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CHAPTER 5

SEQUENCES, MATHEMATICAL
INDUCTION, AND RECURSION

One of the most important tasks of mathematics is to discover and characterize regular
patterns, such as those associated with processes that are repeated. The main mathemati-
cal structure used in the study of repeated processes is the sequence, and the main mathe-
matical tool used to verify conjectures about sequences is mathematical induction. In this
chapter we introduce the notation and terminology of sequences, show how to use both
ordinary and strong mathematical induction to prove properties about them, illustrate the
various ways recursively defined sequences arise, describe a method for obtaining an
explicit formula for a recursively defined sequence, and explain how to verify the cor-
rectness of such a formula. We also discuss a principle—the well-ordering principle for
the integers—that is logically equivalent to the two forms of mathematical induction, and
we show how to adapt mathematical induction to prove the correctness of computer algo-
rithms. In the final section we discuss more general recursive definitions, such as the one
used for the careful formulation of the concept of Boolean expression, and the idea of
recursive function.

5.1 Sequences

A mathematician, like a painter or poet, is a maker of patterns.
— G. H. Hardy, A Mathematician’s Apology, 1940

Imagine that a person decides to count his ancestors. He has two parents, four grandpar-
ents, eight great-grandparents, and so forth, These numbers can be written in a row as

2, 4, 8, 16, 32, 64, 128, . . .

The symbol “. . .” is called an ellipsis. It is shorthand for “and so forth.”
To express the pattern of the numbers, suppose that each is labeled by an integer

giving its position in the row.

Position in the row 1 2 3 4 5 6 7 . . .

Number of ancestors 2 4 8 16 32 64 128 . . .

The number corresponding to position 1 is 2, which equals 21. The number corresponding
to position 2 is 4, which equals 22. For positions 3, 4, 5, 6, and 7, the corresponding
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228 Chapter 5 Sequences, Mathematical Induction, and Recursion

numbers are 8, 16, 32, 64, and 128, which equal 23, 24, 25, 26, and 27, respectively. For
a general value of k, let Ak be the number of ancestors in the kth generation back. The
pattern of computed values strongly suggests the following for each k:

Ak = 2k .

Note Strictly speaking,
the true value of Ak is less
than 2k when k is large,
because ancestors from
one branch of the family
tree may also appear on
other branches of the tree. • Definition

A sequence is a function whose domain is either all the integers between two given
integers or all the integers greater than or equal to a given integer.

We typically represent a sequence as a set of elements written in a row. In the sequence
denoted

am, am+1, am+2, . . . , an,

each individual element ak (read “a sub k”) is called a term. The k in ak is called a
subscript or index, m (which may be any integer) is the subscript of the initial term,
and n (which must be greater than or equal to m) is the subscript of the final term. The
notation

am, am+1, am+2, . . .

denotes an infinite sequence. An explicit formula or general formula for a sequence is
a rule that shows how the values of ak depend on k.

The following example shows that it is possible for two different formulas to give
sequences with the same terms.

Example 5.1.1 Finding Terms of Sequences Given by Explicit Formulas

Define sequences a1, a2, a3, . . . and b2, b3, b4, . . . by the following explicit formulas:

ak = k

k + 1
for all integers k ≥ 1,

bi = i − 1

i
for all integers i ≥ 2.

Compute the first five terms of both sequences.

Solution
a1 = 1

1+ 1
= 1

2
b2 = 2− 1

2
= 1

2

a2 = 2

2+ 1
= 2

3
b3 = 3− 1

3
= 2

3

a3 = 3

3+ 1
= 3

4
b4 = 4− 1

4
= 3

4

a4 = 4

4+ 1
= 4

5
b5 = 5− 1

5
= 4

5

a5 = 5

5+ 1
= 5

6
b6 = 6− 1

6
= 5

6

As you can see, the first terms of both sequences are 1
2 ,

2
3 ,

3
4 ,

4
5 ,

5
6 ; in fact, it can be

shown that all terms of both sequences are identical. ■
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5.1 Sequences 229

The next example shows that an infinite sequence may have a finite number of values.

Example 5.1.2 An Alternating Sequence

Compute the first six terms of the sequence c0, c1, c2, . . . defined as follows:

c j = (−1) j for all integers j ≥ 0.

Solution c0 = (−1)0 = 1

c1 = (−1)1 = −1
c2 = (−1)2 = 1

c3 = (−1)3 = −1
c4 = (−1)4 = 1

c5 = (−1)5 = −1
Thus the first six terms are 1,−1, 1,−1, 1,−1. By exercises 33 and 34 of Section 4.1,
even powers of −1 equal 1 and odd powers of −1 equal −1. It follows that the sequence
oscillates endlessly between 1 and −1. ■

In Examples 5.1.1 and 5.1.2 the task was to compute the first few values of a sequence
given by an explicit formula. The next example treats the question of how to find an
explicit formula for a sequence with given initial terms. Any such formula is a guess, but
it is very useful to be able to make such guesses.

Example 5.1.3 Finding an Explicit Formula to Fit Given Initial Terms

Find an explicit formula for a sequence that has the following initial terms:

1, −1

4
,

1

9
, − 1

16
,

1

25
, − 1

36
, . . . .

Solution Denote the general term of the sequence by ak and suppose the first term is a1.
Then observe that the denominator of each term is a perfect square. Thus the terms can
be rewritten as

1

12
,

(−1)
22

,
1

32
,

(−1)
42

,
1

52
,

(−1)
62

.

( ( ( ( ( (
a1 a2 a3 a4 a5 a6

Note that the denominator of each term equals the square of the subscript of that term,
and that the numerator equals ±1. Hence

ak = ±1
k2

.

Also the numerator oscillates back and forth between +1 and −1; it is +1 when k is odd
and−1 when k is even. To achieve this oscillation, insert a factor of (−1)k+1 (or (−1)k−1)
into the formula for ak . [For when k is odd, k + 1 is even and thus (−1)k+1 = +1; and when
k is even, k + 1 is odd and thus (−1)k+1 = −1.] Consequently, an explicit formula that
gives the correct first six terms is

ak = (−1)k+1
k2

for all integers k ≥ 1.
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230 Chapter 5 Sequences, Mathematical Induction, and Recursion

!
Caution! It is also
possible for two
sequences to start off with
the same initial values but
diverge later on. See
exercise 5 at the end of
this section.

Note that making the first term a0 would have led to the alternative formula

ak = (−1)k
(k + 1)2

for all integers k ≥ 0.

You should check that this formula also gives the correct first six terms. ■

Summation Notation
Consider again the example in which Ak = 2k represents the number of ancestors a per-
son has in the kth generation back. What is the total number of ancestors for the past six
generations? The answer is

A1 + A2 + A3 + A4 + A5 + A6 = 21 + 22 + 23 + 24 + 25 + 26 = 126.

C
O

R
B

IS

Joseph Louis Lagrange
(1736–1813)

It is convenient to use a shorthand notation to write such sums. In 1772 the French
mathematician Joseph Louis Lagrange introduced the capital Greek letter sigma, �, to
denote the word sum (or summation), and defined the summation notation as follows:

• Definition

If m and n are integers and m ≤ n, the symbol
n∑

k=m
ak , read the summation from

k equals m to n of a-sub-k, is the sum of all the terms am, am+1, am+2, . . . , an .
We say that am + am+1 + am+2 + . . .+ an is the expanded form of the sum, and
we write

n∑
k=m

ak = am + am+1 + am+2 + · · · + an.

We call k the index of the summation, m the lower limit of the summation, and n
the upper limit of the summation.

Example 5.1.4 Computing Summations

Let a1 = −2, a2 = −1, a3 = 0, a4 = 1, and a5 = 2. Compute the following:

a.
5∑

k=1
ak b.

2∑
k=2

ak c.
2∑

k=1
a2k

Solution

a.
5∑

k=1
ak = a1 + a2 + a3 + a4 + a5 = (−2)+ (−1)+ 0+ 1+ 2 = 0

b.
2∑

k=2
ak = a2 = −1

c.
2∑

k=1
a2k = a2 ·1 + a2 ·2 = a2 + a4 = −1+ 1 = 0 ■
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5.1 Sequences 231

Oftentimes, the terms of a summation are expressed using an explicit formula. For
instance, it is common to see summations such as

5∑
k=1

k2 or
8∑

i=0

(−1)i
i + 1

.

Example 5.1.5 When the Terms of a Summation Are Given by a Formula

Compute the following summation:

5∑
k=1

k2.

Solution
5∑

k=1
k2 = 12 + 22 + 32 + 42 + 52 = 55. ■

When the upper limit of a summation is a variable, an ellipsis is used to write the
summation in expanded form.

Example 5.1.6 Changing from Summation Notation to Expanded Form

Write the following summation in expanded form:

n∑
i=0

(−1)i
i + 1

.

Solution
n∑

i=0

(−1)i
i + 1

= (−1)0
0+ 1

+ (−1)1
1+ 1

+ (−1)2
2+ 1

+ (−1)3
3+ 1

+ · · · + (−1)n
n + 1

= 1

1
+ (−1)

2
+ 1

3
+ (−1)

4
+ · · · + (−1)n

n + 1

= 1− 1

2
+ 1

3
− 1

4
+ · · · + (−1)n

n + 1
■

Example 5.1.7 Changing from Expanded Form to Summation Notation

Express the following using summation notation:

1

n
+ 2

n + 1
+ 3

n + 2
+ · · · + n + 1

2n
.

Solution The general term of this summation can be expressed as
k + 1

n + k
for integers k from

0 to n. Hence

1

n
+ 2

n + 1
+ 3

n + 2
+ · · · + n + 1

2n
=

n∑
k=0

k + 1

n + k
. ■

For small values of n, the expanded form of a sum may appear ambiguous. For
instance, consider

12 + 22 + 32 + · · · + n2.

This expression is intended to represent the sum of squares of consecutive integers start-
ing with 12 and ending with n2. Thus, if n= 1 the sum is just 12, if n= 2 the sum is
12 + 22, and if n= 3 the sum is 12 + 22 + 32.
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232 Chapter 5 Sequences, Mathematical Induction, and Recursion

Example 5.1.8 Evaluating a1, a2, a3, . . . , an for Small n

What is the value of the expression
1

1 ·2 +
1

2 ·3 +
1

3 ·4 + · · · +
1

n ·(n + 1)
when

n = 1? n = 2? n = 3?

!
Caution! Do not write
that for n = 1, the sum is

1

1 ·2 +
1

2 ·3 +
1

3 ·4 + · · · +
1

1 ·2 .

This is crossed out
because it is incorrect.

Solution

When n = 1, the expression equals
1

1 ·2 =
1

2
.

When n = 2, it equals
1

1 ·2 +
1

2 ·3 =
1

2
+ 1

6
= 2

3
.

When n = 3, it is
1

1 ·2 +
1

2 ·3 +
1

3 ·4 =
1

2
+ 1

6
+ 1

12
= 3

4
.

■

Amore mathematically precise definition of summation, called a recursive definition,
is the following:∗ If m is any integer, then

m∑
k=m

ak = am and
n∑

k=m
ak =

n−1∑
k=m

ak + an for all integers n > m.

When solving problems, it is often useful to rewrite a summation using the recursive form
of the definition, either by separating off the final term of a summation or by adding a
final term to a summation.

Example 5.1.9 Separating Off a Final Term and Adding On a Final Term

a. Rewrite
n+1∑
i=1

1

i2
by separating off the final term.

b. Write
n∑

k=0
2k + 2n+1 as a single summation.

Solution

a.
n+1∑
i=1

1

i2
=

n∑
i=1

1

i2
+ 1

(n + 1)2
b.

n∑
k=0

2k + 2n+1 =
n+1∑
k=0

2k ■

In certain sums each term is a difference of two quantities. When you write such sums
in expanded form, you sometimes see that all the terms cancel except the first and the last.
Successive cancellation of terms collapses the sum like a telescope.

Example 5.1.10 A Telescoping Sum

Some sums can be transformed into telescoping sums, which then can be rewritten as a
simple expression. For instance, observe that

1

k
− 1

k + 1
= (k + 1)− k

k(k + 1)
= 1

k(k + 1)
.

Use this identity to find a simple expression for
n∑

k=1

1

k(k + 1)
.

∗Other recursively defined sequences are discussed later in this section and, in greater detail, in
Section 5.6.
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Solution

n∑
k=1

1

k(k + 1)
=

n∑
k=1

(
1

k
− 1

k + 1

)

=
(
1

1
− 1

2

)
+
(
1

2
− 1

3

)
+
(
1

3
− 1

4

)
+ · · · +

(
1

n − 1
− 1

n

)
+
(
1

n
− 1

n + 1

)

= 1− 1

n + 1
. ■

Product Notation
The notation for the product of a sequence of numbers is analogous to the notation for
their sum. The Greek capital letter pi, �, denotes a product. For example,

5∏
k=1

ak = a1a2a3a4a5.

• Definition

If m and n are integers and m ≤ n, the symbol
n∏

k=m
ak , read the product from k

equals m to n of a-sub-k, is the product of all the terms am, am+1, am+2, . . . , an .

We write n∏
k=m

ak = am ·am+1 ·am+2 · · · an.

A recursive definition for the product notation is the following: If m is any
integer, then

m∏
k=m

ak = am and
n∏

k=m
ak =

(
n−1∏
k=m

ak

)
·an for all integers n > m.

Example 5.1.11 Computing Products

Compute the following products:

a.
5∏

k=1
k b.

1∏
k=1

k

k + 1

Solution

a.
5∏

k=1
k = 1 ·2 ·3 ·4 ·5 = 120 b.

1∏
k=1

k

k + 1
= 1

1+ 1
= 1

2
■

Properties of Summations and Products
The following theorem states general properties of summations and products. The proof
of the theorem is discussed in Section 5.6.
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234 Chapter 5 Sequences, Mathematical Induction, and Recursion

Theorem 5.1.1

If am, am+1, am+2, . . . and bm, bm+1, bm+2, . . . are sequences of real numbers and c
is any real number, then the following equations hold for any integer n ≥ m:

1.
n∑

k=m
ak +

n∑
k=m

bk =
n∑

k=m
(ak + bk)

2. c ·
n∑

k=m
ak =

n∑
k=m

c ·ak generalized distributive law

3.

(
n∏

k=m
ak

)
·
(

n∏
k=m

bk

)
=

n∏
k=m

(ak ·bk).

Example 5.1.12 Using Properties of Summation and Product

Let ak = k + 1 and bk = k − 1 for all integers k. Write each of the following expressions
as a single summation or product:

a.
n∑

k=m
ak + 2 ·

n∑
k=m

bk b.

(
n∏

k=m
ak

)
·
(

n∏
k=m

bk

)

Solution

a.
n∑

k=m
ak + 2 ·

n∑
k=m

bk =
n∑

k=m
(k + 1)+ 2 ·

n∑
k=m

(k − 1) by substitution

=
n∑

k=m
(k + 1)+

n∑
k=m

2 ·(k − 1) by Theorem 5.1.1 (2)

=
n∑

k=m
((k + 1)+ 2 ·(k − 1)) by Theorem 5.1.1 (1)

=
n∑

k=m
(3k − 1) by algebraic

simplification

b. (
n∏

k=m
ak

)
·
(

n∏
k=m

bk

)
=

(
n∏

k=m
(k + 1)

)
·
(

n∏
k=m

(k − 1)

)
by substitution

=
n∏

k=m
(k + 1) ·(k − 1) by Theorem 5.1.1 (3)

=
n∏

k=m
(k2 − 1) by algebraic

simplification
■

Change of Variable
Observe that

3∑
k=1

k2 = 12 + 22 + 32

and also that
3∑

i=1
i2 = 12 + 22 + 32.
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5.1 Sequences 235

Hence

3∑
k=1

k2 =
3∑

i=1
i2.

This equation illustrates the fact that the symbol used to represent the index of a sum-
mation can be replaced by any other symbol as long as the replacement is made in each
location where the symbol occurs. As a consequence, the index of a summation is called
a dummy variable. A dummy variable is a symbol that derives its entire meaning from
its local context. Outside of that context (both before and after), the symbol may have
another meaning entirely.

The appearance of a summation can be altered by more complicated changes of
variable as well. For example, observe that

4∑
j=2

( j − 1)2 = (2− 1)2 + (3− 1)2 + (4− 1)2

= 12 + 22 + 32

=
3∑

k=1
k2.

A general procedure to transform the first summation into the second is illustrated in
Example 5.1.13.

Example 5.1.13 Transforming a Sum by a Change of Variable

Transform the following summation by making the specified change of variable.

summation:
6∑

k=0

1

k + 1
change of variable: j = k + 1

Solution First calculate the lower and upper limits of the new summation:

When k = 0, j = k + 1 = 0+ 1 = 1.

When k = 6, j = k + 1 = 6+ 1 = 7.

Thus the new sum goes from j = 1 to j = 7.
Next calculate the general term of the new summation. You will need to replace each

occurrence of k by an expression in j :

Since j = k + 1, then k = j − 1.

Hence
1

k + 1
= 1

( j − 1)+ 1
= 1

j
.

Finally, put the steps together to obtain

6∑
k=0

1

k + 1
=

7∑
j=1

1

j
.

■
5.1.1

Equation (5.1.1) can be given an additional twist by noting that because the j in the
right-hand summation is a dummy variable, it may be replaced by any other variable
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name, as long as the substitution is made in every location where j occurs. In particular,
it is legal to substitute k in place of j to obtain

7∑
j=1

1

j
=

7∑
k=1

1

k
. 5.1.2

Putting equations (5.1.1) and (5.1.2) together gives

6∑
k=0

1

k + 1
=

7∑
k=1

1

k
.

Sometimes it is necessary to shift the limits of one summation in order to add it to
another. An example is the algebraic proof of the binomial theorem, given in Section 9.7.
A general procedure for making such a shift when the upper limit is part of the summand
is illustrated in the next example.

Example 5.1.14 When the Upper Limit Appears in the Expression to Be Summed

a. Transform the following summation by making the specified change of variable.

summation:
n+1∑
k=1

(
k

n + k

)
change of variable: j = k − 1

b. Transform the summation obtained in part (a) by changing all j’s to k’s.

Solution

a. When k = 1, then j = k − 1 = 1− 1 = 0. (So the new lower limit is 0.) When
k = n + 1, then j = k − 1 = (n + 1)− 1 = n. (So the new upper limit is n.)

Since j = k − 1, then k = j + 1. Also note that n is a constant as far as the terms
of the sum are concerned. It follows that

k

n + k
= j + 1

n + ( j + 1)

and so the general term of the new summation is

j + 1

n + ( j + 1)
.

Therefore,

n+1∑
k=1

k

n + k
=

n∑
j=0

j + 1

n + ( j + 1)
. 5.1.3

b. Changing all the j’s to k’s in the right-hand side of equation (5.1.3) gives

n∑
j=0

j + 1

n + ( j + 1)
=

n∑
k=0

k + 1

n + (k + 1)
5.1.4

Combining equations (5.1.3) and (5.1.4) results in

n+1∑
k=1

k

n + k
=

n∑
k=0

k + 1

n + (k + 1)
.

■
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Factorial and “n Choose r” Notation
The product of all consecutive integers up to a given integer occurs so often in mathemat-
ics that it is given a special notation—factorial notation.

• Definition

For each positive integer n, the quantity n factorial denoted n!, is defined to be the
product of all the integers from 1 to n:

n! = n ·(n − 1) · · · 3 ·2 ·1.
Zero factorial, denoted 0!, is defined to be 1:

0! = 1.

The definition of zero factorial as 1 may seem odd, but, as you will see when you read
Chapter 9, it is convenient for many mathematical formulas.

Example 5.1.15 The First Ten Factorials

0! = 1 1! = 1

2! = 2 ·1 = 2 3! = 3 ·2 ·1 = 6

4! = 4 ·3 ·2 ·1 = 24 5! = 5 ·4 ·3 ·2 ·1 = 120

6! = 6 ·5 ·4 ·3 ·2 ·1 = 720 7! = 7 ·6 ·5 ·4 ·3 ·2 ·1 = 5,040

8! = 8 ·7 ·6 ·5 ·4 ·3 ·2 ·1 9! = 9 ·8 ·7 ·6 ·5 ·4 ·3 ·2 ·1
= 40,320 = 362,880 ■

As you can see from the example above, the values of n! grow very rapidly. For
instance, 40! ∼= 8.16× 1047, which is a number that is too large to be computed exactly
using the standard integer arithmetic of the machine-specific implementations of many
computer languages. (The symbol ∼= means “is approximately equal to.”)

A recursive definition for factorial is the following: Given any nonnegative integer n,

n! =
{
1 if n = 0
n ·(n − 1)! if n ≥ 1.

The next example illustrates the usefulness of the recursive definition for making
computations.

!
Caution! Note that
n · (n − 1)! is to be
interpreted as
n · [(n − 1)!].

Example 5.1.16 Computing with Factorials

Simplify the following expressions:

a.
8!
7! b.

5!
2! ·3! c.

1

2! ·4! +
1

3! ·3! d.
(n + 1)!

n! e.
n!

(n − 3)!
Solution

a.
8!
7! =

8 ·7!
7! = 8

b.
5!

2! ·3! =
5 ·4 ·3!
2! ·3! =

5 ·4
2 ·1 = 10

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



238 Chapter 5 Sequences, Mathematical Induction, and Recursion

c. 1

2! ·4! +
1

3! ·3! =
1

2! ·4! ·
3

3
+ 1

3! ·3! ·
4

4

by multiplying each numerator and
denominator by just what is necessary to
obtain a common denominator

= 3

3 ·2! ·4! +
4

3! ·4 ·3! by rearranging factors

= 3

3! ·4! +
4

3! ·4! because 3 ·2! = 3! and 4 ·3! = 4!

= 7

3! ·4!
by the rule for adding fractions
with a common denominator

= 7

144

d.
(n + 1)!

n! = (n + 1) ·n!
n! = n + 1

e.
n!

(n − 3)! =
n ·(n − 1) ·(n − 2) ·(n − 3)!

(n − 3)! = n ·(n − 1) ·(n − 2)

= n3 − 3n2 + 2n ■

An important use for the factorial notation is in calculating values of quantities, called
n choose r, that occur in many branches of mathematics, especially those connected with
the study of counting techniques and probability.

• Definition

Let n and r be integers with 0 ≤ r ≤ n. The symbol(
n
r

)
is read “n choose r” and represents the number of subsets of size r that can be chosen
from a set with n elements.

Observe that the definition implies that
(n
r

)
will always be an integer because it

is a number of subsets. In Section 9.5 we will explore many uses of n choose r for
solving problems involving counting, and we will prove the following computational
formula:

• Formula for Computing
(n

r

)
For all integers n and r with 0 ≤ r ≤ n,(

n
r

)
= n!

r !(n − r)! .

In the meantime, we will provide a few experiences with using it. Because n choose r is
always an integer, you can be sure that all the factors in the denominator of the formula
will be canceled out by factors in the numerator. Many electronic calculators have keys for
computing values of

(n
r

)
. These are denoted in various ways such as nCr, C(n, r), nCr ,

and Cn,r . The letter C is used because the quantities
(n
r

)
are also called combinations.

Sometimes they are referred to as binomial coefficients because of the connection with
the binomial theorem discussed in Section 9.7.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



5.1 Sequences 239

Example 5.1.17 Computing
(
n
r

)
by Hand

Use the formula for computing

(
n
r

)
to evaluate the following expressions:

a.

(
8
5

)
b.

(
4
0

)
c.

(
n + 1
n

)

Solution

a.
(
8
5

)
= 8!

5!(8− 5)!
= 8 ·7 ·6 ·5 ·4 ·3 ·2 ·1

(5 ·4 ·3 ·2 ·1) ·( ·3 ·2 ·1)
= 56.

always cancel common factors
before multiplying

b.

(
4
4

)
= 4!

4!(4− 4)! =
4!
4!0! =

4 ·3 ·2 ·1
(4 ·3 ·2 ·1)(1) = 1

The fact that 0! = 1 makes this formula computable. It gives the correct value because a
set of size 4 has exactly one subset of size 4, namely itself.

c.

(
n + 1
n

)
= (n + 1)!

n!((n + 1)− n)! =
(n + 1)!
n!1! = (n + 1) ·n!

n! = n + 1 ■

Sequences in Computer Programming
An important data type in computer programming consists of finite sequences. In com-
puter programming contexts, these are usually referred to as one-dimensional arrays. For
example, consider a program that analyzes the wages paid to a sample of 50 workers.
Such a program might compute the average wage and the difference between each indi-
vidual wage and the average. This would require that each wage be stored in memory for
retrieval later in the calculation. To avoid the use of entirely separate variable names for
all of the 50 wages, each is written as a term of a one-dimensional array:

W[1],W[2],W[3], . . . ,W[50].
Note that the subscript labels are written inside square brackets. The reason is that until
relatively recently, it was impossible to type actual dropped subscripts on most computer
keyboards.

The main difficulty programmers have when using one-dimensional arrays is keeping
the labels straight.

Example 5.1.18 Dummy Variable in a Loop

The index variable for a for-next loop is a dummy variable. For example, the following
three algorithm segments all produce the same output:

1. for i := 1 to n 2. for j := 0 to n − 1 3. for k := 2 to n + 1

print a[i] print a[ j + 1] print a[k − 1]
next i next j next k ■

The recursive definitions for summation, product, and factorial lead naturally to com-
putational algorithms. For instance, here are two sets of pseudocode to find the sum
of a[1], a[2], . . . , a[n]. The one on the left exactly mimics the recursive definition by
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240 Chapter 5 Sequences, Mathematical Induction, and Recursion

initializing the sum to equal a[1]; the one on the right initializes the sum to equal 0. In
both cases the output is

∑n
k=1 a[k].

s := a[1] s := 0

for k := 2 to n for k := 1 to n

s := s + a[k] s := s + a[k]
next k next k

Application: Algorithm to Convert from Base 10
to Base 2 Using Repeated Division by 2

Section 2.5 contains some examples of converting integers from decimal to binary
notation. The method shown there, however, is only convenient to use with small num-
bers. A systematic algorithm to convert any nonnegative integer to binary notation uses
repeated division by 2.

Suppose a is a nonnegative integer. Divide a by 2 using the quotient-remainder
theorem to obtain a quotient q[0] and a remainder r [0]. If the quotient is nonzero, divide
by 2 again to obtain a quotient q[1] and a remainder r [1]. Continue this process until a
quotient of 0 is obtained. At each stage, the remainder must be less than the divisor, which
is 2. Thus each remainder is either 0 or 1. The process is illustrated below for a = 38.
(Read the divisions from the bottom up.)

0 remainder = 1 = r [5]

2 1 remainder = 0 = r [4]

2 2 remainder = 0 = r [3]

2 4 remainder = 1 = r [2]

2 9 remainder = 1 = r [1]

2 19 remainder = 0 = r [0]

2 38

The results of all these divisions can be written as a sequence of equations:

38 = 19 ·2+ 0,

19 = 9 ·2+ 1,

9 = 4 ·2+ 1,

4 = 2 ·2+ 0,

2 = 1 ·2+ 0,

1 = 0 ·2+ 1.

By repeated substitution, then,

38 = 19 ·2+ 0

= (9 ·2+ 1) ·2+ 0 = 9 ·22 + 1 ·2+ 0

= (4 ·2+ 1) ·22 + 1 ·2+ 0 = 4 ·23 + 1 ·22 + 1 ·2+ 0

= (2 ·2+ 0) ·23 + 1 ·22 + 1 ·2+ 0

= 2 ·24 + 0 ·23 + 1 ·22 + 1 ·2+ 0

= (1 ·2+ 0) ·24 + 0 ·23 + 1 ·22 + 1 ·2+ 0

= 1 ·25 + 0 ·24 + 0 ·23 + 1 ·22 + 1 ·2+ 0.
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Note that each coefficient of a power of 2 on the right-hand side of the previous page
is one of the remainders obtained in the repeated division of 38 by 2. This is true for the
left-most 1 as well, because 1 = 0 ·2+ 1. Thus

3810 = 1001102 = (r [5]r [4]r [3]r [2]r [1]r [0])2.
In general, if a nonnegative integer a is repeatedly divided by 2 until a quotient of zero

is obtained and the remainders are found to be r [0], r [1], . . . , r [k], then by the quotient-
remainder theorem each r [i] equals 0 or 1, and by repeated substitution from the theorem,

a = 2k ·r [k] + 2k−1·r [k − 1] + · · · + 22·r [2] + 21·r [1] + 20·r [0]. 5.1.5

Thus the binary representation for a can be read from equation (5.1.5):

a10 = (r [k]r [k − 1] · · · r [2]r [1]r [0])2.

Example 5.1.19 Converting from Decimal to Binary Notation Using Repeated
Division by 2

Use repeated division by 2 to write the number 2910 in binary notation.

Solution

0 remainder = r [4] = 1

2 1 remainder = r [3] = 1

2 3 remainder = r [2] = 1

2 7 remainder = r [1] = 0

2 14 remainder = r [0] = 1

2 29

Hence 2910 = (r [4]r [3]r [2]r [1]r [0])2 = 111012. ■

The procedure we have described for converting from base 10 to base 2 is formalized
in the following algorithm:

Algorithm 5.1.1 Decimal to Binary Conversion Using Repeated Division by 2

[In Algorithm 5.1.1 the input is a nonnegative integer n. The aim of the algorithm
is to produce a sequence of binary digits r [0], r [1], r [2], . . . , r [k] so that the binary
representation of a is

(r [k]r [k − 1] · · · r [2]r [1]r [0])2.
That is,

n = 2k ·r [k] + 2k−1·r [k − 1] + · · · + 22·r [2] + 21·r [1] + 20·r [0].]

continued on page 242
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Input: n [a nonnegative integer]
Algorithm Body:

q := n, i := 0
[Repeatedly perform the integer division of q by 2 until q becomes 0. Store successive
remainders in a one-dimensional array r [0], r [1], r [2], . . . , r [k]. Even if the initial-
value of q equals 0, the loop should execute one time (so that r [0] is computed ). Thus
the guard condition for the while loop is i = 0 or q �= 0.]

while (i = 0 or q �= 0)

r [i] := q mod 2

q := q div 2

[r [i] and q can be obtained by calling the division algorithm.]

i := i + 1

end while

[After execution of this step, the values of r [0], r [1], . . . , r [i − 1] are all 0’s and 1’s,
and a = (r [i − 1]r [i − 2] · · · r [2]r [1]r [0])2.]

Output: r [0], r [1], r [2], . . . , r [i − 1] [a sequence of integers]

Test Yourself
Answers to Test Yourself questions are located at the end of each section.

1. The notation
n∑

k=m
ak is read “_____.”

2. The expanded form of
n∑

k=m
ak is _____.

3. The value of a1 + a2 + a3 + · · · + an when n = 2
is “_____.”

4. The notation
n∏

k=m
ak is read “_____.”

5. If n is a positive integer, then n! = _____.

6.
n∑

k=m
ak + c

n∑
k=m

bk = _____.

7.

(
n∏

k=m
ak

)(
n∏

k=m
bk

)
= _____.

Exercise Set 5.1*
Write the first four terms of the sequences defined by the
formulas in 1–6.

1. ak = k

10+ k
, for all integers k ≥ 1.

2. b j = 5− j

5+ j
, for all integers j ≥ 1.

3. ci = (−1)i
3i

, for all integers i ≥ 0.

4. dm = 1+
(
1

2

)m

for all integers m ≥ 0.

5. en =
⌊n
2

⌋
·2, for all integers n ≥ 0.

6. fn =
⌊n
4

⌋
·4, for all integers n ≥ 1.

7. Let ak = 2k + 1 and bk = (k − 1)3 + k + 2 for all integers
k ≥ 0. Show that the first three terms of these sequences are
identical but that their fourth terms differ.

Compute the first fifteen terms of each of the sequences in 8
and 9, and describe the general behavior of these sequences in
words. (A definition of logarithm is given in Section 7.1.)

8. gn = �log2 n� for all integers n ≥ 1.

9. hn = n�log2 n� for all integers n ≥ 1.

∗For exercises with blue numbers or letters, solutions are given in Appendix B. The symbolH indicates that only a hint or a partial
solution is given. The symbol ✶ signals that an exercise is more challenging than usual.
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Find explicit formulas for sequences of the form a1, a2, a3, . . .
with the initial terms given in 10–16.

10. −1, 1,−1, 1,−1, 1 11. 0, 1,−2, 3,−4, 5
12.

1

4
,
2

9
,
3

16
,
4

25
,
5

36
,
6

49

13. 1− 1

2
,
1

2
− 1

3
,
1

3
− 1

4
,
1

4
− 1

5
,
1

5
− 1

6
,
1

6
− 1

7

14.
1

3
,
4

9
,
9

27
,
16

81
,
25

243
,
36

729

15. 0,−1

2
,
2

3
,−3

4
,
4

5
,−5

6
,
6

7

16. 3, 6, 12, 24, 48, 96

17.✶ Consider the sequence defined by an = 2n + (−1)n − 1

4
for all integers n ≥ 0. Find an alternative explicit formula
for an that uses the floor notation.

18. Let a0 = 2, a1 = 3, a2 = −2, a3 = 1, a4 = 0, a5 = −1,
and a6 = −2. Compute each of the summations and
products below.

a.
6∑

i=0
ai b.

0∑
i=0

ai c.
3∑
j=1

a2 j d.
6∏

k=0
ak e.

2∏
k=2

ak

Compute the summations and products in 19–28.

19.
5∑

k=1
(k + 1) 20.

4∏
k=2

k2 21.
3∑

m=0

1

2m

22.
4∏
j=0

(−1) j 23.
1∑

i=1
i(i + 1) 24.

0∑
j=0

( j + 1) ·2 j

25.
2∏

k=2

(
1− 1

k

)
26.

1∑
k=−1

(k2 + 3)

27.
10∑
n=1

(
1

n
− 1

n + 1

)
28.

5∏
i=2

i(i + 2)

(i − 1) ·(i + 1)

Write the summations in 29–32 in expanded form.

29.
n∑

i=1
(−2)i 30.

n∑
j=1

j ( j + 1) 31.
n+1∑
k=0

1

k! 32.
k+1∑
i=1

i(i !)

Evaluate the summations and products in 33–36 for the indi-
cated values of the variable.

33.
1

12
+ 1

22
+ 1

32
+ . . .+ 1

n2
; n = 1

34. 1(1!)+ 2(2!)+ 3(3!)+ . . .+ m(m!); m = 2

35.
(

1

1+ 1

)(
2

2+ 1

)(
3

3+ 1

)
. . .

(
k

k + 1

)
; k = 3

36.

(
1 ·2
3 ·4

)(
4 ·5
6 ·7

)(
6 ·7
8 ·9

)
. . .

(
m ·(m + 1)

(m + 2) ·(m + 3)

)
;m = 1

Rewrite 37–39 by separating off the final term.

37.
k+1∑
i=1

i(i !) 38.
m+1∑
k=1

k2 39.
n+1∑
m=1

m(m + 1)

Write each of 40–42 as a single summation.

40.
k∑

i=1
i3 + (k + 1)3 41.

m∑
k=1

k

k + 1
+ m + 1

m + 2

42.
n∑

m=0
(m + 1)2m + (n + 2)2n+1

Write each of 43–52 using summation or product notation.

43. 12 − 22 + 32 − 42 + 52 − 62 + 72

44. (13 − 1)− (23 − 1)+ (33 − 1)− (43 − 1)+ (53 − 1)

45. (22 − 1) ·(32 − 1) ·(42 − 1)

46.
2

3 ·4 −
3

4 ·5 +
4

5 ·6 −
5

6 ·7 +
6

7 ·8
47. 1− r + r 2 − r 3 + r 4 − r 5

48. (1− t) ·(1− t2) ·(1− t3) ·(1− t4)

49. 13 + 23 + 33 + · · · + n3

50.
1

2! +
2

3! +
3

4! + · · · +
n

(n + 1)!
51. n + (n − 1)+ (n − 2)+ · · · + 1

52. n + n − 1

2! +
n − 2

3! +
n − 3

4! + · · · +
1

n!
Transform each of 53 and 54 by making the change of variable
i = k + 1.

53.
5∑

k=0
k(k − 1) 54.

n∏
k=1

k

k2 + 4

Transform each of 55–58 by making the change of variable
j = i − 1.

55.
n+1∑
i=1

(i − 1)2

i ·n 56.
n∑

i=3

i

i + n − 1

57.
n−1∑
i=1

i

(n − i)2
58.

2n∏
i=n

n − i + 1

n + i

Write each of 59–61 as a single summation or product.

59. 3 ·
n∑

k=1
(2k − 3)+

n∑
k=1

(4− 5k)

60. 2 ·
n∑

k=1
(3k2 + 4)+ 5 ·

n∑
k=1

(2k2 − 1)

61.

(
n∏

k=1

k

k + 1

)
·
(

n∏
k=1

k + 1

k + 2

)

Compute each of 62–76. Assume the values of the variables are
restricted so that the expressions are defined.

62.
4!
3! 63.

6!
8! 64.

4!
0!

65.
n!

(n − 1)! 66.
(n − 1)!
(n + 1)! 67.

n!
(n − 2)!
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68.
((n + 1)!)2

(n!)2 69.
n!

(n − k)! 70.
n!

(n − k + 1)!

71.
(
5
3

)
72.

(
7
4

)
73.

(
3
0

)

74.

(
5
5

)
75.

(
n

n − 1

)
76.

(
n + 1
n − 1

)
77. a. Prove that n! + 2 is divisible by 2, for all integers n ≥ 2.

b. Prove that n! + k is divisible by k, for all integers n ≥ 2
and k = 2, 3, . . . , n.

c.H Given any integerm ≥ 2, is it possible to find a sequence
of m − 1 consecutive positive integers none of which is
prime? Explain your answer.

78. Prove that for all nonnegative integers n and r with

r + 1 ≤ n,

(
n

r + 1

)
= n − r

r + 1

(
n
r

)
.

79. Prove that if p is a prime number and r is an integer with

0 < r < p, then

(
p
r

)
is divisible by p.

80. Suppose a[1], a[2], a[3], . . . , a[m] is a one-dimensional
array and consider the following algorithm segment:

sum := 0

for k := 1 to m

sum := sum + a[k]
next k

Fill in the blanks below so that each algorithm segment per-
forms the same job as the one given previously.
a. sum := 0

for i := 0 to

sum :=
next i

b. sum := 0

for j := 2 to

sum :=
next j

Use repeated division by 2 to convert (by hand) the integers in
81–83 from base 10 to base 2.

81. 90 82. 98 83. 205

Make a trace table to trace the action of Algorithm 5.1.1 on the
input in 84–86.

84. 23 85. 28 86. 44

87. Write an informal description of an algorithm (using
repeated division by 16) to convert a nonnegative inte-
ger from decimal notation to hexadecimal notation
(base 16).

Use the algorithm you developed for exercise 87 to convert the
integers in 88–90 to hexadecimal notation.

88. 287 89. 693 90. 2,301

91. Write a formal version of the algorithm you developed for
exercise 87.

Answers for Test Yourself
1. the summation from k equals m to n of a-sub-k 2. am + am+1 + am+2 + · · · + an 3. a1 + a2 4. the product from k equals m to

n of a-sub-k 5. n · (n − 1) · · · 3 ·2 ·1 (Or: n ·(n − 1)!) 6.
n∑

k=m
(ak + cbk) 7.

n∏
k=m

akbk

5.2 Mathematical Induction I
[Mathematical induction is] the standard proof technique in computer science.
— Anthony Ralston, 1984

Mathematical induction is one of the more recently developed techniques of proof in the
history of mathematics. It is used to check conjectures about the outcomes of processes
that occur repeatedly and according to definite patterns. We introduce the technique with
an example.

Some people claim that the United States penny is such a small coin that it should
be abolished. They point out that frequently a person who drops a penny on the ground
does not even bother to pick it up. Other people argue that abolishing the penny would
not give enough flexibility for pricing merchandise. What prices could still be paid with
exact change if the penny were abolished and another coin worth 3c/ were introduced?
The answer is that the only prices that could not be paid with exact change would be
1c/, 2c/, 4c/, and 7c/. In other words,

Any whole number of cents of at least 8c/ can be obtained using 3c/ and 5c/ coins.

More formally:

For all integers n ≥ 8, n cents can be obtained using 3c/ and 5c/ coins.
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