
280 YEAR 2018 • VOLUME 26 • ISSUE 4• / ACTA INFORM MED. 2018 DEC 26(4): 280-283

ABSTRACT

Introduction: Quantifier Elimination gives us perfect insight into the most basic world of the computer,

its origin, its primer functions and it basic operations. Carefully designed and programmed Algorithm

for Quantifier Elimination makes the quantifier elimination from the quantified formulas much easier

and much more comprehensive Aim: This paper explains how Quantifier Elimination algorithm can be

used in the field of Biology, or to be more specific, in the field of Epidemiology. Material and meth-

ods: Exemplary formulas needed for the algorithm are all the formulas from the Mathematical Logic

field. JavaScript programming language was used in order to program fast and effective algorithm

for Quantifier Elimination. Results: Solving the certain problems from the field of Epidemiology using

the Quantifier Elimination method, proved to be very successful in the past, because it made possible

for the results to be extracted very fast. Doing the exact thing using the newer generation algorithm

might be even more effective. Conclusion: The most basic concepts of Mathematical Logic can be

implemented in order to solve the one of the most important questions in Epidemiology.

Keywords: quantifiers, elimination, algorithm, epidemiology, disease dynamics.

1. INTRODUCTION
The discipline of Mathematical Logic

was invented in the first half of the 20th
century by a huge number of amazing
mathematicians such as Frege, Hilbert,
Gödel, Turing, Tarski, Malce and many
others (1). The development of this
mathematical field is without a doubt
one of the highest achievements and
successes of science in the 20th century
because it presented logical reasoning
and computability to high-developed
analysis, and eventually led to the cre-
ation of computers (2-8).

To be more specific, Mathematical
Logic is used for the formalization of
the semantics of various programming
languages and for verifying the cor-
rectness of the programs. Quantifier
Elimination is one of the most inter-
esting topics that Mathematical Logic
explores (2).

Even though Quantifier Elimination
is a method that comes from the world
of the computers, its biggest applica-
tion is actually in the world of Epide-
miology. In the world of Epidemiology,
one of the most important information
is about the dynamics of certain disease

(3). Quantifier Elimination method to-
gether with the JavaScript algorithm
can provide these information very
quickly.

2. MATERIAL AND METHODS
The main difficulty encountered in

the process of programming the Quan-
tifier Elimination algorithm was ac-
tually the limitation of the JavaScript
programming language. Since the Ja-
vaScript is web-oriented programming
language, it does not support some of
the functions that can be easily found in
the Mathlab or Mathematica program-
ming languages. Unfortunately, some
of the functions that are implemented
in the Mathematica programming lan-
guage are not implemented in JavaS-
cript programming language, and that
is why very challenging to program
this algorithm in JavaScript program-
ming language.

The functions that were not imple-
mented in the JavaScript language are
written step by step in order to do the
exact same thing as the ones that are
already implemented in Mathematica
programming language. In order to

JavaScript Algorithm for Quantifier Elimination in
Epidemiology

Inda Kreso

Sarajevo School of Science and Technology,
Sarajevo, Bosnia and Herzegovina

Corresponding author: Inda Kreso. Sarajevo
School of Science and Technology, Sarajevo,
Bosnia and Herzegovina. E-mail:indakreso1@
gmail.com. ORCID ID: http://www.orcid.org:
0000-0002-5556-4669.

doi: 10.5455/aim.2018.26.280-283
ACTA INFORM MED. 2018 DEC 26(4): 280-283

Received: Oct 10, 2018 • Accepted: Nov 26, 2018

REVIEW

© 2018 Inda Kreso

This is an Open Access article distributed under the
terms of the Creative Commons Attribution Non-
Commercial License (http://creativecommons.org/
licenses/by-nc/4.0/) which permits unrestricted non-
commercial use, distribution, and reproduction in any
medium, provided the original work is properly cited.

YEAR 2018 • VOLUME 26 • ISSUE 4• / ACTA INFORM MED. 2018 DEC 26(4): 280-283 281

JavaScript Algorithm for Quantifier Elimination in Epidemiology

implement all the function needed, the extensive math li-
brary math.js was used.

The JavaScript version of the algorithm has some con-
straints. These constraints are the results of the differences
in these two programming languages: JavaScript and Math-
ematica. The JavaScript version of the algorithm works on
the predefined range of numbers form -100 to 100. This is
range that was set at the beginning and it can be changed to
be bigger, but it cannot be infinite as it is the case with the
Mathematica version of the algorithm. Since the algorithm is
based on the Boolean functions, the final result is TRUE or
FALSE. In general, quantifier elimination method tends to
decide when a sentence from the theory is true, and then to
computer the quantifier free formula (new formula without
the quantifiers that is equivalent with the one with the quan-
tifiers). The complete code of the JavaScript algorithm can be
found in the Appendix.

3. RESULTS
According to Maric et al. (4) the change of quantitative be-

havior of parameterized system differential equations that are
encountered in the epidemiology, are represented by the ra-
tional functions of the parameters. Form the computational
point of view, there was a difficulty with solving the fol-
lowing question: if one rational function equal to 1, does that
mean that the other rational function is less than zero for all
parameters (4). The traditional algebra was not able to solve
this question, but if this question is defined as a first order for-
mula, then it can be solved using the quantifier elimination
method (5).

The basic problem in the field of epidemiology is to gather
the biggest amount of information regarding the dynamics
of the certain disease (6). The most important parameter in
the epidemiology is the basic reproduction number that is
represented by: This number represents average number of
secondary infections generated by one case, and automati-
cally the expression that describes the dynamics of the dis-
ease is given: if the average number of secondary infections
is smaller than 1 (), then the disease will most certainly die
out, and in the other case, when the average number of sec-
ondary infections is bigger than 1 (), then the epidemic will
be expected. The main problem according to (7) is to repre-
sent a formula for the total population that depends on. In
order to that, there has to be a epidemic model of a certain
disease. The population is usually divided into three groups:
susceptible infected and treated infected All the parameters
that influence all of three groups can be represented by the
non-linear differential equations. After the range of mathe-
matical operations, this first formula can be formulated as a
quantified formula, as it was suggested at the beginning of
this section. According to Chauvin C. et al. (4) Quantifier
Elimination method is used in order to solve this problem,
and it proves to be really quickly, but with the JavaScript al-
gorithm is tends to be even more faster than with the pre-
vious method.

The epidemic model that was descried earlier can be ex-
pressed using the non-linear differential equations of the
form:

Legend: X_i-susceptibles , Y_(i)– infected, V_i -treated infected
μ-natural mortality rate, γ_1 and γ_2- the portion of the whole popula-
tion going into the high and low part of the population, ρ_1 λ-force of
infection, δ-disease induced mortality rate, N_0-stable, population in
absence of infection, τ-rate of getting treated

The complete mathematical calculations can be found in
the article under the name: “An application of Quantifier
Elimination to Mathematical Biology” by Corinne Chauvin,
Myriam Mueller and Andreas Weber (4). The complete math-
ematical calculations will not be included in this paper, be-
cause the focus is not mainly on mathematical point of view,
rather on the computer science point of view. The quantified
formula of the result of solving the non-linear system of dif-
ferential equations is the following one:

After the formula without quantifiers is obtained, the Ja-
vaScript algorithm can be implemented directly on the for-
mula in order to get the needed result.

4. DISCUSSION
In the filed of a Predicate logic there exist two quantifiers:

universal and existential (6). A universal quantification is a
type of the quantifier that is interpreted as “given any” or
“for all”. It means that every member of the domain can sat-
isfy a propositional function. Furthermore, it also means that
a predicate within the scope of a universal quantifier is true
for every value of a predicate variable (7).

It is denoted by, which is combined with a predicate vari-
able in order to form a universal quantifier: .

Example:
The following example is the example for the usage of the

universal quantifier. Suppose that is given: For all natural
numbers n, 2 · n = n + n. This first part: for all natural num-
bers is actually universal quantifier.

It can be seen that for every number the rule is the same
(11).

The second quantifier is called an existential quantifier
(9, 10). In predicate logic, an existential quantification is a
type of quantifier, a logical constant that is interpreted as
“there exists,” “there is at least one”. It means that at least one
member of the domain can satisfy a propositional function.
It proposes that a predicate within the scope of an existential
quantifier is true for at least one value of a variable (11, 12). It
is denoted by the symbol , which is combined with a predicate
variable in order to form an existential quantifier: Quanti-
fier elimination is an idea of simplification that is widely used
in many fields such as: mathematical logic, theoretical com-

282 YEAR 2018 • VOLUME 26 • ISSUE 4• / ACTA INFORM MED. 2018 DEC 26(4): 280-283

JavaScript Algorithm for Quantifier Elimination in Epidemiology

puter science and many more (9). Quantifier elimination is
the main technique that is used to eliminate quantifiers from
the formulas (10). Formulas can be classified by the amount
of the quantifiers they have, and the formulas that have less
quantifiers are considered to be simpler ones. Suppose it is
given language L and a set A of the formulas in L. Set A al-
lows quantifier elimination in the formula F of the language
L if there exists a formula without quantifies such that (2). In
other words quantifier elimination can be performed if for
every formula there exists another formula that has no quan-
tifiers and it is equivalent to the formula with quantifier (2).

5. CONCLUSION
Since the Quantifier Elimination algorithm has proven to

be one of the basic tools that can be used in the field of Math-
ematical Logic, it is not surprising that this same tool found
its broad application in the other sciences such as Computer
Science and Biology. This paper presents the great overview
how basic concepts of Mathematical Logic can be turned into
a highly comprehensive and web-oriented algorithm pro-
grammed in one of the world’s most popular programming
language JavaScript, and then be used in order to solve the
one of the most important problems in Epidemiology (9).

• Author’s contribution: Author was included in all steps of preparation of

this article and made final proof reading before printing.

• Financial support and sponsorship: None.

• Conflict of interest: There are no conflict of interest.

REFERENCES
1. Kostic M. Elementi teorije sistema i informacija. Naucna knji-

ga. Beograd, 1990: 46-56.
2. Dedic S. Osnovi nauke o upravljanju. Svjetlost. Sarajevo, 1986:

227-231.
3. Masic I, Ridjanovic Z Sistem i komunikacija. U: Medicinska

informatika. Avicena. Sarajevo, 1994: 85-140.
4. Chauvin C, Muller M, Weber A. An Application of Quantifi-

er Elimination to Mathematical Biology. 287-296. Retrieved:
https://www.researchgate.net/profile/Andreas_Weber4, No-
vember 15th, 2018

5. Kern J, Petrovecki M. Medicnsko odlucivanje. U: Kern J,
Petrovecki M (Eds.). Medicinska informatika. Medicinska nak-
lada. Zagreb. 2009: 179-196.

6. Masic I, Ridjanovic Z. Hardver i softver. U: Masic I, Ridjanovic
Z. Medicinska informatika. Avicena. Sarajevo. 1999: 195-266.

7. Mašić I, Riđanović Z. Medicinska informatika, knjiga II, Ap-
likativna medicinska informatika, Avicena, Sarajevo, 1999.

8. Masic I, Ridjanovic Z, Pandza H, Masic I. Medical Informatics.
Avicena. Sarajevo, 2010.

9. Shortliffe EH, Perreault LE, Wiederhold G, Fagan LM. (Eds)
Medical Informatics. Computer Applications in Health Care
and Biomedicine. Springer. New York, Berlin, Heidelber.
2001: 327-358

10. Chapman SJ. Multiscale mathematical modelling in medicine
and biology. OCIAM. Mathematical Institute, 24-29 St Giles,
Oxford OX1 3LB, 2015.

11. Bender EA. An Introduction to Mathematical Modelling, New
York: Dover, 2000.

12. Tan JKH. Health Management Information Systems. Theories,
Methods and Applications. Aspen Publication. 1995: 65-125

APPENDIX

var RANGE_ERROR = “CHECK YOUR RANGE. SHOULD BE FROM -100
TO 100.”;
var NO_FUNCTION_ERROR = “NO FUNCTION ERROR. PLEASE CHECK
FUNCTION.”;

var set = new Array(201);

for(var i = 0; i <= 200; i++) {
 set[i]=i-100;
}
console.log(math.sqrt(-4));

// create a parser
var parser = math.parser();

function go() {

var formulaStartString = document.
getElementById(“formula”).value;

var operation;
var res = solve(formulaStartString);
 setResult(res);

}

function solve(formulaStartString) {
var expressions = formulaStartString.
substring(formulaStartString.
indexOf(“(“)+1,formulaStartString.lastIndexOf(“)”));
var expressionsArray;

if(expressions.indexOf(“),”) != -1) {
 expressionsArray = expressions.split(“),”);
 expressionsArray[0] = expressionsArray[0] + ‘)’;
 }
else expressionsArray = expressions.split(“,”);

 expressionsArray = expressionsArray.map(element => {
return element.trim();
 });

if(!(formulaStartString.startsWith(“Exists”) ||
formulaStartString.startsWith(“ForAll”)
 || formulaStartString.startsWith(“AND”) ||
formulaStartString.startsWith(“OR”)
 || formulaStartString.startsWith(“NOT”) ||
formulaStartString.startsWith(“Implies”)
 || formulaStartString.startsWith(“Equivalent”)))
{
 document.getElementById(“result”).innerHTML =
NO_FUNCTION_ERROR;
return;
 }
if(formulaStartString.startsWith(“Exists”)) {
return exists(expressionsArray[0], expressionsArray[1]);
//setResult(result);
 }
elseif(formulaStartString.startsWith(“ForAll”)) {
return forAll(expressionsArray[0], expressionsArray[1]);
//setResult(result);
 }
elseif(formulaStartString.startsWith(“AND”)) {
return and(expressionsArray[0], expressionsArray[1]);
 }
elseif(formulaStartString.startsWith(“OR”)) {
return or(expressionsArray[0], expressionsArray[1]);
 }
elseif(formulaStartString.startsWith(“NOT”)) {
return not(expressionsArray[0]);
 }
elseif(formulaStartString.startsWith(“Implies”)) {
return implies(expressionsArray[0], expressionsArray[1]);
 }
elseif(formulaStartString.startsWith(“Equivalent”)) {
return equivalent(expressionsArray[0],
expressionsArray[1]);
 }
else document.getElementById(“result”).innerHTML = NO_
FUNCTION_ERROR;
}

function setResult(result) {
 document.getElementById(“result”).innerHTML = result;
}

function exists(exp1, exp2) {
var exp1Result, exp2Result;
if(exp1.startsWith(“Exists”) || exp1.startsWith(“ForAll”)
 || exp1.startsWith(“AND”) || exp1.
startsWith(“OR”)
 || exp1.startsWith(“NOT”) || exp1.
startsWith(“Implies”)
 || exp1.startsWith(“Equivalent”)) {
 exp1Result = solve(exp1);
 }
elseif(exp1.toString() == ‘x’) {
 exp1Result = false;
 }

YEAR 2018 • VOLUME 26 • ISSUE 4• / ACTA INFORM MED. 2018 DEC 26(4): 280-283 283

JavaScript Algorithm for Quantifier Elimination in Epidemiology

else {
 exp1Result = evaluateExp(exp1, true);
 }

if(exp2.startsWith(“Exists”) || exp2.startsWith(“ForAll”)
 || exp2.startsWith(“AND”) || exp2.
startsWith(“OR”)
 || exp2.startsWith(“NOT”) || exp2.
startsWith(“Implies”)
 || exp2.startsWith(“Equivalent”)) {
 exp2Result = solve(exp2);
 }
elseif(exp2.toString() == ‘x’) {
 exp2Result = false;
 }
else {
 exp2Result = evaluateExp(exp2, true);
 }
return exp1Result || exp2Result;
}

function forAll(exp1, exp2) {
if(exp1.toString() == ‘x’)
return evaluateExp(exp2, false);
elsereturn evaluateExp(exp1, false) && evaluateExp(exp2,
false);
}

function and(exp1, exp2) {
var exp1Result, exp2Result;
if(exp1.startsWith(“Exists”) || exp1.startsWith(“ForAll”)
 || exp1.startsWith(“AND”) || exp1.
startsWith(“OR”)
 || exp1.startsWith(“NOT”) || exp1.
startsWith(“Implies”)
 || exp1.startsWith(“Equivalent”)) {
 exp1Result = solve(exp1);
 }
elseif(exp1.toString() == ‘x’) {
 exp1Result = true;
 }
else {
 exp1Result = evaluateExp(exp1, true);
 }

if(exp2.startsWith(“Exists”) || exp2.startsWith(“ForAll”)
 || exp2.startsWith(“AND”) || exp2.
startsWith(“OR”)
 || exp2.startsWith(“NOT”) || exp2.
startsWith(“Implies”)
 || exp2.startsWith(“Equivalent”)) {
 exp2Result = solve(exp2);
 }
elseif(exp2.toString() == ‘x’) {
 exp2Result = true;
 }
else {
 exp2Result = evaluateExp(exp2, true);
 }
return exp1Result && exp2Result;
}

function or(exp1, exp2) {
var exp1Result, exp2Result;
if(exp1.startsWith(“Exists”) || exp1.startsWith(“ForAll”)
 || exp1.startsWith(“AND”) || exp1.
startsWith(“OR”)
 || exp1.startsWith(“NOT”) || exp1.
startsWith(“Implies”)
 || exp1.startsWith(“Equivalent”)) {
 exp1Result = solve(exp1);
 }
elseif(exp1.toString() == ‘x’) {
 exp1Result = false;
 }
else {
 exp1Result = evaluateExp(exp1, true);
 }

if(exp2.startsWith(“Exists”) || exp2.startsWith(“ForAll”)
 || exp2.startsWith(“AND”) || exp2.
startsWith(“OR”)
 || exp2.startsWith(“NOT”) || exp2.
startsWith(“Implies”)
 || exp2.startsWith(“Equivalent”)) {
 exp2Result = solve(exp2);
 }
elseif(exp2.toString() == ‘x’) {
 exp2Result = false;
 }
else {
 exp2Result = evaluateExp(exp2, true);
 }
return exp1Result || exp2Result;
}

function not(exp1) {
var exp1Result;
if(exp1.startsWith(“Exists”) || exp1.startsWith(“ForAll”)
 || exp1.startsWith(“AND”) || exp1.
startsWith(“OR”)
 || exp1.startsWith(“NOT”) || exp1.
startsWith(“Implies”)
 || exp1.startsWith(“Equivalent”)) {

 exp1Result = solve(exp1);
 }
elseif(exp1.toString() == ‘x’) {
 exp1Result = true;
 }
else {
 exp1Result = evaluateExp(exp1, true);
 }

return !exp1Result;
}

function implies(exp1, exp2) {
var exp1Result, exp2Result;
if(exp1.startsWith(“Exists”) || exp1.startsWith(“ForAll”)
 || exp1.startsWith(“AND”) || exp1.
startsWith(“OR”)
 || exp1.startsWith(“NOT”) || exp1.
startsWith(“Implies”)
 || exp1.startsWith(“Equivalent”)) {
 exp1Result = solve(exp1);
 }
elseif(exp1.toString() == ‘x’) {
 exp1Result = false;
 }
else {
 exp1Result = evaluateExp(exp1, true);
 }

if(exp2.startsWith(“Exists”) || exp2.startsWith(“ForAll”)
 || exp2.startsWith(“AND”) || exp2.
startsWith(“OR”)
 || exp2.startsWith(“NOT”) || exp2.
startsWith(“Implies”)
 || exp2.startsWith(“Equivalent”)) {
 exp2Result = solve(exp2);
 }
elseif(exp2.toString() == ‘x’) {
 exp2Result = false;
 }
else {
 exp2Result = evaluateExp(exp2, true);
 }
return (exp1Result === true&& exp2Result === true)
|| (exp1Result === false&& exp2Result === true) ||
(exp1Result === false&& exp2Result === false);
}

function equivalent(exp1, exp2) {
var exp1Result, exp2Result;
if(exp1.startsWith(“Exists”) || exp1.startsWith(“ForAll”)
 || exp1.startsWith(“AND”) || exp1.
startsWith(“OR”)
 || exp1.startsWith(“NOT”) || exp1.
startsWith(“Implies”)
 || exp1.startsWith(“Equivalent”)) {
 exp1Result = solve(exp1);
 }
elseif(exp1.toString() == ‘x’) {
 exp1Result = false;
 }
else {
 exp1Result = evaluateExp(exp1, true);
 }

if(exp2.startsWith(“Exists”) || exp2.startsWith(“ForAll”)
 || exp2.startsWith(“AND”) || exp2.
startsWith(“OR”)
 || exp2.startsWith(“NOT”) || exp2.
startsWith(“Implies”)
 || exp2.startsWith(“Equivalent”)) {
 exp2Result = solve(exp2);
 }
elseif(exp2.toString() == ‘x’) {
 exp2Result = false;
 }
else {
 exp2Result = evaluateExp(exp2, true);
 }
return exp1Result === exp2Result;
}

function evaluateExp(exp, satisfy) {

for(var i = 0; i <201; i++)
 {
 console.log(set[i]);
var exp1 = exp.replace(“x”, set[i] >= 0 ? set[i] : ‘(‘ +
set[i] + ‘)’);

 console.log(“eval”,exp);

 console.log(math.eval(exp1));

if(math.eval(exp1) == satisfy)
return satisfy;
 }

return !satisfy;}

