
Prefix-Preserving IP Address Anonymization:
Measurement-based Security Evaluation and a New

Cryptography-based Scheme
�

Jun Xu Jinliang Fan Mostafa H. Ammar Sue B. Moon
College of Computing Sprint ATL

Georgia Institute of Technology 1 Adrian Court
Atlanta, GA 30332-0280 Burlingame, CA 94010�

jx,jlfan,ammar � @cc.gatech.edu sbmoon@sprintlabs.com

August 29, 2002

Abstract– Real-world traffic traces are crucial for Internet research, but only a very small percent-
age of traces collected are made public. One major reason why traffic trace owners hesitate to make the
traces publicly available is the concern that confidential and private information may be inferred from
the trace. In this paper we focus on the problem of anonymizing IP addresses in a trace. More specif-
ically, we are interested in prefix-preserving anonymization in which the prefix relationship among IP
addresses is preserved in the anonymized trace, making such a trace usable in situations where prefix
relationships are important. The goal of our work is two fold. First, we develop a cryptography-
based, prefix-preserving anonymization technique that is provably as secure as the existing well-known
TCPdpriv scheme, and unlike TCPdpriv, provides consistent prefix-preservation in large scale dis-
tributed setting. Second, we evaluate the security properties inherent in all prefix-preserving IP address
anonymization schemes (including TCPdpriv). Through the analysis of Internet backbone traffic traces,
we investigate the effect of some types of attacks on the security of any prefix-preserving anonymiza-
tion algorithm. We also derive results for the optimum manner in which an attack should proceed,
which provides a bound on the effectiveness of attacks in general.

Keywords– prefix-preserving address anonymization, TCPdpriv, cryptography-based anonymiza-
tion, traffic measurement, security, privacy.

1 Introduction

Real-world Internet traffic traces are crucial for network research such as workload characterization,

traffic engineering, web performance, and more generally network performance analysis and simula-�
A preliminary version of the paper will be presented at the 10th IEEE International Conference on Network Protocols,

to be held in Paris, France, from November 12th to 15th, 2002.

1

tion. However, only a tiny percentage of traffic traces collected are made public (e.g., by NLANR/MOAT

Network Analysis Infrastructure (NAI) project [1] and ACM ITA project [2]) for research purposes.

One major reason why ISPs or other traffic trace owners hesitate to make the traces publicly available is

the concern that the confidential (commercial) and private (personal) information regarding the senders

and receivers of packets may be inferred from the trace. In cases where a trace has been made publicly

available, the trace is typically subjected to an anonymization process before being released.

A straightforward approach to anonymizing a packet trace is to map each distinct IP address appear-

ing in the trace to a random 32-bit “address”. The only requirement is that this mapping be one-to-one.

Anonymity of the IP addresses in the original trace is achieved by not revealing the random one-to-one

mapping used in anonymizing a trace. Such anonymization, however, results in the loss of the prefix

relationships among the IP addresses and renders the trace unusable in situations where such relation-

ship is important (e.g., routing performance analysis, or clustering of end-systems [3]). It is, therefore,

highly desirable for the address anonymization to be prefix preserving. That is, if two original IP ad-

dresses share a � -bit prefix, their anonymized mappings will also share a � -bit prefix. One approach to

such prefix preserving anonymization is adopted in TCPdpriv developed by Greg Minshall [4].

In this work we first formally characterize prefix-preserving anonymization functions by showing

that the set of such functions follow a canonical form. TCPdpriv can be viewed as a table-based ap-

proach that generates a function randomly from this set. It may produce inconsistent prefix-preserving

anonymization (i.e., same original prefix mapped into different anonymized prefixes) when used inde-

pendently on more than one trace. We develop an alternative cryptography-based, prefix-preserving

anonymization technique to address this issue, and prove rigorously that the proposed technique main-

tains the same level of anonymity as TCPdpriv.

Second, we are interested in analyzing the security properties inherent in prefix-preserving IP ad-

dress anonymization in general (whether using TCPdpriv or the proposed scheme). We aim to un-

derstand its susceptibility to attacks that may reveal some IP address mappings (e.g., [5]). Through

analysis of real-world IP traffic traces, we investigate the effect of some types of attacks on the security

of the prefix-preserving anonymization process. In the process, we derive some results pertaining to

the optimum manner in which an attack should proceed with the goal of understanding the bounds on

the performance of attacks in general.

Although our results can be used to analyze the effect of attacks on an anonymized trace, we believe

2

that it is outside the scope of our work to make any conclusions regarding how “safe” it is to release

an anonymized trace. We stress that our work constitutes a scientific endeavor, intended to explore the

potential and limits of prefix-preserving anonymization as a way to simultaneously satisfy the needs

of network researchers and the concerns of trace owners. We realize that the decision to release data,

even in anonymized form, is affected by many non-technical issues. Our role is to provide a technical

foundation for such decision making.

The rest of this paper is organized as follows. In Section 2 we introduce our result regarding

the canonical form of a prefix-preserving anonymization scheme. We also describe the operation of

TCPdpriv and present our own cryptography-based scheme. In Section 3 we describe cryptographic

and semantic attacks; two forms of attacks that may potentially be used to defeat an anonymization

scheme. Section 4 proves the immunity of our cryptography-based anonymization scheme from cryp-

tographic attacks. In Section 5, we develop a framework for evaluating the effects of semantic attacks

on anonymization schemes in general (including TCPdpriv and our cryptography-based scheme). We

then use the framework to derive numerical results demonstrating the effects of certain attacks on real-

world traces. The paper is concluded in Section 6.

2 Prefix-Preserving Anonymization Schemes

We begin this section with a formal definition of prefix-preserving anonymization.

Definition 1 (Prefix-preserving Anonymization1) We say that two IP addresses �����
	������������� and� � � 	 � ������� � � share a � -bit prefix (���������), if ��	���������� ��! =
� 	 � ������� � ! , and ��!�"#	%$� � !&"#	 when

�(')� 2. An anonymization function * is defined as a one-to-one function from +,�.-0/21 � to +,�.-0/31 � . An

anonymization function * is said to be prefix-preserving, if, given two IP addresses � and
�

that share

a � -bit prefix, *546�87 and *94 � 7 also share a � -bit prefix.

It is useful for our future analysis to consider a geometric interpretation of this form of anonymiza-

tion. We first note that the entire set of possible distinct IPv4 addresses can be represented by a complete

binary tree of height 32. The set of distinct addresses present in an unanonymized trace can be repre-

sented by a subtree of this complete binary tree where each address is represented by a leaf. We call

2For all known packet traces, :<;>=@? , as an IPv4 address has four bytes.

3

0
0
0
1

0
0
1
0

0
0
0
0

0
0
1
1

0
1
0
1

0
1
1
0

0
1
1
1

0
1
0
0

1
0
0
1

1
0
1
0

1
0
0
0

1
0
1
1

1
1
0
1

1
1
1
0

1
1
1
1

1
1
0
0

1
0
0
0

1
0
1
1

1
1
1
0

1
1
1
1

0
0
0
1

0
0
1
0

0
0
0
0

0
1
0
1

0
1
0
0

A A AA A AA A AA A AA A AB B BB B BB B BB B BB B B C C CC C CC C CC C CC C CD D DD D DD D DD D DD D D E E EE E EE E EE E EE E EF F FF F FF F FF F FF F F G G GG G GG G GG G GG G GH H HH H HH H HH H HH H HI I II I II I II I II I IJ J JJ J JJ J JJ J JJ J J K K KK K KK K KK K KK K KL L LL L LL L LL L LL L L M M MM M MM M MM M MM M MN N NN N NN N NN N NN N N O O OO O OO O OO O OO O OP P PP P PP P PP P PP P P Q Q QQ Q QQ Q QQ Q QQ Q QR R RR R RR R RR R RR R R

S S SS S SS S SS S SS S ST T TT T TT T TT T TT T T Flip

Leaf Node
Do Not Flip

0
0

0
0

0
0
1
0

0
0
0
0

0
1
1
1

0
1
1
0

1
1
0
1

1
1
1
1

1
1
0
0

1
0
0
1

1
0
0
0

(a) address space (b) original address tree (c) anonymization function (d) anonymized address tree

Figure 1: Address Trees and Anonymization Function

this the original address tree. Each node in this original address tree (excluding the root node) corre-

sponds to a bit position, indicated by the height of the node, and a bit value, indicated by the direction

of the branch from its parent node. Figure 1(a) shows a complete binary tree (using 4-bit addresses for

simplicity) and Figure 1(b) shows an original address tree.

A prefix-preserving anonymization function can be viewed as specifying a binary variable for each

non-leaf node (including the root node) of the original address tree. This variable specifies whether

the anonymization function “flips” this bit or not. Applying the anonymization function results in the

rearrangement of the original address tree into an anonymized address tree. Figure 1(d) shows the

anonymized address tree resulting from the anonymization function shown in Figure 1(c). Note that an

anonymization function will, therefore, consist of at least U binary variables if the original address tree

has U non-leaf nodes.

Although what we have presented is clearly a method for prefix-preserving anonymization, it is not

immediately obvious that this is the only method. In the following theorem, we prove that this is indeed

the only method.

Theorem 1 (Canonical Form Theorem) Let V,W be a function from +,�.-X/21 W to +,�Y-0/21 , for Z[�\/�-^]Y-0�����_-��[`
/ and V,a is a constant function. Let * be a function from +,�.-0/31 � to +,�.-0/21 � defined as follows. Given

�b�)��	������������� , let

*94c�87edf�g�h 	 �h� ����� �h� (1)

where � hW �i��W8j�V�Wlk
	X4c�.	^-����X-0�����X-&��Wlk
	�7 , and j stand for the exclusive-or operation, for Z[��/�-&]Y-0�����_-��nm
We claim that

4

(a) * is a prefix-preserving anonymization function and

(b) A prefix-preserving anonymization function necessarily takes this form.

Proof: (a) Suppose two raw addresses �o�p�q	r������������ and
� � � 	 � ������� � � share a � -bit prefix; that

is, �.	���[�������!s� � 	 � �[����� � ! , and, if �t'u� , ��!&"#	�� � !&"#	 (or equivalently ��!&"#	v� � !&"#). Then for

Z[��/�-&]Y-0�����_-^� ,

��hW � �WYjwV�Wlk
	@46��	_-����X-0�����X-&��Wlk
	�7
� � WYjwV�Wlk
	@4 � 	_- � ��-X�����@- � Wlk
	 7
� � hW

and, if �x'y� ,

� h !&"#	 � ��!�"#	zjwV{!46��	&-&���-0�����@-���!07
� � !�"#	�jyV{!4 � 	_- � ��-X�����@- � !07
� � h !�"#	

(b) This is equivalent to proving that given any prefix preserving function * , we can find corre-

sponding V{W|-�Z[�g�.-0/2-0�����@- �e`}/ in the above form. Given any * and any Z�-&�~�wZ��w��`9/ , we define V2W as

follows. Given any Z -bit sequence �q	������������W , we append an arbitrary ��`>Z bit sequence �8W�"#	���W�"�������� ��
to it. Then we define V,W�4c�.	_-&��0-0�����@-&��W�7�d���� , where � is the 4�Zz�i/{7 -th bit of *94c��	�������������7�j���W�"#	 . It

remains to show that V,W is well-defined: different choices of ��W�"#	^-&��W�"��0-X�����X-&��� lead to the same � value.

Given another sequence
� W�"#	 � W�"���-0�����X- � � , we show ���u� h , where � h is computed as 46Z[��/{7 -th bit of

*94c�.	���[��������W � W�"#	#����� � ��7nj � W�"#	 . We only need to discuss following two cases:

(1) When �W�"#	>� � W�"#	 , *546��	������������W��W�"#	�����������7 and *94c�.	��������� ��W � W�"#	#����� � ��7 should have the same

46Z���/{7 -th bit (denoted as �) since * is prefix-preserving. So ���i��j��8W�"#	��i��j � W�"#	��g� h .
(2) Similarly, we can show ���g� h when ��W�"#	�� � W�"#	 . �
Remark: Note that there is a natural one-to-one mapping between the canonical form of a prefix-

preserving anonymization function and its graphical representation. Each node in an anonymization

tree (see figure 1), as represented by its prefix �q	�����������! , will be labeled “flip” or “no flip”, when

V�46��	r������������!07���/ or � , respectively.

5

In the following, we describe TCPdpriv, an existing traffic anonymization tool that, among other

things, allows the prefix-preservation anonymization of IP addresses. We describe how TCPdpriv im-

plements prefix-preserving anonymization and identify its properties. We then discuss our cryptography-

based prefix-preserving anonymization algorithm that possesses additional functionality. Finally, we

define metrics for the level of security that is constrained by the prefix-preserving requirement and

show that both TCPdpriv and our scheme achieve this same level of security.

2.1 TCPdpriv and Its Properties

TCPdpriv’s implementation of the prefix-preserving translation of IP addresses is table-based: it stores

a set of ' raw, anonymized � binding pairs of IP addresses to maintain the consistency of the anonymiza-

tion. When a new raw IP address � needs to be anonymized, it is first compared with all the the raw

IP addresses inside the stored binding pairs for the longest prefix match. Suppose the binding pair

whose raw address has longest prefix match with ���p�q	����Xm�m�m���� is ' x, y � (let �y����	r�q���������
� and� � � 	 � ������� � �), and the length of the match is � . Suppose � is anonymized to
� � � 	 � ������� � � . Then� 	 � ������� � ! � !&"#	�� � 	 � ������� � ! � !�"#	 and � !&"�� � !�"� z����� � �<�g¡2��¢�#46�.-^] �,k8!@k
	 `y/{7 , where ¡3�����4���- � 7 gener-

ates a pseudorandom (not required to be cryptographically strong) number between � and � . If �£$�i� ,

' a,b � will be then added to the binding table.

When a binary trie data structure is used, the search for the longest prefix match has the cost of¤ 4��z7 , where � is the number of bits in the address. The memory requirement of the algorithm is
¤ 4|¥�7 ,

where ¥ is the number of binding pairs stored. We refer readers to the source code of TCPdpriv [4]

for the actual data structure and algorithm.

Despite the elegance and simplicity of the TCPdpriv implementation, it does not facilitate the par-

allel and distributed (yet consistent) anonymization of traffic traces:

¦ TCPdpriv does not allow distributed processing of different traces simultaneously. Like other

prefix-preserving anonymization functions, TCPdpriv can be mapped to the canonical form shown

in Theorem 1. For TCPdpriv, the functions +3V3W|1{a §�Wl§��,k
	 in the canonical form are trace-dependent:

they are determined by the raw IP addresses and the relative order in which they appear in a trace.

Therefore, a raw address appearing in different traces may be mapped to different anonymized

6

addresses by TCPdpriv, hence the inconsistency3. However, there is a real need for simultaneous

(yet consistent) anonymization of traffic traces in different sites, e.g., for taking a snapshot of the

Internet. It would be very cumbersome if hundreds of traces have to be gathered first and then

anonymized in sequence.

¦ A large trace (e.g., terabytes) may be collected for a high-speed link for a long period of time.

For the same reason discussed above, TCPdpriv does not allow a large trace file to be broken

down into pieces and processed in parallel consistently.

2.2 A Cryptography-based Scheme

We have designed an algorithm that addresses the aforementioned properties of TCPdpriv by determin-

isticly mapping raw addresses to anonymized addresses based on a relatively small key (compared to

the ¥ -entry binding table), which facilitates distributed and parallel anonymization of traffic traces. We

show that the algorithm is provably secure up to the level of security a prefix-preserving anonymization

could possibly deliver.

Based on the canonical form in Theorem 1, our cryptography-based scheme is defined as instanti-

ating functions V,W in (1) with cryptographically strong stream ciphers or block ciphers as follows:

V{W�4c�.	���[����� ��W�7¨df��©<4�ª£4�«�4c�.	���[��������W67_-^¬q7�7 (2)

where Z<���.-0/2-0�����@- �`t/ and © returns the “least significant bit”. Note that we are able to specify

this scheme in such a succinct way thanks to the formulation and proof of Theorem 1. Here ª is a

pseudorandom function or a pseudorandom permutation (i.e., a block cipher) such as Rijndael [6], and

« is a padding function that expands �
	������������W into a longer string that matches the block size of ª . ¬
is the cryptographic key used in the pseudorandom function ª . Its length should follow the guideline

(e.g., between 128 and 256 bits in 32-bit steps in Rijndael) specified for the pseudorandom function

that is actually adopted.

As we can see from (2), the cryptography-based anonymization function is uniquely determined

3TCPdpriv may be modified to allow the binding table used in one anonymization session to be saved and used in another

session for consistent anonymization. However, the binding table is large and can be cumbersome for distribution. Also the

anonymization process still has to be serialized.

7

by ¬ . In other words, an unanonymized address appearing in two different traces will be mapped to

the same anonymized address if the same key is used to anonymize both traces. So, for consistent

distributed anonymization of multiple traces, the ¬ needs to be distributed to various hosts or sites

where the anonymization will occur. A secure key distribution scheme (such as [7, 8, 9]) suitable for

the specific requirements (e.g., scalability) of an organization can be used for this purpose.

The new scheme is designed to be generic: any secure stream and block ciphers, which can be

modeled as pseudorandom functions (PRF) or pseudorandom permutations (PRP), may be used in

place of ª . In the following section, we characterize the best possible security level of * and show that

it is provably secure (up to that level) based on the assumption that ª is a PRF (PRP is a special case

of PRF).

We implemented our scheme by instantiating ª with Rijndael, a secure block cipher that has been

adopted by NIST as AES [6]. As a block cipher, Rijndael can be modeled as strong pseudorandom

permutation [10, 11, 12], which is the base assumption for provable security of our scheme. We found

that the scheme can process 10,000 packets per second on a 800 MHz Intel Pentium III processor, fast

enough for practical purposes. This speed can be doubled if the scheme precomputes and stores the

anonymization result for the first 16 bits, costing 128 KB4. Note that since this cache is deterministicly

generated from the key, it will not interfere with parallel and distributed execution of the scheme.

3 Attacking Prefix-Preserving Anonymization

In this section, we discuss two possible ways in which our scheme may be attacked. An intruder

is assumed to have compromised (gain full knowledge to) the bindings between certain number of

raw and anonymized address pairs through means other than compromising the key (i.e., the known

plaintext attack model). We identify the following two types of the attacks: the first affects only our

scheme and the second affects TCPdpriv and our scheme to the same extent.

¦ Cryptographic Attack. Aided by the knowledge of the compromised raw-anonymized address

pairs, the intruder tries to infer the cryptographic key used in the anonymization algorithm (¬ in

4Storing such intermediate results in a software cache with appropriate replacement policies (e.g., LRU) may result in

even higher improvement on the overall anonymization speed, when there is a decent amount of locality [13] in the trace.

However, such improvement can be highly trace-dependent.

8

(2)) using all possible cryptanalysis techniques. TCPdpriv is not susceptible to this attack.

¦ Semantic Attack. Without compromising the cryptographic keys, the attacker may still be able

to infer a part of (typically a prefix) or even whole unanonymized addresses from an anonymized

address by exploiting the semantics of prefix-preserving and traditional cryptanalysis techniques

such as frequency analysis. This process can again be aided by the knowledge of the compro-

mised addresses. Note that the semantic attack is inherent with the prefix-preserving anonymiza-

tion scheme: all prefix-preserving schemes (including TCPdpriv and our scheme) are subject to

this type of attack to the same degree.

We will prove that the security of our scheme against cryptographic attack depends solely on the

strength of the pseudorandom function used in its construction (ª in (2)). It is not dependent on the

data that is anonymized. The robustness of our scheme against semantic attack, on the other hand, is

dependent on certain “entropy” property that may vary from trace to trace. Therefore, it is assessed by

measuring such properties on specific traces.

In the sequel we study both attacks in detail. In Section 4 we show that our scheme is provably

secure against cryptographic attack. In Section 5, we investigate the effectiveness of semantic attacks

through measurements on real unanonymized packet traces.

4 Security Analysis of Cryptographic Attack

In this section, we prove that our scheme defined by (1) and (2) achieves the highest level of secu-

rity achievable by prefix-preserving schemes when the adversaries are assumed to be computationally

bounded. In stating the theorems and the proofs, we follow the standard notions of security and proof

techniques in the provable security literature [14, 15].

We first characterize the highest level of security achievable by any prefix-preserving anonymization

scheme. Suppose that a set of ® anonymized addresses ¯ have been compromised. Given an arbitrary

anonymized address
�

(fixed after it is chosen), suppose � is the longest prefix match between
�

and

the elements in ¯ . Then, due to the prefix-preserving nature of the anonymization algorithm, the first

4|�°�g/{7 bits of the corresponding raw address, referred to as � , are revealed as mentioned before. The

highest level of security that can be achieved is then to ensure that the remaining 4��%`��}`)/{7 bits are

9

indistinguishable from random bits to adversaries.

In order to formalize this concept we first introduce the following definitions:

Definition 2 (adapted from [16]) Suppose ±�a and ±¢	 are two probability distributions on the set +,�.-0/213² ,
bit strings of length ³ . Let ´µd�+,�.-X/21,²�¶ +,�.-X/21 be a probabilistic (randomized) algorithm. Let ·°�t�
and two random variables ¸5a and ¸v	 have distributions ±qa and ±¢	 respectively. We say that ´ is an

· -distinguisher of ±qa and ±�	 provided that ¹»º<¡�4�´b4¼¸9a&7���/{7
`>º½¡.46´¾4�¸v	�7���/�7{¹8¿�· . We say that ±qa and

±¢	 are · -distinguishable if there exists an · -distinguisher of ±#a and ±¢	 .
Definition 3 We call a function * : À�¶ Á to be (Â , Ã , ·)-pseudorandom, when there is no algorithm

´ that, given any �\ÄÅÀ at ´ ’s choice, can be an · -distinguisher between the uniform distribution

on Á and the distribution of *94��#7 . Here ´ is allowed to use * as an oracle on Â points of its choice

different from � and spends no more than Ã computation time. Note here that the distribution of *54¼�#7
is induced by the distribution of * in function space. So, equivalently, we can say that the function *
is · -indistinguishable from a random function, which can be viewed as a random variable uniformly

distributed in the set of all functions from À to Á .

With the above definitions in mind a prefix preserving scheme can be said to attain its highest level

of security if the algorithm * is indistinguishable from a random prefix-preserving function, a function

uniformly chosen from the set of all prefix-preserving functions.

We prove in Theorem 2 that the cryptography-based scheme achieves the aforementioned level of

security when the adversaries are assumed to be computationally bounded. In contrast, in TCPdpriv,

this indistinguishability is achieved in the information-theoretical sense: the adversary does not need

to be computationally bounded. This, however, comes at the cost of maintaining a large binding table

(essentially a one-way pad).

The notations (¯ , ® ,
�
, � , and �) introduced in the paragraph before the last will be used throughout

this section, and �b�i��	������������� . Given (¯ , ® ,
�
, � , �) as defined above, we define Æ*�d
+,�.-0/21 �,k8!@k
	 ¶

+,�.-0/31 �3k8!@k
	 in which Æ*}4��#7 is defined as the last 46�£`)�v`t/{7 bits of *94c�
	r������������!�"#	�¹l¹ �#7 . Here * is

defined as in (1), �ÇÄs+,�.-0/21 �,k8!@k
	 , and “ ¹�¹ ” represents concatenation.

Theorem 2 Given the knowledge of compromised addresses ¯ , if the function ª in (2) is a (32*(® +1),

Ã , È��É0Ê|�)-pseudorandom function, then Æ* k
	 is a (0, Ã , ·)-pseudorandom function. In other words, given

10

any � Ä�+,�.-0/21 �,k8!@k
	 , the distribution of Æ* k
	 4 � 7 is not · -distinguishable from uniform distribution on

+,�.-0/31 �3k8!@k
	 for all algorithms ´ that runs for no more than Ã time.

Proof: Since ª is a (32*(® +1), Ã , È� É Ê|�)-pseudorandom function, by Lemma 1, Æ* is a (0, Ã , È� É)-

pseudorandom function. Then by Lemma 2, this implies that Æ* k
	 is a (0, Ã , ·)-pseudorandom function.

�
For better continuity of text, we state without the proof the lemmas used in proving Theorem 2.

Their detailed proofs are in Appendix A.

Lemma 1 If ª is a (32*(® +1), Ã , È�)-pseudorandom function, then Æ* is a (0, Ã , ·)-pseudorandom func-

tion even with the knowledge of ¯ .

Lemma 2 If a permutation Ë d¨ÁÌ¶ Á is a (0, Ã , ·)-pseudorandom function, then Ë k
	 is a (0, Ã ,
·3¹»Á>¹)-pseudorandom function.

Remark: If the only assumption about Ë is that it is a pseudorandom function, then this bound of

4c·,¹ÍÁ>¹»7 for Ë k
	 is indeed tight. An instance where this bound is tight is shown in the remark after the

proof of Lemma in Appendix A.

In this section, we formally characterize the notion of provable security (Definition 2 and 3) in

our context: indistinguishability between our anonymization function and a random prefix-preserving

function to a computationally constrained adversary (with no more than Ã computation time). We prove

rigorously that our scheme is secure against cryptographic attacks based on this notion of provable

security. In the next section, we proceed to explore the security of our scheme and TCPdpriv against

semantic attacks.

5 Evaluation of the Effects of Semantic Attacks

In this section, we study the security of prefix-preserving anonymization against semantic attacks.

Since the risk of semantic attacks is inherent with all prefix-preserving anonymization schemes, the

findings of this study apply to all schemes, including ours and TCPdpriv. Our goal here is to provide a

framework for evaluating the privacy risks in releasing an anonymized trace so that trace owners may

be better equipped to make informed decisions about releasing anonymized traces.

11

The security implications of prefix-preserving anonymization of traffic traces using TCPdpriv [4]

are briefly studied in [5] and [17]. Here we offer a more formal approach to characterize the security

of prefix-preserving anonymized traces against semantic attacks. Our contribution is summarized as

following:

1. We provide a framework (including a set of metrics) for evaluating the effect of attacks on

anonymized traces. The framework assumes that an attack is characterized by the number of

address mappings that are compromised and by properties that compromised addresses may have

(e.g., random, all DNS addresses or frequently-occurring addresses).

2. We show that, for the traces we examine, an attacker that compromises a random set of addresses

causes approximately the same damage as a more careful attacker which compromises the same

number of addresses optimally. This seems to indicate that compromising addresses at random

is a good means of attacking prefix-preserving anonymization.

3. We show that the damage caused by an attack can be trace-specific. This means that no blanket

statements can be made regarding the safety of releasing traces but rather each case needs to be

evaluated on its own merits.

4. We show that two “obvious” attacks: using frequency analysis and compromising all DNS server

addresses, yield as much damage as a small number of randomly compromised addresses. We

also discuss the feasibility and likely effectiveness of other more elaborate attacks.

5.1 Metrics to Measure Effect of Attacks

When we study the security of an anonymized trace, we would like to measure the amount of infor-

mation that is leaked from or kept untouched in the whole trace as a consequence of compromising

some address mappings. Note that the specifics of the attack by which address mappings have been

compromised is not important, and what ultimately matters is the result of the attack, i.e., the number

of compromised addresses and their properties.

In this section we define three metrics to measure the effect of attacks on anonymized traces. Each

measure reflects a different security concern.

12

The number of unknown compressed bits, Î : When some address mappings are compro-

mised, the states of some nodes of the anonymization function (see figure 1) are revealed and

the anonymization function is partially compromised. This leads to the definition of Î as the

total number of nodes in the anonymization function whose states are not known. Note that Î
corresponds to the entropy of the anonymization function after the attack.

The number of unknown uncompressed bits, À : Another concern is the security state of the anonymized

addresses. When some address mappings are compromised, all the bits in the compromised ad-

dresses are revealed. In addition and due to the prefix-preserving nature of the anonymization

algorithm, certain bits in other addresses are also revealed. This leads to the definition of À as

the total number of bits that are not known, in all addresses.

The number of addresses with exactly Z known most significant bits, *nW : Neither Î nor À describe

exactly where bits have been revealed. We, therefore, measure *�W defined as the total number of

addresses that has exactly Z most significant bits known, where �~�wZ���Ï] .

5.2 An Evaluation of the Effect of Attacks on Real Traces

Recall that we model the effect of an attack by the number of compromised addresses and the properties

associated with them. In this section we consider the effect of compromising ® addresses chosen either

randomly or according to a greedy algorithm (which we prove is optimal for some measures).

We present results based on a trace from Tier-1 ISP link and a publicly available one from NLANR

[18]. Note that both traces contain real (unanonymized) IP addresses5. The properties of the two traces

are shown in Table 1.

Figure 2(a) shows the number of nodes in each level of the original address tree built from the

NLANR trace. The figure shows that the number of nodes increases when the level increases. It also

shows that the tree is quite dense on the top but becomes sparser as it progresses towards the leaves

representing the IP addresses. Similar figures are obtained from the Tier-1 ISP trace and are shown in

figure 2(b).

5The NLANR trace is an destination-IP-address-only trace.

13

Tier-1 ISP NLANR [18]

Type Full Header Destination IP Only

Location Packet-Over-SONET OC3 link N/A

Start Time 09:56 PDT 8/9/2000 N/A

End Time 19:56 PDT 8/9/2000 N/A

Size 50GB Binary 930MB ASCII

Number of Packets 567,680,718 31,518,464

Number of Distinct Addresses 1,423,937 130,163

Table 1: Example Traces

1

32

1024

32768

1.04858e+06

3.35544e+07

1.07374e+09

3.43597e+10

0 5 10 15 20 25 30

N
um

be
r O

f N
od

es

Level

Address Tree
Full Tree

1

32

1024

32768

1.04858e+06

3.35544e+07

1.07374e+09

3.43597e+10

0 5 10 15 20 25 30

N
um

be
r O

f N
od

es

Level

Address Tree
Full Tree

(a) NLANR IP Address Trace (b) Tier-1 ISP IP Header Trace

Figure 2: Shape of Address Trees

Effect of Compromising Random Addresses We first consider the effect of compromising a random

number of addresses. Figures 3(a),(b) and (c) are simulation results on the NLANR trace and show how

À and Î decrease as the number of compromised IP addresses increases. The results are obtained by

randomly choosing a certain number of addresses from the NLANR trace and evaluating the Î and

À measures assuming they are compromised. This is repeated 10 times and the graphs represent the

average of the experiments. Figures 3(b) and (c) magnify the portion of 3(a) when the number of

compromised IP addresses ranges from 0 to 3000 and 0 to 300, respectively.

We can see in the graphs that the value of Î drops almost linearly with respect to the number of

compromised IP addresses, which means the anonymization function is quite resistant to the attacks.

The value of À drops very fast initially and flattens out. This implies that an ordinary address has a

14

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 20000 40000 60000 80000 100000 120000 140000

U
 a

n
d
 C

 C
o
u
n
ts

 (
u
n
it=

1
0
0
0
)

Number of Compromised Addresses

U
C

1500

2000

2500

3000

3500

4000

4500

0 500 1000 1500 2000 2500 3000

U
 (

u
n
it=

1
0
0
0
)

U

1015
1020
1025
1030
1035
1040
1045
1050
1055
1060
1065
1070

0 500 1000 1500 2000 2500 3000

C
 (

u
n
it=

1
0
0
0
)

Number of Compromised Addresses

C

2400
2600
2800
3000
3200
3400
3600
3800
4000
4200

0 50 100 150 200 250 300

U
 (

u
n
it=

1
0
0
0
)

U

1061
1062
1063
1064
1065
1066
1067
1068

0 50 100 150 200 250 300

C
 (

u
n
it=

1
0
0
0
)

Number of Compromised Addresses

C

(a) (b) (c)

0
20000

40000
60000

80000
100000

120000

Number of
Compromised

Addresses 5
10

15
20

25
30

i

0
20000
40000
60000
80000

100000
120000
140000

Fi

0
500

1000
1500

2000
2500

Number of
Compromised

Addresses 5
10

15
20

25
30

i

0
5000

10000
15000
20000
25000
30000
35000
40000

Fi

50
100

150
200

250
Number of

Compromised
Addresses 5

10
15

20
25

30

i

0
5000

10000
15000
20000
25000
30000
35000
40000

Fi

(d) (e) (f)

Figure 3: Measurement of U,C and F after attacks on the NLANR trace resulting in randomly chosen

compromised addresses. Figures (a),(b) and (c) are measurements of U and C; (b) and (c) magnify (a) at

the portion of x range 0 to 3000 and 0 to 300, respectively. Figures (d), (e) and (f) are the measurements

of F; (e) and (f) magnify (d) at the portion of x range 1 to 3000 and 1 to 300, respectively.

very high probability to have several of its 32 bits revealed (prefix bits) but a low probability to have a

large number of them revealed.

Figures 3(d), (e) and (f) are simulation results on the NLANR trace and show *�W , the number of ad-

dresses who have had exactly Z most significant bits revealed, for Z[�g�.-Xm�m�m�-�Ï] and various values of ® .

Figures 3(e) and (f) magnify the portion of 3(d) when the number of compromised IP addresses ranges

from 1 to 3000 and 1 to 300, respectively. The ridge in figure 3(d) shows that the effect of the attack

is relatively low when the total number of compromised address mappings is a small proportion of the

total number of addresses, e.g., no more than 20,000 out of 130,163. The ridge in figure 3(d) shows

that most addresses have around /�Ð bits compromised when there are approximately 2000 addresses

compromised. This could mean that privacy is preserved in situations where the least significant 16

15

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

0 200000 400000 600000 800000 1e+06 1.2e+06 1.4e+06 1.6e+06

U
 a

n
d
 C

 C
o
u
n
ts

 (
u
n
it=

1
0
0
0
)

Number of Compromised Addresses

U
C

15000

20000

25000

30000

35000

40000

45000

50000

0 500 1000 1500 2000 2500 3000

U
 (

u
n
it=

1
0
0
0
)

U

7155
7160
7165
7170
7175
7180
7185
7190
7195
7200
7205
7210

0 500 1000 1500 2000 2500 3000

C
 (

u
n
it=

1
0
0
0
)

Number of Compromised Addresses

C

24000
26000
28000
30000
32000
34000
36000
38000
40000
42000
44000
46000

0 50 100 150 200 250 300

U
 (

u
n
it=

1
0
0
0
)

U

7198
7199
7200
7201
7202
7203
7204
7205
7206

0 50 100 150 200 250 300

C
 (

u
n
it=

1
0
0
0
)

Number of Compromised Addresses

C

(a) (b) (c)

0
200000

400000
600000

800000
1e+06

1.2e+06
1.4e+06

Number of
Compromised

Addresses 5
10

15
20

25
30

i

0
200000
400000
600000
800000
1e+06

1.2e+06
1.4e+06
1.6e+06

Fi

0
500

1000
1500

2000
2500

Number of
Compromised

Addresses 5
10

15
20

25
30

i

0
50000

100000
150000
200000
250000

Fi

50
100

150
200

250
Number of

Compromised
Addresses 5

10
15

20
25

30

i

0
50000

100000
150000
200000
250000

Fi

(d) (e) (f)

Figure 4: Measurement of U,C and F after attacks on the Tier-1 ISP trace resulting in randomly chosen

compromised addresses. Figures (a),(b) and (c) are measurements of U and C; (b) and (c) magnify (a) at

the portion of x range 0 to 3000 and 0 to 300, respectively. Figures (d), (e) and (f) are the measurements

of F; (e) and (f) magnify (d) at the portion of x range 1 to 3000 and 1 to 300, respectively.

bits are more important for personal privacy than the most significant 16 bits. Similarly, the ridge in

figure 3(f) is centered around the 12-bit line.

The Tier-1 ISP trace contains many more distinct addresses than the NLANR trace does, the simu-

lation on the Tier-1 ISP trace, however, exhibits similar trends as shown in figure 4. In figure 4, the À
curve drops faster and the * ridge spreads wider up along y-axis than they do in figure 3. This suggests

that the Tier-1 ISP trace is not as resistant to semantic attacks as the NLANR trace is.

Effect of Compromising Greedily-Generated Addresses A surprising result is that a greedy algo-

rithm, which chooses at each step an address that causes the greatest single-step reduction in À or Î
value, actually generates the optimal sequence of compromised addresses. That is, for any ® ��� , a

sequence of ® addresses generated by the greedy algorithm cause the maximum reduction in À (or Î)

16

among all sets of ® compromised addresses. Since the formal formulation of the greedy algorithm and

its optimality proof is very involved, for better continuity of text, we move it to Appendix B.

Figure 5 shows simulation results demonstrating the effect of an attack on the Tier-1 ISP trace as a

function of the number of addresses compromised and assuming the attacker can choose these addresses

to minimize À .

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

0 200000 400000 600000 800000 1e+06 1.2e+06 1.4e+06 1.6e+06

U
 a

n
d
 C

 (
u
n
it=

1
0
0
0
)

Number of Compromised Addresses

U random
U greedy

C random
C greedy

15000

20000

25000

30000

35000

40000

45000

50000

0 500 1000 1500 2000 2500 3000
U

 (
u
n
it=

1
0
0
0
)

U random
U greedy

7155
7160
7165
7170
7175
7180
7185
7190
7195
7200
7205
7210

0 500 1000 1500 2000 2500 3000

C
 (

u
n
it=

1
0
0
0
)

Number of Compromised Addresses

C random
C greedy

20000

25000

30000

35000

40000

45000

50000

0 50 100 150 200 250 300

U
 (

u
n
it=

1
0
0
0
)

U random
U greedy

7198
7199
7200
7201
7202
7203
7204
7205
7206

0 50 100 150 200 250 300

C
 (

u
n
it=

1
0
0
0
)

Number of Compromised Addresses

C random
C greedy

(a) (b) (c)

0
200000

400000
600000

800000
1e+06

1.2e+06
1.4e+06

Number of
Compromised

Addresses 5
10

15
20

25
30

i

0
200000
400000
600000
800000
1e+06

1.2e+06
1.4e+06
1.6e+06

Fi

0
500

1000
1500

2000
2500

Number of
Compromised

Addresses 5
10

15
20

25
30

i

0
50000

100000
150000
200000
250000

Fi

50
100

150
200

250
Number of

Compromised
Addresses 5

10
15

20
25

30

i

0
50000

100000
150000
200000
250000

Fi

(d) (e) (f)

Figure 5: Measurement of U,C and F after attacks on the Tier-1 ISP trace resulting in U-optimal greedy

set of compromised addresses. Figures (a),(b) and (c) are measurements of U and C; (b) and (c)

magnify (a) at the portion of x range 0 to 3000 and 0 to 300, respectively. Figures (d), (e) and (f) are the

measurements of F; (e) and (f) magnify (d) at the portion of x range 1 to 3000 and 1 to 300, respectively.

Comparing the figures in figure 5 with those in figure 4 we see that for the U and C measures, the

effect of compromising some number of addresses randomly is similar to the effect of compromising

an optimally chosen set of addresses. For this trace, this seems to indicate that compromising addresses

at random is a good means of attacking prefix-preserving anonymization.

17

5.3 Results on Two Specific Attacks

As mentioned earlier, we have chosen to characterize attacks by the number and property of the ad-

dresses they reveal. We have consider randomly-chosen and optimally-chosen addresses. We now

consider what happens when the set of addresses have properties that derive from a specific attack. We

consider two types of attacks that have been mentioned in the literature [5]: frequency analysis and

DNS server tracing.

1

32

1024

32768

1.04858e+06

3.35544e+07

1 32 1024 32768 1.04858e+063.35544e+07

N
u
m

b
e
r

o
f
O

c
c
u
rr

e
n
c
e
 (

lo
g
s
c
a
le

)

Ranks of Addresses (logscale)

0

2e+06

4e+06

6e+06

8e+06

1e+07

1.2e+07

1.4e+07

1.6e+07

1.8e+07

50 100 150 200 250 300

N
u
m

b
e
r

o
f
O

c
c
u
rr

e
n
c
e

Ranks of Addresses

24000
26000
28000
30000
32000
34000
36000
38000
40000
42000
44000
46000

0 50 100 150 200 250 300

U
 (

u
n
it
=

1
0
0
0
)

U random
U most frequent

7198
7199
7200
7201
7202
7203
7204
7205
7206

0 50 100 150 200 250 300

C
 (

u
n
it
=

1
0
0
0
)

Number of Compromised Addresses

C random
C most frequent

50
100

150
200

250
Number of

Compromised
Addresses 5

10
15

20
25

30

i

0
50000

100000
150000
200000
250000
300000
350000
400000

Fi

(a) (b) (c) (d)

Figure 6: Effect of Frequency Analysis Attack On Tier-1 ISP Trace

Frequency Analysis: IP addresses of popular sites can be inferred from their high frequency of

occurrence in an anonymized trace. Figure 6(a) shows the frequency that different addresses occur in

the Tier-1 ISP trace. Addresses are sorted by their frequency of occurrence from left to right. Fig-

ure 6(b) magnifies the portion of 6(a) for the 300 most frequent addresses. These figures show that only

a small number of addresses (in the tens) are actually distinguishable from others by their frequency of

occurrence.

In figures 6(c) and (d), we show the U, C and F values assuming the ® most-frequently-occurring

addresses are compromised as ® varies. Figure 6(c) shows that compromising the most frequent Ï����
addresses has the same effect on À as compromising about Ñ� randomly chosen addresses. Figure 6(d)

shows that compromising frequently occurring addresses has a more localized effect, that is, affecting

mainly the most significant bits (compare with figure 4). According to these results, frequency analysis,

by itself, does not appear to be a serious threat to this Tier-1 ISP trace.

DNS Server Address Tracing: The IP addresses of DNS servers may be inferred from the hierar-

chical relationship among them. Starting with a root DNS server, an attacker can trace down the DNS

18

0

2000

4000

6000

8000

10000

12000

14000

16000

0 200000 400000 600000 800000 1e+06

N
u
m

b
e
r

o
f
U

n
iq

u
e
 D

N
S

 S
e
rv

e
r

A
d
d
re

s
s
e
s

Number of Unique Addresses

dns

10000
15000
20000
25000
30000
35000
40000
45000
50000

0 5000 10000 15000 20000 25000 30000 35000 40000

U

 (
u
n
it
=

1
0
0
0
)

U random
U DNS server random

6800
6850
6900
6950
7000
7050
7100
7150
7200
7250

0 5000 10000 15000 20000 25000 30000 35000 40000

C

 (
u
n
it
=

1
0
0
0
)

Number of Compromised Addresses

C random
C DNS server random

15000

20000

25000

30000

35000

40000

45000

50000

0 500 1000 1500 2000 2500 3000

U
 (

u
n
it
=

1
0
0
0
)

U random
U DNS server random

7155
7160
7165
7170
7175
7180
7185
7190
7195
7200
7205
7210

0 500 1000 1500 2000 2500 3000

C
 (

u
n
it
=

1
0
0
0
)

Number of Compromised Addresses

C random
C DNS server random

0
500

1000
1500

2000
2500 5

10
15

20
25

30

i

0
50000

100000
150000
200000
250000

Fi

Number of
Compromised

Addresses

(a) (b) (c) (d)

Figure 7: Effect of DNS Server Tracing Attack on Tier-1 ISP Header Trace

server hierarchy based on their protocol-defined relationship in the anonymized trace, assuming the

attacker has enough knowledge about the DNS server hierarchy.6

Figure 7(a) shows the number of DNS server addresses that appear in a portion of the Tier-1 ISP

trace as a function of the number of distinct addresses, as we consider more and more records in the

trace. This figure shows that a proportion in the range of /{ÒY/{Ó to /{Ò3Ñ�� of distinct addresses in the

Tier-1 ISP trace are DNS server addresses, depending on where the trace is cut. Referring back to

figure 4, it can be seen that compromising this many random addresses represents a significant risk to

the anonymization process. This might lead one to conclude that an attack that reveals the mapping of

all DNS server addresses in the trace will essentially “break” the anonymization process. But this is

somewhat misleading since the DNS server addresses are not really random. We investigate this matter

further in figure 7(b) which also derives from the Tier-1 ISP trace. In the figure we show the value of

À and Î as a function of the number of compromised addresses when these compromised addresses

are drawn at random from the set of all addresses and when they are drawn at random from the set

of DNS server addresses. The figure shows that for the same number of compromised addresses the

attacker can reveal more “bits” if the addresses were chosen at random from the entire set of addresses

as opposed to the set of DNS server addresses. In fact, compromising all 35,903 DNS server addresses

is equivalent to compromising a set of only approximately 3,500 random addresses. More close-up

6This assumption is quite questionable though. Not all DNS servers allow listing of their downstream servers for security

reasons. This makes it difficult to get the topology of the DNS hierarchy and we have not seen any such topology publicly

available.

19

results are shown in figure 7(c) and (d), which are the À , Î , * curves for 0 to 3000 randomly-chosen

compromised DNS server address mappings. These results suggest that, for this trace, an attack that

reveals DNS server addresses is perhaps not as serious as one would expect and that in fact an attack

that can reveal much fewer random addresses would be more effective.

5.4 Miscellaneous attacks

In addition to the frequency analysis and DNS tracing attacks we discussed in the previous section, we

also study other types of attacks that may pose threats to our prefix-preserving anonymization scheme.

Note, however, that our results here are preliminary and still a topic of further research.

¦ Active attacks: This type of attack also affect non-prefix-preserving address anonymization

schemes. In this attack, an intruder simply injects some “probing packets” into the network, and

hopefully gets them recorded and anonymized in the trace. Assume that the intruder keeps a

copy of the injected packets, he/she will be able to recover bindings between unanonymized and

anonymized addresses later when the trace is released. This type of attack is very hard to counter,

since it can be made highly robust: the destination (victim) IP address can be encoded into fields

such as port numbers and packet length. Detection of this attack is also tricky since to a certain

extent it can be viewed as a covert channel problem [19]. Keeping information such as when and

where the trace will be gathered secret seems to be the best defense against such attacks. This,

however, still can not thwart an intruder that performs probing continuously over a long period

of time.

¦ Port scanning: Port scanning is the standard technique for an intruder to identify an Internet

host for potential break-in. It does so by “scanning” a subnet for a specific service (port number)

that is vulnerable to intrusion. The IP addresses to be scanned often advance in a step of 1

(i.e., ´�-�´y�i/�-�´y�w]Y-0m�m�m). Though such an attack does not target our anonymization process, it

may still pose a serious threat. That is, if the intruder recognizes port scan in the trace, and if

´ h�Ô anonymized version is compromised from the trace, ´y�i/�-�´w�w]8-0m�m�m will also be revealed.

Fortunately, intrusion detection software (e.g., Snort [20]) for detecting port scanning is available.

The unanonymized trace can be first filtered by such software before being anonymized. We are

20

currently measuring the amount (percentage) of port scanning traffic that is contained in our

traces to understand the effect of filtering such traffic from a trace.

¦ Routing table inference: In some routing performance research, trace data and a relevant routing

table may need to be released together. This can be done by anonymizing the IP prefixes in the

routing table using the same key as trace anonymization. Note that prefix-preserving anonymiza-

tion can be applied to IP prefixes of any length. In this case, it is very important that the plaintext

routing table (also routing tables of “nearby” routers, which can be similar) to be kept secret7. We

also note that we only need to anonymize and release the routing table entries that the traffic trace

has actually accessed, which will make it even harder for the intruder to infer useful information

from the anonymized routing table. We experimented our 50 GB Tier-1 ISP trace, and found that

our trace matches only 2,988 out of 45,008 prefixes in the routing table that came with it.

6 Summary of Our Work

Our work mainly consists of two parts. In the first part, we characterize the prefix-preserving IP ad-

dress anonymization using a canonical form, and propose a new cryptography-based scheme. Unlike

TCPdpriv, our scheme is suitable for (consistent) parallel and distributed anonymization of traffic traces.

We prove rigorously that our scheme is secure up to the level a prefix-preserving scheme could possibly

deliver. We implemented the scheme and evaluated its performance on real traffic traces (10,000 pack-

ets per second using Rijndael). In the second part of our work, we first propose a framework (including

a set of metrics) for evaluating the effect of attacks on anonymized traces. Using this framework, we

study the effect of two well-known attacks, frequency analysis and DNS tracing, on two real-world traf-

fic traces. We also formally characterize the optimal fashion (greedy algorithm) in which an attacker

should compromise a subset of anonymized addresses. We show that compromising an optimal set of

® addresses is almost as effective as randomly compromising ® addresses. Finally, we found that the

damage caused by an attack can be very much trace specific and no blanket statements can be made

regarding the safety of releasing traces but rather each case needs to be evaluated on its own merits.

7Otherwise, it is straightforward for an intruder to infer the true identifies of a large portion of IP prefixes by studying

their length or common-prefix relationship. In addition, routing tables of “nearby” routers should also be kept secret, since

they can be similar.

21

References

[1] Tony McGregor, Hans-Werner Braun, and Jeff Brown. The NLANR network analysis infrastruc-
ture. IEEE Communications Magazine, 38(5):122–128, May 2000.

[2] The Internet traffic archive. http://ita.ee.lbl.gov/, April 2000.

[3] B. Krishnamurthy and J. Wang. On network-aware clustering of web clients. In Proc. ACM
Sigcomm 2000, pages 97–110, September 2000.

[4] Greg Minshall. TCPdpriv Command Manual, 1996.

[5] T. Ylonen. Thoughts on how to mount an attack on tpcpdriv’s ”-a50” option ... In TCPpdpriv
source distribution, 1996.

[6] J. Daemen and V. Rijmen. AES proposal: Rijndael. Technical report, Com-
puter Security Resource Center, National Institute of Standards and Technology,
http://csrc.nist.gov/encryption/aes/rijndael/Rijndael.pdf, Feb 2001.

[7] Neuman and Ts’o. Kerberos: An authentication service for computer networks, from IEEE com-
munications magazine, september, 1994. In William Stallings, Practical Cryptography for Data
Internetworks, IEEE Computer Society Press, 1996.

[8] R. Ganesan. Yaksha: Augmenting kerberos with public-key cryptography, 1995.

[9] Michael K. Reiter, Matthew K. Franklin, John B. Lacy, and Rebecca N. Wright. The omega key
management service. In ACM Conference on Computer and Communications Security, pages
38–47, 1996.

[10] O. Goldreich, S. Goldwasser, and S. Micali. How to construct random functions. Journal of the
ACM, 33(4):792–807, October 1986.

[11] M. Luby and C. Rackoff. How to construct pseudorandom permutations from pseudorandom
functions. SIAM Journal on Computing, 17(2):373–386, 1988.

[12] Mihir Bellare, Joe Kilian, and Phillip Rogaway. The Security of Cipher Block Chaining. In Yvo G.
Desmedt, editor, Advances in Cryptology - Crypto 94, number 839, pages 341–358. Springer
Verlag, 1994.

[13] M. Õ´ . Ruiz-S Õ� nchez, E. W. Biersack, and W. Dabbous. Survey and taxonomy of ip address lookup
algorithms. IEEE Network, 15(2):8–23. Mar/April, 2001.

[14] M. Bellare. Practice-oriented provable-security. In First International Workshop on Informa-
tion Security(ISW97), Boston, Massachusetts, 1998. Springer-Verlag. Lecture Notes in Computer
Science No. 1396.

[15] S. Goldwasser and M. Bellare. Lecture notes on cryptography. available online from http://www-
cse.ucsd.edu/users/mihir/papers/gb.html.

[16] D. Stinson. Cryptography, Theory and Practice. CRC Press, 1995.

22

[17] K. Cho, K. Mitsuya, and A. Kato. Traffic data repository at the wide project. In Proceedings of
USENIX 2000 Annual Technical Conference: FREENIX Track, San Diego, CA, June 2000.

[18] NLANR. File ’sdc-964451101.tstamp+plen+destip’ included with NLANR network traffic packet
header traces, 2000.

[19] B. Lampson. A note on the confinement problem. CACM, 16(10).

[20] Snort, the open source network intrusion detection system, 2001.

[21] A. Yao. Theory and applications of trapdoor functions (extended abstract). In Proc. of IEEE
FOCS’82, pages 80–91, November 1982.

Appendix A. Proofs of Lemma 1 and Lemma 2

In this appendix, we offer detailed proofs of Lemma 1 and Lemma 2 (introduced in Section 4). For

simplicity of discussion, we use À W to denote uniform distribution on +,�.-0/21 W . As a convention, random

variables and algorithms will be denoted by capital letters and fixed values by lower-case letters. We

use “ ��Ö�W�×6Ø ” to denote that two random variables are equal in distribution. Again, recall that � denotes

the number of bits in an IP address.

Proof of Lemma 1: We prove the contrapositive. Suppose Æ* is not a (0, Ã , ·)-pseudorandom function.

Then there is an algorithm ´ , which picks an Ô Ä)+,�.-X/21 �,k8!@k
	 at its choice, can be an · -distinguisher

between Æ*}4 Ô 7 and the uniform distribution on +,�.-0/31 �3k8!@k
	 . Also, ´ uses no more than Ã computation

time. We need to show if such ´ exists, then ª is not a (32*(® +1), Ã , ·)-pseudorandom function.

We define Æ*�W¾d�+,�.-0/31 �3k8!@k
	 ¶ +,�.-0/31 in which Æ*�Wr4��#7 is the ZcØ�Ù bit of Æ*94��#7 for any � , /��pZ5�
�Ú`x�¨`Û/ . Let À�WÜ-�Z[�\/�-^]Y-0�����_-��Ú`x�¨`Û/ be random variables with uniform distributions on +,�.-0/21 W -�Z[�
/�-^]8-0�����@- �9`��½`Ý/ respectively. We define random variables Þ#Wc-&�b��Z��w�}`��½`ß/ . For each ÞqW , given

an outcome à in the probability space, Þ#W�4¼àe7 := Æ*�	@4 Ô 7X4¼àe7�¹l¹ Æ*[�{4 Ô 7X4¼àe7Ú¹l¹Y����� Æ*�W�4 Ô 7@4¼àe7�¹l¹�À��3k8!@k
	�k ² 4¼àe7 ,
Zn�á/�-^]Y-0�����^-��x`ß�¾`�/ . Then Lemma 3 shows that there exists ³�-0/°�)³��)�x`ß�b`w/ such that there is

a distinguisher algorithm â that satisfies ¹ º½¡.4câv46Þ ² k
	�7��á/{7n`ßº<¡�46âv4cÞ ² 7��á/{7{¹Y¿ È�3k8!@k
	 . However, as

we will show next, this will imply that ª can not be a (32*(® +1), Ã , ·)-pseudorandom function.

Recall that Æ*94¼�#7 is defined as the last �¾`Ç��`�/ bits of *546�
	�����������!&"#	�¹�¹ �#7 , where �5d��g�.	���������� �� .

We construct an algorithm Î that picks ã df��º½´�ãÇ4c�
	�����������!&"#	 Ô 	 Ô ������� Ô ² 7 and tries to distinguish

the distribution of ª£4cã(-^�Yä � 7 from À 	6��å (uniform distribution on the range of ª). Given an input

23

¸æÄ�+,�.-0/21 	6��å , Î first uses ª4Üç8-^�.ä � 7 as an oracle Ï�]qçY® times to obtain ¯ (the ® pairs of compromised

IP addresses) using (2). Then Î uses ª as an oracle ³�`%/ more times to obtain Æ*�Wr4 Ô 7_-�Z���/�-^]Y-0�����_-&³�`>/ .

Then Î constructs a random variable Þ on +,�Y-0/21 	6��å as follows. Given an outcome à in the probability

space, Þ�4�àe7 h Ô first ³�`Ç/ bits are Æ*�	_4 Ô 7>Æ*[�{4 Ô 7�������Æ* ² k
	@4 Ô 7 , its ³�Ø�Ù bit is è�¯�âv4�¸7 , and its last �<`>��`Ç/[`x³
bits are À[�,k8!@k
	�k ² 4¼àe7 . Finally, Î returns âv4cÞ¾7 as the result. It is not hard to verify that (a) if ¸ has

the distribution ª46ã(-^�.ä � 7 then Þ has the distribution of Þ ² and (b) if ¸ has the distribution À 	6��å
then Þ has the distribution of Þ ² k
	 . Therefore ¹»º<¡.4cÎ94�ª46ã(-^�.ä � 7 7Ç� /{7�`�º½¡.4cÎ94�À 	6��å 7�� /{7�¹ =

¹»º<¡.4câv46Þ ² 7��á/{7n`ßº½¡.4câ�4cÞ ² k
	�7e�á/{7�¹.¿ È�,k8!@k
	 � È� . This shows that Î is an È� -distinguisher between

the distribution of ª£4cã(-^�Yä � 7 and À 	6��å . Also, Î has made no more than Ï�]�çÚ4c®é��/{7 oracle calls and

uses no more than Ã time (evaluating âv46Þb7). This contradicts the assumption that ª is a (32*(® +1), Ã ,
È�)-pseudorandom function. �

In the following we introduce a variation of a standard lemma used in developing the concept of

pseudorandom number generator [16]. The original idea behind this proof is attributed to Yao [21].

Let ±
a and ±¢	 be two probability distributions on +,�.-0/31,ê . Let ¸9a and ¸x	 be two random variables of

distribution ±
a and ±¢	 respectively. We define ë��t/ random variables Þ�WÜ-�Zì���.-X/�-0�����_-�ë on the set

+,�.-0/31�ê as follows. Given an outcome à in probability space, Þ¢W�4¼àe7 := (the first Z bits of ¸}a{4¼àe7) ¹l¹ (the

last ë�`�Z bits of ¸v	X4¼àe7).
Lemma 3 (Hybrid Argument) If ±qa and ±�	 are · -distinguishable, then there exists ³�-0/��i³��)ë such

that the distribution of Þ.í&k
	 and the distribution of Þ.í are Èê -distinguishable.

Proof: It is not hard to verify that Þ#aÇ��Ö�W�×6Ø°¸x	 and Þ ê ��Ö�W�×6Ø°¸9a . Suppose ´ is a · -distinguisher

between ¸9a and ¸v	 . Then ¹»º<¡�4�´b4¼¸9a&7Ú��/{7�`�º½¡.46´¾4�¸v	�7<�p/�7{¹z¿î· . However, º½¡.46´¾4�¸9a^7Ú��/{7ï`
º<¡�4�´b4�¸v	r7e��/{7 = ð�êW�ñ#	 46º½¡.46´¾4cÞ
Wlk
	�7��Å/�7n`òº<¡.46´b46ÞqW�7��Å/�7 7 . So according to the triangle inequality,

¹»º<¡.46´b4¼¸}a&7��ó/{7�`�º½¡.46´¾4�¸v	�7���/{7�¹.�ið�êW�ñ#	 ¹�4cº<¡�4�´b4cÞ
Wlk
	r7���/{7�`yº<¡.46´b46ÞqWl7��ó/{7�7{¹ (*). Therefore,

there must exist ô�-0/5�)ôÛ��ë such that ¹»º<¡.46´b46Þ.í^k
	�7ï��/{7�`òº½¡.46´¾4cÞ8í^7ì��/�7{¹#¿ Èê , since otherwise

(*) will not hold. �
Proof of Lemma 2: We prove the following contrapositive. Suppose Ë k
	 is not a (0, Ã , ·3¹ÍÁx¹)-
pseudorandom function. Let ÀÚõ denote the uniform distribution on Á . Then there is an algorithm

´ , which picks a � a at its choice, such that º<¡.46´b46Ë k
	 4 � a�7 7��é/�7�`ßº<¡�4�´b4�À õ 7¨�î/{7�¿t·3¹»Á>¹ . Here ´

24

executes no more than Ã time. We construct an algorithm âv4¼��- � 7 such that

âv4¼��- � 7��
ö÷ø ÷ù ´b4¼�#7 d � � � a

� dûú{Ã�ü
ä0¡,ý�Z Ô ä (3)

Then we construct Î such that it can pick an � at its choice and let º½¡.4cÎ94cË94��#7�7���/{7�`�º<¡.4cÎ94�À½õ�7��
/{7%¿u· . Î works as follows. With every execution, Î first picks ¸�a uniformly randomly from Á .

Then given any input � , Î94 � 7%d��ûâv4¼¸5a0- � 7 . It remains to show that C is an · -distinguisher. First,

we can see that º<¡�46Î54 � 7� /{7 = º<¡�46âv4�¸9a@- � a^7�� /{7�ç~º<¡.4 � � � a^7 . So º<¡�46Î546Ë54¼¸9a�7 7o� /{7 =

º<¡�46âv4�¸}a0-&Ë94�¸}a�7 7}�û/{7 = ðeþ2ÿ õ º<¡�46âv4���-&Ë94���7�7b�û/{7�ç<º<¡.4�¸}a����n7 = ð��3ÿ õ º<¡.4câv46Ë k
	 4��[7_-��[7b�
/{7�ç 	� õ � = 	� õ � º<¡�46âv4cË k
	 4 � a^7^- � a&7o� /{7 = º<¡�4�´b46Ë k
	 4 � a&7 7o� /�7�ç 	� õ � . Also º<¡.4cÎ94�À õ 7o� /{7 =

º<¡�46âv4�À�õ�-&Ë94�¸}a^7 7���/{7 = 	� õ � º½¡.4câ�4�À�õ�- � a�7���/{7 = 	� õ � º½¡.46´¾4�À�õ�7���/{7 . Therefore ¹ º½¡.4cÎ94cË94�¸9a�7 7��
/{7n`oº<¡.4cÎ94�À�õ�7 7{¹ = 	� õ � ¹»º<¡�4�´b4cË k
	 4 � a^7�7���/{7[`Ýº<¡�4�´b4ÜÀ�õ�7���/�7{¹3¿ 	� õ � çÚ4^¹ÍÁv¹»·&7 = · . �
Remark: If the only assumption about Ë is that it is a pseudorandom function, then this bound of

¹ÍÁv¹»· for Ë k
	 is “almost” tight. To see this, let Ë be the following (randomized) function. We choose

a fixed element � a>Ä\Á and any subset ¯ of Á such that ¹Í¯�¹ = 	 � õ ���
 . We also pick a random value

�qa uniformly distributed on ¯ . Then we let Ë94��#a_7�d�� � a , and Ë restricted on the domain Áá`ß¸ß4¼àe7
be a one-to-one random function from Áé`\+��z1 to Áé`t+ � 1 . Then it can be shown that Ë is a (0,
� , 	� ��)-pseudorandom function as Ë k
	 4 � a^7 can be any element in ¯ . However, we will show that

Ë k
	 is a (0, � , 	�)-pseudorandom function as follows. An adversary first picks � a . Then the uniform

distribution on ¯ and the uniform distribution on Á can be distinguished by the following algorithm ´ .

Given an input � , ´ outputs 1 if �ÛÄ£¯ and 0 otherwise. Let À<õ be the uniform distribution on Á . Then

º<¡�4�´b4cË k
	 4 � a^7�7ì��/�7 = 1 and º<¡�4�´b4�À�õ�7 7 =
� ��� õ � � 	� . So ¹»º<¡.46´b46Ë k
	 4 � a&7 7���/{7�`òº<¡�4�´b4�À�õ�7�7�¿ 	� .

So when Ë is a (0, � ,)-pseudorandom function, Ë k
	 is not even a (0, � , 	� `��) for any positive � .

Appendix B. Greedy Algorithm and Its Optimality Proof

In this section, we formally define the greedy algorithm and state the optimality of the greedy algorithm

in reducing the À value. Since the greedy algorithm for Î value can be similarly formulated and

proved, in the interest of space, we omit that part. In the following, we first introduce the notations and

definitions we are going to use in the proof of our main theorem that the greedy algorithm is optimal.

25

1. Greedy(tree x, int N)

2. � := �
3. � := 0

4. for i := 1 to N do

5. choose �����������! #"$� that maximizes %&�'�)(*�+(*�!
6. � := � + %&�'�#(*�,(*�-
7. � := �&.0/1��2

Figure 8: Our Greedy Algorithm.

Notation 1 Whenever there is no ambiguity, we denote an address tree (defined in Section 2) or a

subtree by its root node. We denote the set of leaf nodes on the tree � as è�*54¼�#7 . Given a tree node � ,

we define ��m�³�ä{V�Ã and ��m ¡,Z�3.ü.Ã as its left and right child. Also, we denote the cardinality of a set ¯ by

¹Í¯�¹ . Throughout the rest of this paper, � always denotes the number of bits in an IP address.

Definition 4 Given a tree � , and a set of leaves ¯ . We refer to ¯54vè�*54¼��m�³�ä{V�Ã�7 as the left set of ¯ ,

denoted as è�¯�4|¯�7 , and ¯ 4 è�*54¼��m ¡,Z�3.ü.Ã�7 as the right set of ¯ , denoted as 6<¯�4|¯�7 .
Definition 5 Given a tree � of height ü , we define 6~4|¯n-��#7 as the number of address bits, among the

last ü bits of all leaf nodes (IP addresses), which are revealed when the set ¯ (¯87 è�*54¼�#7) of IP

addresses are compromised. Note here that, in computing 6~4|¯n- �#7 , the first �s`�ü bits are ignored

(� is the number of bits in an IP address). 6~4|¯n-&®ÇÀ�è�è�7 is 0 by definition. We define º54c¯n- � -��#7��
6~4|¯ . + � 1�- �#7e`96~4|¯n- �#7 , which is the the number of bits that will be newly compromised when � is

added to the compromised address set ¯ .

Definition 6 Given a tree � , a set ¯ of leaves is called the optimal set defined on � , if given any other

leaf set ¯ h of the same cardinality, 6~4c¯ h -��#7e�:6~4c¯n- �#7 .
Given a tree � , the greedy algorithm to choose ë IP addresses to compromise is shown in Fig.

8. Note that it is a randomized algorithm, since when there are more than one � hfÔ that maximizes

º94|¯n- � - �#7 (line 5), they will be randomly picked with equal probability. In the program, the variable ¯
is the set of IP addresses compromised and 6 has the value of 6~4|¯n- �#7 .

26

Definition 7 Given a tree � , a leaf set ¯ is called a greedy set defined on � , when the greedy algorithm

(shown in Fig. 8) with input � will generate a sequence of ¹»¯�¹ leaves that are exactly elements of ¯ with

nonzero probability.

In the following, we state and prove the following theorem, which implies that the greedy algorithm

indeed generates an optimal set. Lemmas used in the proof will be stated and proved after the theorem.

Theorem 3 Any greedy set is also an optimal set.

Proof: Given a tree � , we only need to prove the following: given any ® ��� , and any optimal set
¤

and greedy set ¯ of the same cardinality ® , 6~4|¯n- �#7b¿;6~4 ¤ -��#7 . This is trivially true when ® � / .

So in the following, we only consider ® �t/ . We induct on the height ü of the tree � . The conclusion

trivially holds for ü���/ (a single node tree). Suppose the conclusion also holds for ü��g� .

We now prove the theorem for üo�p�~�t/ and ® �ó/ . Since the elements of set ¯ is a possible

sequence generated by the greedy algorithm, they can be ordered according to the greedy order they

appear in the sequence. We denote ¯ ² �ó³6	&-&³l�0-0�����@-&³�W as elements of è�¯�4|¯�7 in the greedy order, and

¯=<½��¡3	_-�¡X�0-0�����_-0�����X-�¡?>�k�W as elements of 6<¯�4|¯�7 in the greedy order. Similarly, we denote è�¯�4 ¤ 7 as¤ ² �g³ h	 -&³ h� -0�����X-&³ hí and 6<¯�4 ¤ 7 as
¤ <��)¡ h	 -�¡ h� -0�����_-�¡ h>�k3í (no order is assumed in this case). According to

Lemma 4, the sequences ¯ ² and ¯=< are greedy sequences in the trees ��m ³6ä{VqÃ and ��m ¡,Z�3.ü.Ã , respectively.

When Z[��ô , according to induction hypothesis, 6~4 ¤ ² - ��m ³6ä{VqÃ�7��96~4c¯ ² -���m�³�ä{V�Ã�7 and 6~4 ¤ <0- ��m ¡3Z�3.ü�Ã�7e�
6~4|¯=<X- ��m ¡3Z�3�ü.Ã�7 , since the height ��m�³�ä{V�Ã and ��m ¡3Z�3.ü�Ã are both � . Since ® �y� , 6~4 ¤ -��#7 = 6~4 ¤ ² - ��m ³�ä{V�Ã�7 +

6~4 ¤ <X- ��m ¡3Z�3�ü.Ã�7 + ¹»è�*94��#7{¹{�96~4c¯ ² - ��m�³�ä{V�Ã�7 + 6~4|¯=<0-���m ¡,Z�3.ü.Ã�7 + ¹ è�*94��#7�¹ = 6~4c¯n- �#7 according to Lemma

5.

Now we only need to consider the case where ZÛ$��ô . WLOG, we assume that Z}�îô . Then ¯@<
can be extended to a longer greedy sequence Ap�u¡	&-�¡0��-0�����_-�¡B>�k3í , where ¡B>�k�W�"#	 , ¡B>�k�W�"��0-0�����X- ¡B>�k3í
are drawn from ��m ¡,Z�3.ü.Ã . Also, Þu��³c	_-&³l�X-0�����@-X�����X-&³fí , being a subsequence of ¯ ² (a greedy sequence

in the tree ��m ³�ä{V�Ã by Lemma 4), is also a greedy sequence in the tree ��m ³�ä{V�Ã . Then according to the

induction hypothesis, 6~4CAì-���m ¡,Z�3.ü.Ã�7¨¿D6~4 ¤ <@- ��m ¡3Z�3�ü.Ã�7 since ¹EA}¹2�µ¹ ¤ <,¹2��®�`£ô and 6~46Þ�-���m�³�ä{V�Ã�7�¿
6~4 ¤ ² - ��m ³�ä{V�Ã�7 since ¹»Þx¹�� ¹ ¤ ² ¹���ô . Define ¸ � Þ . A . Then 6~4¼¸Û- �#7%¿F6~4 ¤ - �#7 according to

Lemma 5. Now to prove 6~4|¯n- �#7ï¿D6~4 ¤ - �#7 , our final step is to prove 6~4c¯n- �#7ì¿D6~4�¸Û-��#7 . We define

Þ ê �g³6	_-�³l�0-0�����@-&³ ê , A ê �g¡3	^- ¡0�0-0�����@-�¡B>�k ê , and ¸ ê �gÞ ê . A ê , where ô5�wë �wZ . Note that ¯s�)¸}W
and ¸u�)¸°í . What we need to show is 6~4�¸}WÜ- �#7¨¿96~4�¸°í{- �#7 .

27

We claim that 6~4�¸ ê "#	^- �#75¿86~4¼¸ ê - �#7 , where ôß��ë ��Z�`t/ . We first prove the case where

ë �éô . This is equivalent to prove that º94�¸¾íì`�+{¡B>�k3í01�-&³fí�"#	&- �#75¿�º54¼¸�íì`�+{¡B>�k3í01�-�¡B>�k3í�- �#7 . Let

Ë be the set of elements that has already been in the greedy sequence right before the element ³lí�"#	
is added, when the greedy algorithm is executed to generate ¯ . By the semantics of the greedy algo-

rithm, ËG7uÞ8í . A�W . So Ë 7 ÞYí . A�W�7p¸°í�`\+{¡B>�k3í01 . Also è�¯�46Ë�7}� è�¯ï4¼¸�íÚ`t+{¡B>�k3í01379� ÞYí .
Then, since ® �á/ , according to Lemma 6(a), º546Ë}-&³�í�"#	&- �#7��áº94�¸°í¨`�+{¡B>�k3í01�-&³fí�"#	&- �#7 , and accord-

ing to 6(b), º94cË~-�¡H>�k3í0- �#79¿�º54¼¸�íï`�+{¡B>�k3í01�-�¡?>�k3í�- �#7 . Also º94cË~-&³fí "#	�- �#7}¿�º546Ë}- ¡B>�k3í�- �#7 , since

the greedy algorithm chooses ³�í "#	 over ¡B>�k3í . Consequently, º54¼¸¾í<`á+{¡B>�k3í01�-&³fí "#	&- �#7s¿ º94�¸°í°`
+{¡B>�k3í�1�- ¡B>�k3í�- �#7 . This proves 6~4¼¸ ê "#	_- �#7<¿I6~4¼¸ ê - �#7 where ëæ�tô . Using similar arguments, we

can prove 6~4¼¸ ê "#	^- �#7°¿J6~4¼¸ ê -��#7 for ëû�\ô°�t/�-�ô<�)]Y-0�����_-�Z[`i/ . Then we get our desired result

6~4�¸~W|- �#7¨¿96~4�¸°í,-��#7 . �
Lemma 4 If ¯ is a greedy set defined on the tree � , then è�¯ï4c¯�7 is a greedy set defined on the tree

��m ³6ä{VqÃ , and 6<¯�4|¯�7 is a greedy set defined on the tree ��m ¡,Z�3.ü.Ã .
Proof: Suppose that è�¯�4|¯�7 consists of � nodes � 	^- � �0-0�����_- � ! in the sequence it is generated by the

greedy algorithm on ¯ . Let Ë<W be the set of nodes that have been generated by the greedy algorithm

right before the node � W is generated. Obviously Ë½Wlk
	LKgËÚW . For any Z and any M�Äsè�¯�4cè�*94��#7�7�`ÝË<W ,
we know that (a) º546Ë½Wc-NM.-��#7��)º94cËÚW|- � WÜ-��#7 since otherwise the algorithm running on tree � would not

have chosen � W over M . It remains to show (b) º94cè�¯�4cË½W¼7_-NMY- ��m�³�ä{V�Ã�7��iº546è�¯ï46Ë<W¼7_- � W|-���m�³�ä{V�Ã�7 . That is,

the algorithm running on tree ��m ³�ä{V�Ã (with parameter �) would have a nonzero probability to generate

the sequence � 	^- � �X-0�����@- � ! . We need to discuss two cases. The first case is when Ë°W��PO . In this case,

obviously Z[��/ and � 	 is the first node inserted. Then according to the Lemma 7(a), º546Ë9	&-�M.- ��m ³6ä{VqÃ�7��
º94cË¾	^-NM.- �#7e`�¹»è�*54¼�#7{¹ and º546Ëb	^- � 	^- ��m ³�ä{V�Ã�7½��º546Ëb	^- � 	&-��#7e`á¹»è�*94��#7{¹ . Then (b) follows from (a).

The second case is when Ë<W is nonempty (either Z�$�µ/ or Ë~	 is not empty). In this case, according to

Lemma 7(b) º94cè�¯�4cË<W�7^-NM.- ��m ³�ä{V�Ã�7¾��º94cËÚWÜ-NMY- �#7 and º94cè�¯�4cË<W¼7_- � W|-���m�³�ä{V�Ã�7°��º94cËÚWc- � W|- �#7 , (b) also

follows from (a). �
Lemma 5 Given a tree � , when ¹Í¯�¹��y� , 6~4|¯n- �#7��Q6~4cè�¯�4|¯�7_- ��m ³�ä{V�Ã�7��R6~4�6<¯�4|¯�7^- ��m ¡,Z�3.ü.Ã�7���¹»è�*94��#7{¹ .
Proof: Since ¹Í¯�¹���� , the height ü of the tree � is at least 1. When the first node in ¯ is introduced,

the 46�x`òü¾�g/{7rØ�Ù bit of every address under tree � is compromised and there are ¹ è�*94��#7�¹ of them. So

28

6~4|¯n-��#7b�S6~4c¯n- ��m�³�ä{V�Ã�7��:6¾ml4|¯n-���m ¡,Z�3.ü.Ã�7��é¹»è�*94��#7{¹ . However, the last ü%`t/ bits of all leaf nodes

under ��m�³�ä{V�Ã and ��m ¡,Z�3.ü.Ã are only affected by è�¯�4|¯�7 and è�¯�4�6<7 respectively. That is 6~4c¯n- ��m�³�ä{V�Ã�7e�
6~4cè�¯�4|¯�7^- ��m�³�ä{V�Ã�7 and 6~4c¯n- ��m ¡,Z�3.ü.Ã�7��:6~4�6<¯ï4c¯�7_- ��m ¡3Z�3.ü�Ã�7 . The result follows. �
Lemma 6 Given a tree � and two nonempty leaf sets ¯ and T , and a leaf � of � , the following are true:

¦ (a) If è�¯ï4c¯�7ì�áè�¯�4'T�7 and � ÄÝè�¯�4cè�*54¼�#7 7 (in the left subtree), then º94|¯n- � - �#7���º94'T�- � - �#7 .
Similarly if 6<¯ï4c¯�7��Q6<¯�4'T�7 and � ÄU6<¯�4cè�*94��#7�7 , then º94|¯n- � - �#7��gº54VT�- � -��#7

¦ (b) If ¯W7XT , then º94|¯n- � - �#7e¿�º94'T�- � - �#7 .
Proof: (a) We only prove the first part since the second part follows from the symmetry. Suppose� ÄÇè�¯�4cè�*94��#7�7 , then according to Lemma 7(b), º94|¯n- � - ��m ³6ä{VqÃ�7 = º94cè�¯�4|¯�7_- � - ��m ³�ä{V�Ã�7
º54VT�- � - ��m�³�ä{V�Ã�7
= º546è�¯�4VT�7^- � - ��m�³�ä{V�Ã�7 since ¯ and T are both nonempty. Then the result follows from the assumption

that è�¯�4c¯�7��áè�¯�4'T�7 . (b) Since ¯D7PT , when a new node � is compromised, the set of new bits that

are compromised as a consequence in the case when ¯ has been compromised, is a superset of in the

case when T has been compromised. The result follows. �
Lemma 7 Given a tree � , if � Ä�è�¯�4cè�*54¼�#7 7 , then (a) º54�O�- � -��#7 = º94�O�- � - ��m ³�ä{V�Ã�7 + ¹ è�*54¼�#7{¹ and

(b) for any nonempty set ¯ , º94|¯n- � - �#7 = º54c¯n- � - ��m�³�ä{V�Ã�7 = º546è�¯�4c¯�7^- � - ��m�³�ä{V�Ã�7 . Similarly, if � Ä
6<¯�4cè�*94��#7 7 , then (c) º94�O�- � - �#7 = º94�O�- � - ��m ¡3Z�3.ü�Ã�7 + ¹ è�*94��#7�¹ and (c) for any nonempty set ¯ , º54c¯n- � - �#7
= º54c¯n- � -���m ¡,Z�3.ü.Ã�7 = º94�6<¯�4|¯�7^- � -���m�³�ä{V�Ã�7 .
Proof: We only prove (a) and (b) since (c) and (d) follows from the symmetry. Suppose the height of

the tree � is ü . First recall that � is the number of bits in an IP address. (a) When � is compromised, the

46�ì`�ü��Û/{7�Ø�Ù bit of every address under tree � is compromised, and there are ¹»è�*94��#7{¹ of them. Also, for

any M9ÄY6<¯�4cè�*94��#7 7 , its last ü}`w/ bits are not compromised because the length of the common prefix

between � and M is no longer than �v`ßü . Also, the number of bits (among the last ü9`y/ bits) in nodes

of è�¯�4cè�*54¼�#7 7 that will be affected by � h Ô being compromised is fully accounted in º94�O�- � - ��m ³6ä{VqÃ�7 .
Therefore, º54�O�- � -��#7 = º54�O�- � -���m�³�ä{V�Ã�7 + ¹»è�*94��#7�¹ . (b) This case is similar to (a) except that when S is

nonempty, the 46�x`ßü¾�g/�7�Ø�Ù bit of every address under tree � has already been compromised before �
is compromised. So the term ¹ è�*94��#7�¹ does not exist in (b). For the second equality, note that none of

the leaf nodes in 6<¯�4|¯�7 will affect the last ü~`w/ bits of the leaf nodes under tree ��m ³�ä{V�Ã . �
29

