
3.2 (SUMMARY) — GENERAL SOLUTIONS OF LINEAR EQUATIONS

Consider the n-th order linear equation

(1) y(n) + pn−1(x)y(n−1) + ⋅ ⋅ ⋅+ p1(x)y′ + p0(x)y = f(x),

where p0, . . . , pn−1 and f are continuous functions.

Example. y′′′ + x4y′′ − 3y′ + y = sin(x).

Theorem 2. (Existence and uniqueness) For each choice of numbers a, b0, b1, . . . , bn−1 ∈ ℝ,
there exists exactly one solution of (1) that satisfies the initial conditions

y(a) = b0, y′(a) = b1, . . . , y(n−1)(a) = bn−1.

Proof: omitted.

Remark. To find this solution, we first have to treat the homogeneous (f = 0) equation

(2) y(n) + pn−1(x)y(n−1) + ⋅ ⋅ ⋅+ p1(x)y′ + p0(x)y = 0

Theorem 1. (Superposition) If y1, . . . , yn are solutions of the homogeneous DE (2) and
c1, . . . , cn ∈ ℝ then the linear combination

(3) y = c1y1 + ⋅ ⋅ ⋅+ cnyn

is also a solution of the homogeneous DE. Proof: exercise.
Note. Superposition is valid for (2), not for the nonhomogeneous DE (1).
Example. If y1 and y2 are solutions of (2), then so is 5y1 − 3y2.

Theorem 4. (General solution) Every solution of the homogeneous DE (2) can be written
as a linear combination (3) of the solutions y1, . . . , yn, provided that y1, . . . , yn are linearly
independent. Proof: omitted.

Thus we can call y = c1y1 + ⋅ ⋅ ⋅+ cnyn the general solution of the homogeneous DE.

Linear independence means that

no one of y1, . . . , yn is equal to a linear combination of the others.

[When n = 2, this new definition of linear independence for y1, y2 is the same as the old
one, which says that neither y1 nor y2 is a multiple of the other.]

Conclusion. We should first try to find n linearly independent solutions of the homogeneous
equation (2). Then since every solution can be written as a linear combination of y1, . . . , yn,
we can find the desired solution by applying the initial conditions to y = c1y1 + ⋅ ⋅ ⋅ + cnyn
and solving for the coefficients c1, . . . , cn.

Question. For constant coefficient homogeneous equations, we find solutions by y = erx .

Then the characteristic polynomial has degree n, so it has n roots (counting repeated roots
and complex roots). So our guess y = erx will yield n solutions y1, . . . , yn of the DE (provided
we deal properly with repeated roots; see Sec. 3.1 and 3.3).

But are these solutions linearly independent. . . ???
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Problems (examinable)

1. Suppose r1 < r2 < r3. Show that the functions y1 = er1x, y2 = er2x, y3 = er3x are
linearly independent.

2. Suppose r1 < r2 < . . . < rn. Show that the functions y1 = er1x, y2 = er2x, . . . , yn = ernx

are linearly independent.

3. Let r ∈ ℝ. Show that y1 = erx, y2 = xerx, y3 = x2erx are linearly independent.

4. Show that the functions y1 = sinx, y2 = sin(2x) are linearly independent.

Remark. By arguments like above, one can show that the n solutions of a constant coef-
ficient homogeneous linear equation that we find by trying y = erx will always be linearly
independent.

Wronskians — don’t use them!
The textbook develops a method for checking linear independence of y1, . . . , yn by using the

Wronskian. This clever method relies on matrix algebra and the Existence and Uniqueness
Theorem (or on other deep arguments).

We will not use Wronskians in this course. Instead we emphasize the meaning of linear
independence (that no one function can be written as a linear combination of the others,
like in the Problems above).


