
Lambda‐notation for functions PLIN0009 Semantic Theory

1 Basics

In formal semantics, it is customary to use lambda‐notation for functions, instead of
lengthy descriptions in English like ‘the function that takes an individual x and returns 1 iff
x smokes in M .’ Everything we will do in this course can as well be done without lambda‐
notation, but it would be too cumbersome to always use English to talk about functions,
so let’s get used to lambda‐notation at this point.

In the standard lambda‐notationused in formal semantics,¹ a function generally looks like:
λv : ϕ. α

• The symbolλ (theGreek letter ‘lambda’) has nomeaning on its own. It’s there to indicate
that this whole formal expression names a function.

• v is a variable, representing the input of the function. It’s a variable because its value
varies depending on what the input is. You are allowed to pick any variable name, but
we will use x , y , f , P , etc. in this couse.

• ϕ is a statement describing what kind of input the function admits (typically in terms
of v). This means that ϕ de ines the domain of the function. Keep in mind that ϕ needs
to be a statement that can be true or false. The idea is that if ϕ is true, the input is an
appropriate kind of object for the function to operate on, and if ϕ is false, it is not and
the function will not output anything.

• α describes the output, often in terms of v .

It’s easier to understand this by looking at concrete examples. Here is one:

(1) λx : x is a natural number. x + 5

This is a function that takes a natural number and adds 5 to it. You are probably more fa‐
miliar with the notation f (x) = x + 5. (1) is exactly the same function. You might wonder
why we need another way of writing the same thing. As you will see later in this mod‐
ule, lambda‐notation becomes particularly convenient in the context of formal semantics,
because it makes it clear that you are referring to the function itself, rather than the out‐
put value of f applied to x (which we will consistently denote by ‘f (x)’). Also, in lambda‐
notation the domain of the function can be explicitly stated. In (1), it’s the part that says ‘x
is a natural number’. As we will see, this will be very useful for analyzing natural language
expressions.

You can also write the same function more compactly as (2). Recall N is the set of natural
numbers.

(2) λx : x P N. x + 5

Functions like (2) whose domain is expressed as the variable x being a member of some
set S are often abbreviated to ‘λx P S. α’. For instance, (2) can be written as:
¹Linguists borrowed this notation from lambda calculus, a formal system for functions developed by Alonzo
Church.
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(3) λx P N. x + 5

Wewill adopt this abbreviation in this module. In this shorthand, you no longer see ‘:’, but
don’t be tricked by it. Every well‐formed description of a function in lambda notation is
made up of the same aforementioned three components, a variable, a description of the
domain, and a description of the output (plus the λ at the beginning).

The choice of the variable x above is not important, because it is a variable. We could have
chosen, say, y instead, as in (4), and meant the same thing.

(4) λy P N. y + 5

Usually, we use x , y , z as variable names, especially when they stand for arbitrary entities,
but in principle they can be any letter. It is, for example, legitimate to use a completely
arbitrary symbol as in:

λ
a

:‚
Σ P N.

a

:‚
Σ + 5

but if there’s no reason to complicate the representation, you’d better use simple symbols
for variables.

Functions need not be about mathematical operations. For instance, (5) is a legitimate
function (assuming that each dog has a unique name).

(5) λy : y is a dog in London. y ’s name

This is a function that takes any dog in London and returns its name.

Using lambda‐notation, we can re‐write the denotations of the intransitive verbs we anal‐
ysed last week as follows.

(6) For any model M ,
a. vsmokesw

M = λx : x is an entity in M. 1 iff x smokes in M
b. vcriedw

M = λx : x is an entity in M. 1 iff x cried in M

The set of all entities in a given model (called the domain of the model) is often written as
D. So, these functions are more compactly written as:

(7) For any model M ,
a. vsmokesw

M = λx P D. 1 iff x smokes in M
b. vleftw

M = λx P D. 1 iff x left in M

From now on, we will use these representations.

(If you read published papers in formal semantics, ‘1 iff ’ is often also omitted, but we will
keep it here, because it seems to take some time to get use to this convention.)

2 Functions that return functions

Things seem to get a bit more complicated, when you consider functions that return func‐
tions as values, but the basic principles are the same. For example, we can de ine a func‐
tion A that takes a natural number n, and returns a function, which in turn takes a natural
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number m and returns the value n +m. As you can see, A represents addition, but it takes
one number at a time. In particular, when you feed A with one natural number, you will
get another function. For example, A(3) and A(5) will be both functions, but importantly,
A(3) ‰ A(5), because A(3) is the function that takes a natural number and adds 3 to it,
while A(5) is the function that takes a natural number and adds 5 to it. In the λ‐notation,
we can write them as:

(8) a. A(3) = λm P N. m + 3
b. A(5) = λm P N. m + 5

Lambda‐notation allows you to represent A itself as well. It will look like (9). We will use
‘[’ and ‘]’ to indicate where each function starts and ends.

(9) A+ = [λn P N. [λm P N. n + m]]

This representation of A looks as if A has two λ’s, but that’s not the right way of under‐
standing it. Recall that in lambda‐notation, each function has three parts (apart from λ).
The irst two parts are collapsed into ‘λn P N’ here, which says that it takes as input any
member n of the setN, which is to say that it takes any natural number n. Then the output
description speci ies what function it turns, namely [λm P N. n+m]. So, if n = 3, it returns
[λm P N. 3+m], if n = 5, it returns [λm P N. 5+m], and so on. These resulting functions in
turn have three parts. They take any member m ofN, i.e. any natural number, and returns
3 + m, 5 + m, etc.

In Lecture 4, we will analyse the denotations of transitive verbs as functions that map en‐
tities to functions, which in turnmap entities to truth‐values. For example, the denotation
of lovewith respect to an arbitrary model M (whose domain is D) can be written as (10).

(10) vlovew
M = [λx P D. [λy P D. 1 iff y loves x in M]]

This will be explained in Lecture 4.

3 λ‐conversion

When a function applies to an appropriate argument, you can simplify the representa‐
tion. This process is often called ‘λ‐conversion’ (or β‐reduction). Here is an example of
vsmokesw

M applied to an entity in the model, say Alice.
vsmokesw

M(Alice) = [λx P D. 1 iff x smokes in M](Alice)
= 1 iff Alice smokes in M

Recall that we are following the standard convention that the function comes to the left
of the argument and the argument is indicated by ‘(’ and ‘)’. Generally, for any function f
and for any argument a for it, we write f (a) for the result of applying f to a. So things like
‘(John)[λx P D. 1 iff x smokes in M]’ and ‘(λx P D. 1 iff x smokes in M)[John]’ don’t make
sense. Such expressions are not part of our metalanguage, and should never be used.

Here are some more examples of λ‐conversion.

(11) [λx P N. x + 5](12) = 5 + 12 = 17
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(12) [λx P N. x + 5]([λy P N. y 2](3)) = [λx P N. x + 5](32) = [λx P N. x + 5](9) =
9 + 5 = 14

Recall that a function can return a function. Consider the following function S . This func‐
tion performs subtraction.

(13) S = [λn P N. [λm P N. n ´ m]]

When one argument, say 3, is given, it returns the following function.

S(3) = [λn P N. [λm P N. n ´ m]](3) = [λm P N. 3 ´ m]

And here is a particularly important convention. When two arguments follow a function,
the function is applied to the left one (= the one closer to the function) irst.

S(3)(2) = [λn P N. [λm P N. n ´ m]](3)(2) = [λm P N. 3 ´ m](2) = 3 ´ 2 = 1

Notice that S(2)(3) = ´1, so S(3)(2) ‰ S(2)(3), meaning that it matters (in this case)
which argument comes irst.

Also remember that square brackets are used to delimit functions. Notice the following
inequality:

[λn P N. [λm P N. n ´ m]](3)(2) ‰ [λn P N. [λm P N. n ´ m](3)](2)

The left‐hand side is 1, as calculated above. The right‐hand side is ´1, because:

[λn P N. [λm P N. n ´ m](3)](2) = [λn P N. n ´ 3](2) = 2 ´ 3 = ´1

Here, 3 is the argument of the inner function, and 2 is the argument of the outer function
that contains the inner function. Hereweapplied the inner function to 3 irst, but generally,
the order of application does not change the inal output (a property called the Church‐
Rosser property).

[λn P N. [λm P N. n ´ m](3)](2) = [λm P N. 2 ´ m](3) = 2 ´ 3 = ´1
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