 0 in the box topology, but it cannot contain any of the
open balls Bd(0, 1/n), a contradiction. Thus no such metric d exists, and RN under
the box topology is not metrizable. ¥

Uniform Convergence

There are a few problems with pointwise convergence that make it less than useful for
many applications. To illustrate the problem, we present two examples of sequences
of functions that converge pointwise in a counterintuitive way.

EXAMPLE 11 Consider the following sequence of functions in RN:

f1 = (1, 1, 1, 1, 1, 1, 1, . . .)

f2 = (0, 2, 2, 2, 2, 2, 2, . . .)

f3 = (0, 0, 3, 3, 3, 3, 3, . . .)

f4 = (0, 0, 0, 4, 4, 4, 4, . . .)

...

Since each column is eventually zero, these functions converge pointwise to the zero
function (0, 0, 0, . . .), despite the fact that the average value diverges to infinity. ¥
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EXAMPLE 12 Consider the sequence of functions fn : R→ R defined by

fn(x) =





n2x if 0 ≤ x ≤ 1/n

2n− n2x if 1/n ≤ x ≤ 2/n

0 otherwise.

The graph of fn is a triangular spike with height n and total area 1. For example,
the graphs of f1, f2, and f3 are shown below:

0.5 1.0 1.5 2.0

0.5

1.0

1.5

2.0

2.5

3.0

Because the spikes are becoming thinner as n increases, each individual value of x
lies in only finitely many spikes; it follows that each sequence fn(x) is eventually 0, so
the functions fn converge pointwise to the constant zero function. Again, this does
not really agree with our intuitive notion of convergence. ¥

Uniform convergence is an alternative to pointwise convergence which is a bit more
strict. As a result, it has nicer theoretical properties, and conforms more closely with
our intuitive notion of convergence. It is based on a measure of distance between
functions:

Definition: Uniform Distance
Let X be a set, let Y be a metric space with metric d, and let f, g : X → Y be
functions. The uniform distance ρ(f, g) from f to g is defined as follows:

ρ(f, g) = sup{d(f(x), g(x)) | x ∈ X}.

If the set {d(f(x), g(x)) | x ∈ X} is unbounded, then ρ(f, g) is infinite.

The uniform distance ρ(f, g) should be thought of as the maximum distance be-
tween f(x) and g(x). In some cases, such as when one function has an asymptote, this
maximum may not be realized, making it necessary to define ρ(f, g) as a supremum.
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Definition: Uniform Convergence
Let X be a set, let Y be a metric space, and let fn : X → Y be a sequence of
functions. We say that fn converges uniformly to a function f : X → Y if
ρ(fn, f) → 0 as n →∞.

For example, the functions in examples 11 and 12 have ρ(fn, f) = n for all n, and
therefore do not converge uniformly. On the other hand, the functions in example 10
have ρ(fn, f) = 1/n for each n, and therefore do converge uniformly to the zero
function.

Note that uniform convergence can only be defined when Y is a metric space,
since it depends on being able to measure distances between y-values. Section 46 of
Munkres discusses some related notions of convergence that work for any topological
space Y .

Assuming Y is a metric space, there is an obvious topology on Y X under which
convergence of sequences is the same thing as uniform convergence:

Definition: Uniform Topology
Let X be a set, and let Y be a metric space. For each f ∈ Y X and ε > 0, define

Bρ(f, ε) = {g ∈ Y X | ρ(f, g) < ε}.

Then the sets Bρ(f, ε) form a basis for a topology on Y X , known as the uniform
topology.

Theorem 6 Convergence in the Uniform Topology

Let X be a set, let Y be a metric space, let fn be a sequence in Y X , and let
f ∈ Y X . Then fn → f under the uniform topology if and only if the functions
fn converge uniformly to f .

Though it may appear from the definition that the uniform topology is a metric
topology with metric ρ, this is not actually the case. The problem is that ρ(f, g) is
often infinite, which is not allowed by the definition of a metric. This is less of a
problem than it seems: it works perfectly well to simply allow metrics to take infinite
values. Alternatively, we can define the bounded uniform metric ρ by

ρ(f, g) = min{ρ(f, g), 1}.
Then ρ is a legitimate metric, and the corresponding metric topology is the same as
the uniform topology.
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EXAMPLE 13 Consider the space RN, where R is given the standard metric. Let
f ∈ RN be the constant zero function. Then the basic open set Bρ(f, 1) consists of
all functions g : N→ R such that

sup
{|g(k)| ∣∣ k ∈ N}

< 1.

Note that Bρ(f, 1) is not simply an open box:

Bρ(f, 1) 6= (−1, 1)× (−1, 1)× (−1, 1)× · · · .

The reason is that a function may take values in the interval (−1, 1), but still have
supremum equal to 1. For example, the function

g =
(

1
2
, 2

3
, 3

4
, 4

5
, . . .

)

lies in the box (−1, 1)N, but ρ(f, g) = 1, and therefore g /∈ Bρ(f, 1).
Incidentally, it can be shown that the box (−1, 1)N is not even open in the uniform

topology on RN, and hence uniform and box topologies are different on RN. ¥

One of the nicest theoretical properties of the uniform topology is the following:

Theorem 7 C(X,Y ) is Closed

Let X be a topological space, let Y be a metric space, and let

C(X,Y ) = {f : X → Y | f is continuous}.

Then C(X, Y ) is a closed subset of Y X under the uniform topology.

Since Y X is a metric space under the uniform topology, this theorem is equivalent
to the statement that the limit of any convergent sequence of points in C(X, Y ) is an
element of C(X,Y ). That is, the uniform limit of a sequence of continuous functions is
again continuous. This result is known as the uniform limit theorem, and appears
as theorem 21.6 of Munkres.

PROOF Let f be an element of the closure of C(X,Y ), and let x0 ∈ X. We claim
that f is continuous at x0.

Let ε > 0. We must show that there exists a neighborhood U of x0 so that
f(U) ⊂ Bd(f(x0), ε), where d is the metric on Y . Since f is in the closure of C(X,Y ),
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there exists a g ∈ C(X,Y ) so that ρ(f, g) < ε/3. Then g is continuous, so there exists
a neighborhood U of x0 so that g(U) ⊂ Bd(g(x0), ε/3). If x ∈ U , we know that

d
(
f(x), g(x)

)
<

ε

3
, d

(
g(x), g(x0)

)
<

ε

3
, and d

(
g(x0), f(x0)

)
<

ε

3
,

and therefore d
(
f(x), f(x0)

)
< ε by the triangle inequality. Thus f(U) ⊂ Bd(f(x0), ε),

which proves that f is continuous. ¥

The theorem above does not hold if the uniform topology is replaced by the
product topology. Indeed, as the following example shows, it is perfectly possible for
a sequence of continuous functions to converge pointwise to a discontinuous function.

EXAMPLE 14 Consider the sequence of functions fn : R→ R defined by

fn(x) =





0 if x ≤ 0

nx if 0 ≤ x ≤ 1/n

1 if x ≥ 1/n.

The functions f2, . . . , f10 are graphed below:

-1.0 -0.5 0.5 1.0

-0.5

0.5

1.0

1.5

These functions are all continuous, but they move from y = 0 to y = 1 over shorter
and shorter periods of time as n increases. The result is that the sequence fn converges
pointwise to a function f that has a jump discontinuity at x = 0:

f(x) =

{
0 if x ≤ 0

1 if x > 0.
¥

The following theorem describes the relationship between the three topologies we
have discussed. It is the same as theorem 20.4 in Munkres:
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Theorem 8 Comparing the Three Topologies

Let X be a set, and let Y be a metric space. Let Tproduct, Tbox, and Tuniform denote
the three topologies on Y X . Then

Tproduct ⊂ Tuniform ⊂ Tbox.

PROOF We first prove that any subbasic open set in the product topology is open
in the uniform topology. Let S(x, U) be such a set, and let f ∈ S(x, U). Then U is
open in Y and f(x) ∈ U , so there exists an ε > 0 such that B(f(x), ε) ⊂ U . Then
every element of Bρ(f, ε) must also lie in S(x, U). This proves that S(x, U) is open
in the uniform topology, and therefore Tproduct ⊂ Tuniform.

Next we must show that any basic open set in the uniform topology is open in
the box topology. Let Bρ(f, ε) be such a set, and let g ∈ Bρ(f, ε). Then there exists
an ε′ > 0 so that Bρ(g, ε′) ⊂ Bρ(f, ε). Then

∏
x∈X

(
g(x)− ε′/2, g(x)+ ε′/2

)
is an open

set in the box topology that contains g and is contained in Bρ(g, ε′), and is hence
also contained in Bρ(f, ε). This proves that Bρ(f, ε) is open in the box topology, and
therefore Tuniform ⊂ Tbox. ¥

Note that the ordering of the three topologies above corresponds to how many
sequences converge: lots of sequences converge in the product topology, some se-
quences converge in the uniform topology, and almost no sequences converge in the
box topology.

Finally, we end with a theorem that illustrates the difference between these three
topologies. (See exercises 19.7 and 20.5 in Munkres.)

Theorem 9 Closure of R∞

Let R∞ be the following subset of RN:

R∞ = {f ∈ RN | f(k) = 0 for all but finitely many k}.

1. In the box topology, R∞ is a closed set.

2. In the uniform topology, the closure of R∞ is the set

{f ∈ RN | f(n) → 0 as n →∞}.

3. In the product topology, the closure of R∞ is all of RN.
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PROOF In the box topology, define a sequence Un of open boxes in RN by

Un = R× · · · × R︸ ︷︷ ︸
n times

× (R− {0}) × (R− {0}) × · · · .

Then
⋃∞

n=1 Un is the complement of R∞, and hence R∞ is closed in the box topology.
In the uniform topology, let f ∈ RN. If f(n) → 0 as n → ∞, then every ball

Bρ(f, ε) must contain an element of R∞, and therefore f is in the closure of R∞.
Conversely, if f(n) 6→ 0 as n →∞, then there exists an ε > 0 such that f(n) /∈ (−ε, ε)
for infinitely many n. Then Bρ(f, ε) does not contain any element of R∞, and therefore
f does not lie in the closure of R∞.

Finally, in the product topology observe that every basic open set

S(x1, U1) ∩ · · · ∩ S(xn, Un)

contains a point from R∞. It follows that the closure of R∞ is all of RN. ¥

Exercises

1. Let X, Y , and Z be sets.

(a) Prove that there exists a bijection (Y × Z)X → Y X × ZX .

(b) If X ∩ Y = ∅, prove that there exists a bijection ZX∪Y → ZX × ZY .

2. If Y is Hausdorff, prove that Y X is Hausdorff in both the product and box
topologies.

3. Consider the product topology, the uniform topology, and the box topology on
the space {0, 1}N. Are all three topologies different? How do these topologies
compare with the discrete topology on {0, 1}N?

4. Consider R∞ as a subspace of RN under the product, uniform, and box topolo-
gies. Show that the three resulting subspace topologies on R∞ are all distinct.

5. Let X be a set. For each f ∈ RX and ε > 0, let

W (f, ε) = {g ∈ RX : |g(x)− f(x)| < ε for every x ∈ X}.
Prove that the sets W (f, ε) are a subbasis for the box topology on RX .

6. Let Y be a bounded metric space, and define a metric D on Y N by

D(f, g) = sup{d(f(n), g(n))/n | n ∈ N}.
Prove that metric topology on Y N determined by D is the same as the product
topology.


