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Functions and predicates

Functions in Dafny define mathematical functions and

must be side effect free.

For example we could define

function min( a : int, b : int ) : int

{

if a < b then a else b

}

Note

• The body of a function is a single expression.

• The body of this function uses an if-then-else expres-

sion.

Function methods

By default functions are not compiled for execution and

can only be used in specification contexts (i.e. contracts,

asserts, etc.)

To ensure functions are compiled use “function

method”:

function method min( a : int, b : int ) : int

{

if a < b then a else b

}
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Partial functions

We can define partial functions by using a requires

clause:

function mod( a : int, b : int ) : int

requires b != 0

{

a % b

}

Recursive functions

Functions may be recursive.

function Pow( a : int, b : nat ) : int

decreases b ;

{

if b == 0 then 1 else a * Pow( a, b-1 )

}

Note

• Recursive functions declare a variant.

• Recursive function calls must decrease the variant.

• Here b− 1 < b is universally true, so the call is okay.

• This ensures that the function definition is well defined

and that any generated code terminates.

• If you don’t supply a decreases clause, Dafny’s

verifier will try to infer a variant for you.

• Recursive methods also need a decreases clause.
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Consider

function Bad( a : nat ) : nat

{

if Bad( a + 1 ) == 2 then 0 else Bad( a + 1 ) + 1 ;

}

There is more than one function that satisfies the

property

∀a : N · f (a) =

{
0 , if f(a + 1) = 2

f (a + 1)− 1 , if f(a + 1) �= 2
for example

[0, 2, 1, 0, 2, 1, 0, 2, ...]
and

[1, 0, 2, 1, 0, 2, 1, 0, ...]
so the ‘definition’ is not a definition at all.

Now consider

function Worse( a : nat ) : nat

{

Worse( a+1) + 1 ;

}

There is no function that satisfies this ‘definition‘.

The variant ensures there is one function that satisfies

the definition.

Predicates

Predicates are just functions that have a boolean result.

predicate Even( x : int ) { x % 2 == 0 }
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Lemmas

[Optional material]

Recall that input parameters are immutable.

Consider a method that has no side effects and no result

parameters!

method SomeLemma( x : T )

requires P (x)
ensures Q(x)

{

body

}

Computationally this method is pointless. The body can

not affect any locations other than local variables.

If the method is correct, then it must be a theorem that

∀x ∈ T · P (x)⇒ Q(x)

If the method verifies, then the verifier has proved this

theorem!

Dafny calls such methods lemmas.

Lemmas are not translated for execution. Nor are calls to

lemmas.

Example

lemma PositivePowerLemma( a : int, b : int )

requires b > 0

ensures Pow(a,b) == a*Pow(a, b-1)

{ }

This method verifies.
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Another example:

lemma EvenPowerLemma( a : int, b : int )

requires Even(b) && b >= 0

ensures Pow(a, b) == Pow( a*a, b / 2 )

decreases b ;

{ }

This method is correct, but it does not verify. (Spurious

failure.)

The verifier is just not that clever. Yet.

We have 3 options:

• Live with the verification error message.

• Prove the lemma.

• Use an assume command.
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Proofs

To prove the lemma, we need to write a body that the

verifier can verify.

These bodies typically use a bunch of asserts, ifs, and

even loops. For example, suppose the verifier can not

prove

∀x ∈ T · P (x)⇒ Q(x)
But it can prove each of

∀x ∈ T · P (x) ∧ x < 0⇒ R(x)

∀x ∈ T · P (x) ∧ x ≥ 0⇒ S(x)

∀x ∈ T ·R(x)⇒ U(x)

∀x ∈ T · S(x)⇒ U(x)

∀x ∈ T · U(x)⇒ Q(x)

The following should verify

lemma SomeLemma( x : T )

requires P (x)
ensures Q(x)

{

if( x < 0 ) {

assert R(x) ; }

else {

assert S(x) ; }

assert U(x) ;
}

The EvenPowerLemma can be proved by induction (i.e.

using a recursive call).
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The practical aspects of writing proofs in Dafny are

beyond the scope of this course.

Assume commands

Assume commands can be used to tell the verifier that

something is true at the given point in the program.

lemma EvenPowerLemma( a : int, b : int )

requires Even(b) && b >= 0

ensures Pow(a, b) == Pow(a*a, b/2)

decreases b ;

{

assume false ;

}

The effect of this assume command is to suppress the

error message.

The verifier will check your assertions, but not your

assumptions. Use assume with care.
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Using lemmas

Suppose we want to verify some code:

C

D

But the verification fails because the verifier needs to

know that Q(a) is true after C.

We can try

C

assert Q(a) ;
D

But suppose verification now fails because the verifier is

not able to verify that Q(a) is true after C.

We can use our lemma to help

C

assert P (a) ;
SomeLemma( a ) ;

assert Q(a) ;
D

Now the verifier only needs to verify that P (a) holds

after C. That Q(a) is true before D follows from the

postcondition of SomeLemma.
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Example:

Consider the following Russian Peasant exponentiation

algorithm.

method power( a0 : int, b0 : nat ) returns (c : int )

ensures c == Pow( a0, b0 ) ;

{

c := 1 ;

var a := a0 ;

var b : nat := b0 ;

while b != 0

invariant Pow(a0, b0) == c * Pow(a, b)← Fails

decreases b {

if b%2 == 1 {

c := c * a ;

b := b - 1 ; }

assert Even( b ) ;

b := b/2 ;

a := a * a ; }

}

Even with the guidance that b is even, this fails to verify.

The algorithm works because ab =
(
a2
)b div 2

for even b.

Which is what the verifier proved by verifying

EvenPowerLemma

However the prover is not clever enough to use the

lemma without being told to.
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We can guide the prover to use the lemma by rewriting

the loop body as

if b%2 == 1 {

c := c * a ;

b := b - 1 ; }

assert Even( b ) ;

EvenPowerLemma(a, b) ;

assert Pow( a, b ) == Pow( a*a, b / 2 ) ;

b := b/2 ;

a := a*a ; }

This verifies.

• The assert commands here are unnecessary. I put

them in for readability.

• The call to EvenPowerLemma does not appear in the

C# code, since it is a lemma.
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