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Abstract— We consider the problem of optimizing the as-
signment of IP addresses to nodes in a network. An effective
assignment takes into account the natural hierarchy present
in the network and assigns addresses in such a way as to
minimize the sizes of routing tables on the nodes. Optimized
IP address assignment benefits simulators and emulators, where
scale precludes manual assignment, large routing tables can
limit network size, and realism can matter. It benefits enterprise
networks, where large routing tables can overburden the legacy
routers frequently found in such networks.

We formalize the problem that we are considering and point
to several of the practical considerations that distinguish our
problem from related theoretical work. We then outline several
of the algorithmic directions we have explored, some based on
previous graph partitioning work and others based on our own
methods. A key underpinning of our methods is a concept we
call Routing Equivalence Sets (RES), which provides a metric
that quantifies the extent to which routes to sets of destinations
can be aggregated. We present a comparative assessment of the
strengths and weaknesses of our methods on a variety of real
and automatically generated Internet topologies.

I. INTRODUCTION

Minimizing the size of routing tables on network hosts and
routers is a basic problem in networking. A routing table
must store a routing table entry that specifies the first hop to
each possible destination from a given node. Without route
aggregation, each of the n nodes in a network must store
a routing table entry for all n − 1 routes. By defining an
aggregation scheme that allows multiple routes with the same
first hop to be combined, the size of these routing tables can
be reduced by orders of magnitude. A good example of this is
CIDR routing, the routing scheme used in the Internet today.
In CIDR, a route for an entire IP prefix can be specified with
a single table entry.

In most Internet settings, names have already been assigned
to hosts, so once routes are computed, minimizing the size of
a routing table amounts to compressing the table to correctly
specify routes with a minimum of table entries. However, in
several other important settings, which we describe, addresses
have not been assigned in advance, giving us the additional
opportunity to assign addresses in such a way as to minimize
the ultimate size of routing tables. This direction is the focus of
our work. Given a topology, we seek to produce an IP address
assignment that minimizes the sizes of the routing tables on
the nodes in the network.

Underlying this problem are elegant graph-theoretical ques-
tions, which we describe in more detail in subsequent sections.
Our work connects to these theoretical questions, but starts
from a problem formulation that captures the complexities and
nuances of assigning IP addresses to network interfaces in an
environment where CIDR aggregation is used.

Optimizing IP address assignment offers benefits in many
areas. In the real world, it can benefit enterprise networks,
where large routing tables can overburden the memory-
constrained legacy routers frequently found in such net-
works [25], and reassigning the IP addresses of entire networks
is administratively feasible.

Likely of more immediate importance, it benefits simulation
and emulation environments, in several ways. In these envi-
ronments, test topologies typically come from topology gener-
ators, which rarely—if ever—annotate them with IP addresses.
In network emulation environments such as Emulab [33],
IP addresses are required simply to run at all. Assigning
addresses manually is tedious and surprisingly error-prone:
even for small topologies of a handful of nodes, we have
found that Emulab experimenters rarely can provide an address
assignment that is even internally consistent.

Consistent but randomly-assigned IP addresses are clearly
not representative of the real Internet. Providing more sensibly-
structured IP addresses is a requirement for accurate experi-
mental evaluation in areas such as dynamic routing algorithms,
firewall design and placement, and worm propagation. At a
more basic level, most simulators are fundamentally unrealistic
in that they name network nodes instead of network interfaces.
In some cases the distinction can be important in specification
and evaluation, as we and others have found [30], [3], [16].

Assigning IP addresses is not only a difficult problem for
a user or operator to solve manually, but it can also matter
to solve it well, as the space consumption for routing tables
in simulators is frequently a serious barrier to scaling. Large
routing tables have the same negative impact on performance
in these environments as they do in reality.

Finally, looking at the key tools used in network research,
network topology generators themselves stand to benefit from
improved IP address assignment. Today’s popular generators,
such as GT-ITM [9] and BRITE [22], typically generate
connectivity maps that are sometimes annotated with geo-
graphical information, but do not provide other useful node



and link annotations such as link bandwidths and delays, or
realistic IP addresses. Our methods could serve as a back-end
to these topology generators to compute sensible IP address
annotations.

This paper makes the following contributions.

• We build upon a theoretical formulation of interval rout-
ing to formulate the IP address assignment problem as it
needs to be solved by practitioners.

• We devise a general metric, “Routing Equivalent Sets,”
that quantifies the extent to which routes to sets of
destinations can be aggregated.

• We develop three classes of algorithms to optimize IP
naming, each with a fundamentally different approach to
the problem.

• We implement the algorithms and evaluate them on a
number of topologies, both automatically generated and
from the real Internet.

The rest of the paper is organized as follows. In the next
section we first start by defining a clean theoretical version
of the problem, then outline some of the practical issues
that complicate it. In Section III we discuss related work.
Section IV details the algorithms we have developed, while
Section V evaluates their effectiveness. Finally, we discuss
future work and conclude.

II. PROBLEM STATEMENT

Our work seeks to produce a global address assignment
automatically, i.e. an assignment in which IP addresses are
assigned to each network interface in an internetwork. In
practice, IP assignment directly impacts the sizes of routing
tables, since a set of destinations with contiguous IP addresses
that share the same first hop can be captured as a single routing
table entry. Our primary aim in computing an assignment is to
minimize the total space consumption of routing tables, which
in turn helps to minimize packet processing time at routers.
As we later discuss in detail, it is also important to consider
the running time of an assignment algorithm in evaluating its
effectiveness, and effective namespace (bitspace) utilization is
another important factor. While our work explicitly assumes
shortest-path routing, another possible consideration is that
of producing a naming scheme that yields routes with small
stretch, i.e. routes used are at worst a constant stretch factor
longer than shortest-path routes. We formulate our assignment
problem first using the clean conceptual notion of interval
routing, widely used in theoretical studies, and then describe
the additional constraints that CIDR prefixes and CIDR ag-
gregation impose on the problem.

Formally, consider an n-node undirected graph G = (V,E),
where we will refer to vertices as hosts, and an edge (u, v) as
a pair of outbound interfaces (one from u and one from v). An
address assignment A assigns each vertex in V a unique label
from the namespace of integers {1, . . . n}. The routing table
of vertex u associates one outbound interface (u, v) (next hop)
with each label of a every vertex. In this manner, a subset of
labels in A is associated with each outbound interface. Interval

2
3

4 5

6
1 7

[4−6]

[2−3], [7]

[5−6]

[1−4]

Fig. 1. A 7-node network with interval routes for nodes 1 and 7 shown.

routing compacts the routing table by expressing the subset of
labels in A as a set of intervals of integers.

To motivate these definitions, consider the example network
depicted in Figure 1, in which nodes are assigned addresses
from {1, . . . , 7}. Interval routing table entries are shown for
the outbound interfaces of nodes 1 and 7, and are depicted
as interval labels on the corresponding edges. Node 7 can
express its shortest-path routes into two disjoint intervals, one
per interface, which corresponds to a routing table of size two.
With the given address assignment, node 1 must use a total
of three disjoint intervals to exactly specify the routes on its
outbound interfaces. Note that in this example, ties between
shortest-path routes can be exploited to minimize routing table
size. For example, the routing table at node 7 elected to group
node 3 on the same interface as nodes 1, 2, and 4 to save a
table entry.

In a network using interval routing, the size of the minimal
set of intervals is the routing table size, or the compactness
of the routing table. We denote the number of entries in the
routing table of vertex u by ku. The theory literature has
considered questions such as determining the minimum value
of k for which an assignment results in routing tables all of size
smaller than k [31], [14], [11]. For a given graph, this value
of k is defined to be the compactness of the graph. We are
primarily concerned with the average routing table size, so we
seek to identify a labeling that minimizes

∑
u∈V ku. It is well

known that search and decision problems of this form are NP-
complete, and several heuristics and approximation algorithms
are known [14]. Our focus is on the practical considerations
that cause CIDR routing to be a significantly different problem
than interval routing; we discuss these differences and our
approach next.

Practical Considerations

There are three main differences between the theoretical
approach to compact addressing that we have described so
far and the actual addressing problem that must be solved
in emulation and simulation environments. First, although
interval routing is intuitively appealing and elegant, routing
table aggregation in practice is performed using the set of
classless inter-domain routing (CIDR) rules [13], adding sig-
nificant complexity. Second, in IP addressing, each individual
interface (outbound edge) of a node is assigned an address,
not each vertex. This changes what we are naming. Finally,
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widely used local-area network technologies such as Ethernet
provide all-to-all connectivity, and these networks are best
described by hypergraphs, not generic graphs. We discuss
these practical considerations and their consequences in the
problem formulation next.

Classless inter-domain routing (CIDR) specifies aggregation
rules that change the problem in the following ways. A CIDR
address is an aggregate that is specified as a prefix of address
bits of arbitrary length, and encompasses all addresses that
match that prefix. This turns out to imply that a CIDR address
can express only those intervals of IP addresses that are a
power of two in size, and that start on an address that is a
multiple of that same power of two, i.e. the interval must be
of the form [c∗2y, (c+1)∗2y], for integers c and y. This more
restrictive aggregation scheme means that an IP assignment
must be carefully aligned in order to fully take advantage of
aggregation. In practice, dealing with this alignment challenge
consumes many bits of the namespace, and address space
exhaustion becomes an issue even when n is much smaller
than the set of available names. Note that interval routing runs
into no such difficulty. A second difference between interval
routing and CIDR aggregation arises in practice because CIDR
routing tables accommodate a longest matching prefix rule.
With longest matching prefix, the intervals delimited by CIDR
routing table entries may overlap, but the longest, and conse-
quently most specific, matching interval is used for routing.
The potential for use of overlapping intervals is advantageous
for CIDR, as it admits more flexibility than basic interval
routing.

When IP addresses are assigned, they are assigned to
network interfaces, not hosts. For single-homed hosts, this is
a semantic distinction, but for hosts with multiple interfaces,
such as network routers, this distinction materially impacts
address assignment. In this setting, a host may be associated
with multiple addresses, which complicates the problem; when
a packet is sent to any one of a host’s addresses, it is typically
expected to take the shortest path to any interface on the
host. Thus, it is valuable to be able to aggregate all addresses
assigned to a host. This means that we must not only be
concerned with how LANs aggregate with each other, but also
with how the interfaces on a host aggregate as well.

The networks we consider in simulation and emulation
environments are best represented as hypergraphs, since they
often contain local-area networks such as Ethernet, which
enable all-pairs connectivity among a set of nodes, rather than
connectivity between a single pair of nodes. A hypergraph
captures this, since it is a generalized graph in which each edge
is associated with a set of vertices rather than a pair of vertices.
As before, when assigning addresses to a hypergraph, we wish
to assign addresses to network interfaces. With the hypergraph
representation, this becomes more difficult to reason about,
since each network edge may be associated with a set of
vertices of arbitrary size.

For convenience, we work instead with the dual hyper-
graph [2]; to find the dual hypergraph of a graph, we create
a new graph with vertices that correspond to edges in the

original graph, and hyperedges that correspond to vertices
in the original graph. Each vertex in the dual hypergraph is
incident on the edges that represent the corresponding vertices
in the original graph. Thus, by labeling vertices of the dual
hypergraph, we are labeling the network LANs and links in
the original graph. We label with IP subnets, and then assign
an address to each interface from the subnet of its adjacent
LAN.

III. RELATED WORK

Methods for optimizing an assignment of names to hosts
in a network to minimize routing table size date back to
the mid-1980s [31], [12]. In 1987, van Leeuwen and Tan
formulated the notion of interval routing [31]; their work and
subsequent work studied the problem of computing bounds
on the compactness of graphs, a measure of the space com-
plexity of a graph’s shortest-path routing tables using interval
routing [14], [11]. Their work is similar in direction to our
problem; however, their work emphasizes worst-case routing
table size for specific families of graphs and uses the idealized
interval routing approach instead of CIDR.

A more recent direction, mostly pursued in the theoretical
literature, is compact routing [1], [6], [29]. By relaxing the
requirement of obtaining true shortest paths, compact routing
enables much smaller routing tables at the expense of routes
with stretch: the ratio between the routed source-destination
path and the shortest source-destination path. Although these
methods appear potentially promising for realistic Internet
topologies [21], routing tables that support true shortest-path
routes are still the norm in simulated, emulated, and real-world
environments.

A different direction related to our work is that of designing
routing table compression schemes for network simulators
and emulators, to avoid the O(n2) memory required for
precomputing all-pairs shortest-path routes. For example, NIx-
Vector-related designs [26], [27] replace static tables with on-
demand dynamic route computation and caching. Each packet
contains a compact representation of the remaining hops to
its destination. This source routing means that routing at each
individual node is simple and fast. Depending on the traffic
pattern, the size of this global cache can be much smaller than
the memory required to pre-calculate all of the routes.

Another practical alternative uses spanning trees [5]. Several
spanning trees are calculated, covering most of the edges in
the topology. These spanning trees cover most of the shortest-
path routes in the topology and a small cache is kept for
the remainder. The spanning trees and cache can be stored
in a linear amount of memory. While this is a novel routing
method, it assumes global information, since routing requires
access to the global spanning trees and cache, a potential
bottleneck for distributed simulations and emulations.

Finally, there has been work on optimizing Internet routing
tables. First, a number of guidelines for CIDR addressing
have been proposed to facilitate manual assignment of IP ad-
dresses [15], [17] to take advantage of CIDR routing. Second,
a method is known which minimizes the number of table
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entries for a given set of routes and IP addresses. The Optimal
Routing Table Construction (ORTC) [8] technique optimally
compresses IP routing tables using CIDR rules. ORTC takes a
routing table as input and produces a compressed routing table
with the same functional behavior, taking advantage of CIDR
rules to aggregate routes where possible. For any IP address
assignment, ORTC optimally minimizes the number of routes
in the routing table. We employ ORTC as a post-processing
step in our work.

IV. EXPLORING THE PROBLEM SPACE

We now explore them problem space by defining three
classes of algorithms for finding an approximate solution to
this problem. Each algorithm represents a different kind of
approximation. They constitute the technical contributions of
this paper. In this section, we describe these algorithms, and
in Section V, we evaluate their effectiveness in practice.

The goal of each of these algorithms is to build a binary
trie, with nodes in the trie corresponding to IP subnets. In
general, a binary trie is a special case of a binary tree in
which left branches are labeled with ‘0’, right branches are
labeled with ‘1’, and nodes are labeled with the concatenation
of binary labels on edges along the root to leaf path. Using
the trie we build, a node is given an IP address corresponding
to its trie label, appended with zeroes to fill out the address in
the event the label length is smaller than the desired address
length. In this manner, proximate leaves in the trie correspond
to proximate addresses in the IP assignment, so this is a natural
representation of IP addresses.

Each of our three algorithms approaches the problem from
a different direction. First, we describe an algorithm that
uses a bottom-up greedy heuristic to creating a binary trie.
The second algorithm decomposes the IP address assignment
problem into two sub-problems, each of which is conceptually
simpler. The third algorithm is a top-down approximation
using graph partitioning methods. Finally, we present a way
to preprocess the input topology to reduce the size of the
problem.

A. Tournament Tree Building

Our first algorithm is based on the idea of mapping a
graph directly onto an address assignment tree using a metric
that guides the tree construction and a greedy heuristic. We
begin by describing the metric, and then we describe the tree
construction algorithm that uses this metric.

1) Routing Equivalence Sets: We have devised Routing
Equivalence Sets (RES) as a way to characterize the effects
aggregating the addresses of sets of vertices. The RES set of
a set of destination vertices is the set of source vertices whose
first hop is the same to every vertex in the destination set.
Each member of the RES set must have the same first hop to
all destination vertices, but that first hop can be different for
different members of the RES set. More formally, let V be
the set of vertices in a graph. Let D be a set of destination
vertices. Let Hx[y] be the first hop from source vertex x to
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Fig. 2. 7-node network; interval routes for nodes 1, 2 and 7 shown.

destination vertex y. Then we define res(D) as:

res (D) = {v ∈ V : ∀d, e ∈ D,Hv[d] = Hv[e]}.

To exemplify this definition, consider the small network
depicted in Figure 2. This is identical to the network depicted
in Figure 1, but with the routing table entries for node 2 shown.
Now consider the set res({5, 6}). From the definition, this is
the set of vertices whose first hop to node 5 is the same as the
first hop to node 6. Nodes 1 and 7 share this property, as do
nodes 3 and 4 (routing tables not depicted), but node 2 does
not, since its first hop to node 5 is different than its first hop
to node 6. Nodes 5 and 6 are in the destination set D itself, so
are excluded from res(D), and thus res({5, 6}) = {1, 3, 4, 7}.

We use RES sets as a way to measure the impact of
aggregating sets of vertices on routing tables. For example,
consider a logical subnet (set of vertices) S1 for which
| res({S1})| = n − |S1|. In this ideal scenario, every vertex
outside of S1 uses the same outbound route for any vertex
inside S1. Therefore, we can safely assign all of the vertices
in S1 consecutive addresses, while using a single routing table
entry for S1 throughout the rest of the network. Now suppose
that we are given a second subnet S2 that also satisfies the ideal
condition | res({S2})| = n − |S2|. Is S2 a good candidate for
aggregation with S1? By performing the thought experiment
of placing these two sets into a common prefix, there will be
some set of vertices which will need separate routes to S1

and S2, and another set that does not require separate routes,
because the first hop to all vertices in the new set is the same.
This latter set is the RES set res(S1 ∪ S2). The cardinality of
this set tells us how many vertices will thus be able to save a
route, giving us a measure of how many routes would be saved
by combining two tree nodes. By considering pairwise unions
of this form, and greedily pairing off the most promising pairs,
we can build an aggregation tree from bottom-up.

One potential issue is that computing a RES set directly
from this definition is expensive: computing res(D) has time
complexity is O(n|D|2). However, we can prove that res(D)
has a clean recursive decomposition that is amenable to much
more efficient computation with the following lemma.

Lemma 1: For any sets D and E, and given res(D) and
res(E), res(D ∪ E) can be computed in time O(n).

Proof: First note that by transitivity, for any v and for
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all a, b, c ∈ V :

(Hv[a] = Hv[b] ∧ Hv[b] = Hv[c]) → (Hv[a] = Hv[c])

Further, the definition of RES and transitivity imply that
for destination set D, and specializing to v ∈ res (D) and
d, e ∈ D,

Hv[a] = Hv[d] → Hv[a] = Hv[e]

Which means that ∀v ∈ V,∀d ∈ D:

res (D ∪ {v}) = res (D) ∩ res ({v, d})

Therefore, given two destination sets D and E, we can
select any d ∈ D and e ∈ E to give the recurrence:

res (D ∪ E) = res (D) ∩ res (E) ∩ res ({d, e}).

Since res({d, e}) can be computed from the definition in
O(n) time, and assuming use of standard set representations
that allow intersection in linear time, the lemma follows.

2) The Tournament Algorithm: Using the RES metric, we
now use a simple greedy algorithm to build a binary address
assignment tree from the vertices in the graph. Initially, we
start with a forest of n tree nodes, each of which represents a
singleton vertex in the graph. In one round of the tournament,
we coalesce a pair of tree nodes into an aggregate tree node,
reducing the size of the forest by one. After n − 1 rounds,
the tournament ends after having produced a rooted tree. We
define the coalescence operation on an arbitrary pair of tree
nodes, each of which represent disjoint subsets of vertices in
the graph. Coalescing nodes i and j (representing vertex sets
Si and Sj respectively) entails creation of a new parent node
k with i and j as its children, and setting Sk to be Si ∪ Sj .
When nodes i and j are coalesced, they are removed from the
forest and replaced by their parent k.

We determine the order of coalescence operations using a
simple greedy algorithm. For any pair of tree nodes i and j,
we maintain a score res({Si} ∪ {Sj}), and the pair with the
highest score is coalesced. Although n2 pairwise combinations
must be considered for each of n − 1 rounds, there is an
optimization available that cuts the running time by a factor
of n. In the first round, we must compute the RES metric
for all n singletons, and all n2 possible combinations for
singletons. In subsequent rounds, however, the RES values of
most of the possible n2 combinations have not changed - in
fact, the only ones that have changed are those pairs in which
i or j were one of the combined nodes. There are at most
2n such combinations. So, in fact, we can store all possible
combinations in a priority queue, and only update those entries
that changed based upon the winners of a given round. Scoring
a pairwise combination of two sets with RES can be done in
O(n) time as proven in Lemma 1. Thus, rounds after the first
run in O(n2) time, and there are n− 1 of them, leading to an
overall time complexity of O(n3) for the tournament. Storing
the values of combinations under consideration in a priority
queue requires O(n2) space.

B. Spectral Ordering

Our next algorithms derive from the relationship between
interval routing and prefix routing. We decompose the problem
by first obtaining a good interval naming, then turning this into
a prefix naming.

We begin by obtaining a total ordering of the vertices in
G. This ordering can be used directly for interval routing,
or we can build a tree from it for prefix routing. Instead of
operating by attempting to combine all pairs of nodes in the
graph, the tournament now only considers combining a node
with its neighbors in the ordering. In the general case, this
means we must only consider |V | − 1 possible combinations
in the first round, and only need to score two new combinations
in subsequent rounds. This reduces the complexity of the
tournament to O(n2). If our ordering places nodes that are
similar from a routing perspective, close to each other in the
ordering, then the intuition is that the tournament algorithm
will still be able to to produce a good assignment tree.

The remainder of this section discusses methods for obtain-
ing an ordering.

1) Given Ordering: The simplest method for obtaining an
ordering is to simply use the order given in the topology
specification. We expect that for some topology generators
and discoverers, this will produce a reasonable ordering.
Depending on how the topology is generated, nodes that are
linked may tend to be generated in some order that reflects
their connectivity to each other. However, since we aim to
assign addresses to topologies from any generator, we clearly
cannot rely on any properties in the given ordering.

2) Standard Laplacian Ordering: Our next ordering tech-
nique is to use a standard technique from graph theory, that of
obtaining an ordering using the Laplacian matrix [10] of the
graph and the eigenvector associated with the second-smallest
eigenvalue of the matrix [23], [18]. We refer to the second-
smallest eigenvalue by λ2 and the associated eigenvector by
~v2. The Laplacian matrix is essentially a representation of the
adjacency of nodes in the graph, and thus it contains only
local information about each node. The vector ~v2 contains a
value for each vertex in the graph. These values can be used to
generate an approximation for a minimum-cut bipartitioning
of the graph. The characteristic value for each vertex is in
relation to its distance from the cut, with vertices in the
first partition having negative values, and those in the second
partition having positive values. By sorting the vertices by
their characteristic values, we obtain a spectral ordering.

3) Degree of Routing Equivalence: A limitation of using
only the second-smallest eigenvector of the Laplacian is that
this captures notions of adjacency, but does not necessarily
capture the notions of similarity between vertices from the
perspective of routing. We therefore considered an alternative
Laplacian-like graph that goes beyond 0/1 adjacency values
and instead incorporates real-valued coefficients that reflect the
degree of similarity between a pair of vertices. To do so, we
introduce a new metric, called Degree of Routing Equivalence
(DRE). DRE is defined for a pair of vertices i, j ∈ V , and is
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defined as:

dre(i, j) = | res({i, j})|

We then construct an n by n matrix containing the DRE
for every pair of nodes. In essence, what we have created
is similar to the Laplacian of a fully-connected graph, with
weights on the edges such that the higher the edge weight,
the more benefit it will be to place two nodes together. This
more directly captures the routing properties of nodes than
the standard Laplacian. As with the Laplacian, we then take a
characteristic valuation of the matrix to obtain an ordering.

C. Recursive Graph Partitioning

Recursive graph partitioning is an algorithm that approx-
imates standard practice in assigning IP addresses. On the
Internet, the Internet Assigned Numbers Authority (IANA)
assigns a block of IP addresses to a Regional Internet Registry
(RIR). The RIR assigns addresses to top-level ISPs and local
or national registries. These institutions divide their blocks
among their clients, many of which are mid-level ISPs. This
assignment is applied recursively until a relatively small subnet
is assigned to an individual or corporation.

We approximate this process by taking an input topology
and creating a tree by recursively partitioning the topology.
We partition the input topology, creating some number of
subgraphs. Each subgraph is in turn partitioned into sub-
subgraphs. At each level, the subgraphs get a smaller subnet,
and then assign portions of that subnet to their own subgraphs.

The problem of graph partitioning is well understood and
there are a number of libraries which provide good approxi-
mations. We have found METIS [20] to be a good linear-time
partitioner. Because METIS runs in linear time, the recursive
partitioning as a whole has a time complexity of O(n·log (n)).

One characteristic of METIS and graph partitioners in
general is that they require the user to specify the number
of partitions. We tried several scoring metrics for determining
the number of partitions. We found two promising metrics for
scoring a partitioning: conductance [19] and ratio cut [32].
Ultimately, we discovered that carefully picking a number of
partitions had little impact on the final routing table sizes.
Thus, we settled on always partitioning the graph into two
subgraphs as the simplest method.

A critical piece that top-down algorithms must have is a use-
ful termination condition. The obvious termination condition
is when the partition is trivial (size 1). But a good algorithm
must also behave well when the bitspace is exhausted. This
is much easier in recursive partitioning than in any of the
other algorithms. The recursive partitioner can check to see
if a partitioning would result in a subgraph that is larger
than the subnet size assigned to it. If such a situation occurs,
naive addresses can be assigned to all of the LANs in the
graph. Therefore, the current implementation for the recursive
partitioner handles bitspace exhaustion more gracefully than
the other algorithms that we have described.

D. Preprocessing the Topology

All of the algorithms we propose above have superlinear
time complexities, which limits their ability to scale to large
topologies. Thus, we have devised a prepass phase that de-
composes input topologies into subgraphs to which we can
assign addresses independently.

Additionally, there are some structures for which there
are simple optimal algorithms for address assignment, like
trees. Such structures are relatively common in some types
of networks, such as at the edges of enterprise and campus
networks, and thus it is worth optimizing these common cases.
Another structure that is amenable to decomposition via a
prepass is a singly connected component, i.e. a subgraph
where removal of a single edge called a bridge breaks the
component in two. By identifying dangling trees and bridge
edges, the prepass phase naturally divides the graph into a
set of smaller biconnected components and trees. Partitioning
a graph into biconnected components and trees is a natural
decomposition for our methods. The property we exploit is
that if each biconnected component is assigned a unique prefix,
the internal assignment of addresses within a component does
not change the number of routes of any host outside of
that component. We discuss technical details of our prepass
methodology next, then quantify the costs and benefits of
performing the prepass.

1) Hypergraph Biconnectivity and Hypertrees: In Sec-
tion II, we described why our methods label the dual hyper-
graph of the input topology (also a hypergraph). To perform
the prepass described above, we must extend the definitions of
biconnectivity and trees into the domain of hypergraphs. There
are a number of alternative definitions which potentially apply;
we use the following one which best fits our purposes.

For every path p, the function edges (p) is the set of edges
or hyperedges along that path. From here forward, we will
use the term ‘edge’ in a general sense to denote either an
edge or a hyperedge. A pair of vertices u and v is said to be
edge-biconnected if and only if there exist two paths p and q

between u and v such that:

edges (p) ∩ edges (q) = ∅

Similarly, an edge-biconnected component is a set of vertices
V such that for all u, v in V , u and v are edge-biconnected. An
edge-biconnected partitioning of a graph G is a partitioning
of the vertices of G into partitions G1, G2, . . . Gn such that
for all i, Gi is a maximal edge-biconnected component.

Using similar notions, we define a hypertree to be a con-
nected subgraph of a hypergraph that contains no cycles. As
with trees on regular graphs, it is straightforward to optimally
assign IP addresses to a hypertree of a hypergraph.

Using these definitions, our pre-processing step partitions
the hypergraph into edge-biconnected components and hyper-
trees. Fast algorithms for computing such a decomposition
on regular graphs are known; by maintaining some additional
information about vertices incident to each hyperedge, these
methods can be extended to apply to hypergraphs. Once the

6



decomposition is complete, addresses on the hypertrees are
assigned optimally by a special tree-assignment procedure; ad-
dresses are assigned on the edge-biconnected components by
the procedures described earlier. The super-graph of partitions
is created and can be used to label the partitions themselves.

2) Preprocessing – Costs and Benefits: The preprocessing
phase has the clear advantage of potentially being able to
divide a very large problem into many smaller pieces that
we then tackle with the more sophisticated methods defined
earlier. A second potential benefit is reduction in routing
table size. Because the prepass identifies subgraphs for which
optimal assignment is possible, there can be a noticeable
advantage when compared with methods that do not perform
the prepass and are not capable of optimal assignment to
subgraphs.

Somewhat less obviously, the partitioning performed in the
prepass typically comes with a cost, in the form of some
increase in routing table sizes. Suppose there are two edge-
biconnected components A and B which are adjacent. Let a

be a vertex within A that borders the component B. If the
address of a were in the same subnet as the addresses in B,
then the hosts in A would be able to save a routing table entry.
Instead of having a route to a, and a different route to B, there
could be a single route to them both. But we have assigned
a to a different component and to a different subnet than B.
Therefore, in general, a cannot be aggregated with B. This is
the cost of dividing the graph.

We explore the tradeoffs that the prepass imposes on routing
table sizes for generated and Internet topologies in Section V.

E. Putting It All Together

The previous subsections have detailed a large number of
algorithms and optional steps. Figure 3 shows how they all fit
together.

The recursive partitioner always runs on its own. The
three alternative algorithms (Tournament, DRE Eigenvector,
Laplacian Eigenvector) can be run with or without the prepass.
If the prepass is run, it divides the graph into components, runs
the appropriate algorithm on each component, then collates
the results as part of the “Trie to IP addresses” stage. On tree
components it runs the tree-assigner and runs one of the other
three algorithms on non-tree components. Finally, we always
run ORTC to optimally compress the routing tables.

Most of these paths will be evaluated in the next section.

V. RESULTS

A. Methodology

We ran experiments on topologies from three sources: two
popular router-level topology generators, and the Internet.
Our primary interest is the generated topologies because
such topologies are prevalent in simulation and emulation. In
addition, real-world graphs are more likely to come annotated
with real IP addresses.

The first set of topologies are generated by the BRITE [22]
topology generator, using the GLP [4] model proposed by

   Trie Into 

Prepass

Optimal Tree
Assignment

Tournament
RES ordering

Laplacian
  Eigenvector
  ordering

 DRE  Eigenvector

Recursive
Partioning

  INPUT  
TOPOLOGY

Ordered
Tournament

  ORTC

ROUTING
TABLES

  RES

Collate Each

IP Addreses

Fig. 3. A flowchart showing how the different algorithms are combined.

Bu and Towsley. These topologies are intended to model the
topology within a single organization, ISP, or AS.

The second set of topologies are generated by the GT-
ITM [9] topology generator. They model topologies that
include several different administrative domains; each topol-
ogy consists of some number of transit networks and stub
networks. Thus, they contain some level of inherent hierarchy.

Finally, we use some real-world topologies gathered by the
Rocketfuel topology mapping engine [28]. These are maps
of real ISPs, created from traceroute data for packets passing
through the ISP for a large set of (source, destination) pairs.
All Rocketfuel graphs are of individual transit ASes.

We report on the number of interfaces, rather than the
number of nodes, for each topology. Since it is interfaces
that must be named, this gives a more accurate view of the
complexity of the assignment problem. Our test topologies,
like those generated by most topology generators, contain links
and not LANs. Thus, the number of interfaces is twice the
number of links in the topology.

After generating IP addresses, we generate routing tables
and compress them with ORTC [8], which, for a given address
assignment, produces a provably optimal routing table. We
also run the generated routing tables through a consistency
checker to verify their correctness. The run times reported are
for the assignment of addresses, as routing table generation
and compression need to be performed no matter what the
assignment algorithm is.
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Fig. 4. Global number of routes for a variety of assignment methodologies.
Topologies are from the BRITE topology set.

All of our experiments were run on Pentium IV Xeon
processors running at 3.0 GHz, with 1 MB of L2 cache and
2 GB of main memory on an 800 MHz front side bus.

B. Full-Graph Algorithms

We begin by comparing results for the set of assignment
methodologies without using the pre-pass stage. Due to the
high time and memory complexity of many of these methods,
we are limited in the size of topologies we can compare. In
addition, some of the algorithms run out of bitspace for larger
topologies—in other words, the trees they build produce leaves
that are too deep to be represented by an IPv4 address. This
can occur when the trees built are very unbalanced, leaving
large parts of the IP space unused. Investigating ways to
constrain the bitspace used by the tournament algorithms will
be a priority in future work.

1) BRITE topologies: Figure 4 shows the global routing
table size produced by each method for the BRITE topology
set. There are a number of interesting things in this graph.
First, note that all methods do significantly better than random
assignment, with the best at around 2500 interfaces (recursive
partitioning) saving 42% of routes over random. Also note
that for this topology generator, the ordering produced by the
generator is indistinguishable from a random ordering.

The two spectral methods perform very similarly to each
other; this is surprising, because the Laplacian matrix con-
tains only local information, while the DRE matrix contains
global routing-specific information. This suggests that global
knowledge is not as useful in this situation as one might think.

Finally, we see that recursive partitioning and tournament
RES also perform similarly. However, RES stops at 1800
interfaces—at this point, it begins creating trees that are too
deep to be represented as IP addresses. This shows clearly that
we will need to bound the bitspace used by the tournament
algorithm if it is to be a viable strategy.

2) GT-ITM topologies: Figure 5 shows results from the
GT-ITM topology set. This time, the route savings are more
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Fig. 5. Global number of routes for a variety of assignment methodologies.
Topologies are from the GT-ITM topology set.

TABLE I

NUMBER OF ROUTES GENERATED FOR THE ROCKETFUEL TOPOLOGIES.

Algorithm EBONE Tiscali

Random 27031 33104
Given Ordering 15904 18891
Spectral Laplacian 18128 22761
Spectral DRE 15581 20579
Recursive Partitioning 11630 16802
Tournament RES 11427 16354

pronounced—the best improvement we see over random as-
signment is a 70% decrease in the number of routes. How-
ever, the various assignment methodologies are much more
clustered—most result in similar routing table sizes. It is
interesting to note that this time, the given ordering, while the
poorest, is competitive with the more sophisticated orderings.
We believe this to be an artifact of how GT-ITM generates its
topologies.

3) Rocketfuel topologies: The Rocketfuel results can be
seen in Table I for two European networks, EBONE and
Tiscali. Like the BRITE topology set, the tournament RES
and recursive partitioning algorithms perform similarly, with
a slight advantage going to tournament RES.

4) Run Time Comparison: Finally, Figure 6 shows the run
times for the BRITE topology set for our various assignment
algorithms. Here, recursive partitioning is the clear winner—
its run time looks roughly linear, while all other methods have
a quadratic curve to their run time.

Clearly, these methods show recursive partitioning as the
preferred method among those evaluated. While it is some-
times bested by tournament RES in terms of number of routes,
it has the best run time scaling of all methods, with near-best
performance in terms of number of routes.

C. Pre-pass effects

We now evaluate the pre-pass and its effects on the the
address assignment area. We take two of the algorithms
algorithms above—the DRE spectral ordering, and the RES
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TABLE II

HISTOGRAM OF PREPASS COMPONENT SIZES FOR THREE GRAPHS.

Component size GT-ITM BRITE Rocketfuel

1 4 15 29
2–10 49 22 23
11–20 1 4 1
21–30 1 4
91-100 1
321-330 1
420-430 1

# of components 56 46 54

# of links 392 547 543

tournament—and study the effects of the pre-pass on them.
Due to the similar results above between DRE and Laplacian
orderings, we do not consider the latter here. We use the GT-
ITM graphs for these comparisons. The other topology sets
cause the tournament-based algorithms to use too many bits,
even for small topologies, so a way to bound the number of
bits they use will be required to make these graphs feasible.

We expect to see three effects. First, the pre-pass finds tree-
like structures and assigns to them optimally, which should
tend to improve results. Second, by making some decisions
locally instead of globally, we will clearly make some sub-
optimal decisions. Third, by reducing the number of nodes
fed to portions of the assignment tool chain with quadratic
time complexity, we should see a reduction in the run time
for those types of assignment.

1) Components Found: We pick one topology from each
of the three sets as a representative; the ones chosen have the
most similar numbers of links. Table II shows a histogram of
the sizes of the components into which the prepass divides
these input topologies. The smaller the largest component,
the better the running time of the quadratic algorithms. We
can see from this table that the prepass has varying levels
of effectiveness for the different topology types. For the GT-
ITM topology, the largest component is roughly one-fourth of
the topology size, while on the other topologies, the largest
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Fig. 7. Routing table sizes for the GT-ITM graphs, with and without the
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Fig. 8. Run times with and without the pre-pass. Note that the y-axis is in
a logarithmic scale.

components are three-fifths and four-fifths of the size of the
original topology. In all topologies, the majority of the com-
ponents are smaller than 10 nodes. In all three topologies, the
largest components are biconnected. The smaller components
are dominantly trees.

2) Routing Table Size: In Figure 7, we can see that, for
these graphs, the positive and negative effects of the pre-pass
largely balance each other out. The tournament RES algorithm
sees very little net change, and the DRE spectral ordering sees
a slight improvement.

3) Run Time Benefit: Figure 8 shows the run time improve-
ment due to the pre-pass. Note that the improvement is so
dramatic that the y-axis is shown in a logarithmic scale. By
splitting up the graph into smaller, simpler pieces, the pre-
pass is able to bring the run times for the algorithms down to
a feasible level.
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D. Large Graphs

Finally, we compare the best of the full-graph algorithms,
recursive partitioning, to the best of the pre-pass algorithms,
Tournament RES. Since both of these scale much better than
most of their counterparts, we were able to run them on much
larger graphs. Figure 9 shows the number of routes for these
experiments, and Figure 10 shows the run times. The two
algorithms are nearly equal in the number of routes that they
produce, with the slight advantage again going to tournament
RES. For graphs under 12,500 interfaces, their run times are
comparable and very low, but for the largest graphs, recursive
partitioning shows much better scaling.

E. Summary of results

Figure 11 summarizes the results across all algorithms,
showing the number of routes for one large, representative
topology from each generator, and for both Rocketfuel graphs.
The number of routes for each topology is normalized to
the number of routes for the random address assignment.
There are two clear trends from these results: First, in most

topologies the spectral orderings perform worse than the
given ordering. Second, the recursive partitioning and RES
tournament methods consistently yield the fewest routes, with
RES usually having a slight edge. The clear conclusion is that
the latter two methods are superior.

VI. FUTURE WORK

The top priority of future work will be to find ways to
gracefully handle limited bitspace. This issue must be dealt
with both when the IP tries are being converted to addresses,
and in each of the tournament algorithms. In the tournament
algorithms, we are developing techniques to constrain the
amount of bitspace used within a given constraint. Converting
IP tries to addresses will involve a tradeoff between efficient
bitspace usage and smaller routing tables. Since these two
goals are measured in different units, arriving at such a balance
is difficult: judging the relative value of a bit of namespace
as compared with a route will require study and tuning.
Making these decisions in the context of the tournament
algorithms is particularly difficult, since we must make them
with incomplete knowledge; because we are building tries
from the bottom up, we know only about how efficiently bits
are allocated in the subtrees below us, but not how efficiently
they will be allocated in the nodes above us.

The tournament algorithms that we use are greedy, so there
is almost certainly room to improve them. This improvement
may take the form of pruning the solution space by not
considering combinations that we know cannot or are not
likely to be part of the optimal solution. It may also take the
form of introducing some lookahead, so that the algorithms
have some room to trade lower scores in one round for higher
scores in a later round.

One of the potential causes of the spectral ordering decom-
position’s relatively poor performance is that ordering based
on a single eigenvector is in essence a single partitioning of the
graph. Recursively ordering each partition based on the eigen-
vector may improve the spectral orderings greatly; the success
of the recursive partitioning algorithm suggests that this may
be the case. We can also try to adapt well-known algorithms
which approximate Minimum Linear Arrangement [7], [24] to
the ordering problem. Because transforming the ordering to a
tree is the cheapest part (in time) of the ordering algorithms,
there may be ways of improving the results while keeping the
total runtime low.

Our results so far neither give us an intuitive feel nor
quantitative metrics for two important aspects of IP naming.
First, how close to optimal are we getting? Second, how close
to real life address assignments are we getting? Studying real-
world topologies for which we have full IP address data will
help us approach both these problems. We are working on
getting such data for enterprise and ISP networks. Developing
a “realism” metric is a challenging open problem, but more
tractable will be to develop a metric that reflects the degree
to which two namings differ in important ways.
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Fig. 11. Summary comparison of global routing table sizes resulting from different algorithms. The results are normalized to the largest table size, which
results from random assignment. From left to right, the bars illustrate the results of random assignment, given ordering, spectral ordering with Laplacian,
spectral ordering with DRE, recursive partitioning and tournament RES. For GT-ITM, in the last two bars we also show the results of tournament RES with
pre-pass, and spectral ordering with DRE and pre-pass.

VII. CONCLUSION

We have investigated challenges associated with annotating
an Internet connectivity map with IP addresses in such a
way as to minimize the size of routing tables on hosts and
routers. There is a large body of related theoretical work.
However, none of it adequately handles the complexities of
CIDR aggregation: longest prefix matching, the need to name
network interfaces instead of hosts, and the nuances of ad-
dressing hosts on LANs with all-pairs connectivity. We argue
that these factors must be considered in realistic simulation and
emulation environments, and our experimental results indicate
that they impose a challenging set of constraints beyond those
imposed by a more basic interval routing problem.

The methods that we proposed and implemented attacked
the problem from a number of angles. We investigated the
use of graph partitioning tools, novel metrics which quantified
the “routing similarity” between sets of vertices in the graph,
algorithms for computing a spectral ordering across the vertex
sets, and a prepass phase that can significantly reduce the
effective problem size. All of our methods produce routing
tables that are far better than those that result from naive,
randomly chosen assignments, but no one method dominates
along all of the relevant performance axes on all topologies,
e.g., running time, bitspace consumption, and number of
routes. Tournament RES consistently produces the smallest
number of routes. Recursive partitioning consistently runs the
fastest, and produces routing tables that are close in size to
those produced by tournament RES. On the other hand, the
best of the methods we propose are suitable for annotating
a topology consisting of thousands of interfaces with IP
addresses in a matter of minutes. Therefore, we are hopeful
that our methods are suitable for incorporation either as a
back-end to existing topology generators, or as a front-end
to existing simulation and emulation environments that take
connectivity maps as input, or both.
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