
Linear Algebra

1.1 Systems of Linear Equations

A linear equation in the variables x1, x2, . . . , xn is an equation that can be put in the
form

a1x1 + a2x2 + · · ·+ anxn = b, (1)

where b and the coefficients ai (1 ≤ i ≤ n) are constants.

A solution to the linear equation (1) is an ordered set (s1, s2, . . . , sn) of numbers
with the property that a1s1 + a2s2 + · · · + ansn = b holds. The solution set of (1) is
the set containing all such solutions. To solve (1) is to find the solution set.

A system of linear equations, also called a linear system, is a collection of m > 1
linear equations in the n variables x1, x2, . . . , xn that we want to solve simultaneously,
i.e., we look for a set {x1, x2, . . . , xn} that simultaneously solves each equation in the
set. For example, the system

{
x + 2y = 0

2x + y = 3
(2)

has the solution x = 2, y = −1.

1.1.1 Equivalent Systems

We say that two systems of linear equations are equivalent if they have identical
solution sets. For example, the system

{
x + 2y = 0

−4x − 2y = −6

is equivalent to (2).

In this course, we almost always represent systems of equations by means of their
associated matrices. A matrix is a 2-dimensional array of numbers. Given a system
of equations, there are two matrices of interest. One is the coefficient matrix, which
contains the coefficients from the left-hand side of the system. If we label this matrix
A, then aij, the entry in row i, column j, is simply the coefficient on the ith variable
in the jth equation. The augmented matrix for the system includes the right-hand
side as an additional column. For example, the coefficient and augmented matrices
for (2) are

A =

[
1 2
2 1

]
and [A|b] =

[
1 2 0
2 1 3

]
.
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1.1.2 Elementary Row Operations

The elementary row operations, applicable to both systems of equations and to ma-
trices, are as follows:

1. interchange two rows.

2. multiply a row by a nonzero real constant. (This is called scaling.)

3. add a multiple of one row to another.

The author refers to these as Row Operations 1, 2, and 3, respectively.

Exercises in 1.1: 1b, 2b, 5b, 6d, 9, 10.

1.2 Row Echelon Form

An m× n matrix A is said to be in row echelon form if

1. the first nonzero in any row is a 1,

2. for any 1 ≤ k < n, the number of leading zeros in row k + 1 is greater than the
number of leading zeros in row k (unless row k is a row of zeros), and

3. nonzero rows precede zero rows.

Example: Here is a 4× 4 matrix A, in row-echelon form:

A =


1 2 3 2
0 1 7 0
0 0 0 1
0 0 0 0

 .

Note that condition (1) is not universally required, i.e., the leading nonzero in any
row need not be a 1. It is useful to keep in mind, though, that Leon expects only 1s
in the leading positions.

1.2.1 Gaussian Elimination

The easiest method for putting a matrix into row-echelon form is to use these ele-
mentary row operations iteratively in a procedure called Gaussian Elimination. Once
a matrix is in row-echelon form, the associated equation, if consistent, can be solved
by back-substitution.
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1.2.2 Overdetermined and underdetermined Systems

An overdetermined system is one with more equations than unknowns, while an un-
derdetermined system has more unknowns than equations. Overdetermined systems
are often inconsistent, while the consistency of an underdetermined system depends
upon its right-hand side. If consistent, an underdetermined system has infinitely
many solutions. In particular, if the right-hand side consists only of zeros (i.e., if the
system is homogeneous), there will be infinitely many solutions. See Leon, pp. 15–18
for a discussion.

Exercises in 1.2: 2, 4, 5e, 8.

1.3 Matrix Algebra

You should be comfortable with both the vocabulary and the operations of elementary
matrix algebra. A vector is either an n× 1 or a 1×n matrix. The first is sometimes
called a column vector (think of the columns in a matrix), while the second is almost
always called a row vector to emphasize that it has (and is!) one row, not one column.
We will be doing most of our work in Rn, also called Euclidean n-space, where vectors
will typically be represented as columns.

The basics of doing algebra with matrices consist of addition, subtraction, and
multiplication of matrices. You should have mastered these skills before registering
for MA3042. To make sure that you remember how it all works, try these exercises
from section 1.3: 1–4, 11–14.

1.4 Elementary Matrices

If M is a nonsingular m×m matrix and A an m×n matrix, then the linear equations
Ax = b and MAx = Mb have the same solutions, i.e., the underlying linear systems
are equivalent. Our goal is to find an equivalent system that is easier to solve (a
triangular system), and the notion of multiplying both sides of the equation by a
nonsingular matrix can be useful, both theoretically and practically. An elementary
matrix is obtained from the identity matrix by performing a single row operation.
The author uses them to describe Gaussian Elimination as a sequence of matrix
multiplications, as well as to simplify the discussion of the triangular factorization
A = LU . We’ll see elementary matrices once or twice during the quarter, so know
what they are and what they do (pp.61–64).

The full discussion of the LU factorization of a matrix A is beyond the scope of
these notes, but can be found in the text on pages 67–68. In practice, we can find
the LU factorization by simply adding a book-keeping step to Gaussian elimination.
Given an n × n matrix A, in some situations it is advantageous to factor A as a
product A = LU , where L is n × n, lower triangular, with 1s on the main diagonal,
and U is n×n and upper triangular. Solving Ax = b then reduces to the consecutive
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solution of two triangular systems. For an example, consider the matrix

A =

 1 2 1
−1 0 3

2 10 20

 .

Applying Gaussian Elimination to A, we find the upper triangular matrix

U =

 1 2 1
0 2 4
0 0 6

 .

So what is this matrix L? It’s remarkably simple. In performing Gaussian elimination,
we add 1 times row 1 to row 2, so the multiplier is 1. Placing a minus sign in front
of that 1, we record (−1) in row 2, column 1 of L. (Note that the multiplier occupies
the same position in L as the element just eliminated from A.) In eliminating the
entry in row 3, column 1, we add −2 times row 1 to row 3; placing a minus sign in
front of −2, we record 2 in row 3, column 1. That’s it for column 1. Let’s let A′

represent the state of our matrix after completing the elimination step in column 1.
We have

A′ =

 1 2 1
0 2 4
0 6 18

 .

To eliminate the 6 in the 3, 2-position, we add −3 times row 2 to row 3. Placing a
minus sign in front of this multiplier, we record a 3 in the 3, 2-position of L. The final
state of what started out as A is U , shown above. The final state of L is

L =

 1 0 0
−1 1 0

2 3 1

 .

Note that L is lower triangular with 1s on the main diagonal and with the negatives of
the multipliers occupying the lower triangle. Note: You might find it useful to think
in terms of subtraction rather than addition when applying Row Operation 3, since
then you don’t have to multiply the multipliers by −1 when constructing L. (The
reason for the sign change in the multipliers has to do with the inverses of elementary
matrices, so if this is too mysterious you can find the whole story in the text.)

The remarkable thing about this simple process is that

LU =

 1 0 0
−1 1 0

2 3 1

 1 2 1
0 2 4
0 0 6

 =

 1 2 1
−1 0 3

2 10 20

 = A.
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Exercises 1.4: 1–3, 6, 8, 10b,e, 18.

1.5 Partitioned Matrices

A matrix A can be partitioned by using horizontal lines to partition the set of rows
and vertical lines to partition the set of columns. It’s hard to motivate, but it isn’t
hard to describe. Suppose A is m × n and B is n × p. Suppose we partition A as

A =

[
C1 C2

C3 C4

]
and B as B =

[
D1 D2

D3 D4

]
. Then

AB =

[
C1D1 + C2D3 C1D2 + C2D4

C3D1 + C4D3 C3D2 + C4D4

]
,

provided the partitioning of A and B is done in such a way that the required sub-
products are defined.

The author uses some notation from MATLAB in this section. While MA3042
doesn’t require that you know any MATLAB, it makes better sense to borrow MAT-
LAB notation than to invent something new. The borrowed notation used is used to
represent rows in a matrix: Let’s suppose that A is m× n and B is n× p. The rows
of A are a(1, :), a(2, :), . . . , a(m, :) (this is MATLAB’s notation), and the columns of
B are b1,b2, . . . ,bp (this is standard). It can verified without too much work that
the jth column of AB is Abj, and the ith row of AB is a(i, :)B.

Of special interest are inner products and outer-product expansions. The inner
product of vectors x,y ∈ Rn is the 1 × 1 matrix (a scalar) xTy. The inner product

of x and y is the n× n matrix xyT . For example, if x =

[
1
2

]
and y =

[
3
4

]
, then

their inner product is xTy =
[

1 2
] [ 3

4

]
= 3 + 8 = 11, and their outer product is

xyT =

[
1
2

] [
3 4

]
=

[
3 4
6 8

]
.

An outer product expansion is the description of a matrix product AB obtained by
partitioning A as a “row” of columns and B as a“column” of rows. See page 78 in
the text.

Exercises in §1.5: 3, 4, 6a, 8.
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2.1 The Determinant

The determinant is a function that takes a square matrix as input and produces a
real number as its output. The most fundamental application of the determinant is to
tell us whether a matrix A is singular, but this is more important from a theoretical
point of view than from a practical point of view. (This is a confusing remark. If
your application is to learn linear algebra, most of us view the determinant as highly
practical. If your application is some real-world problem, the determinant is probably
of little use, but it has by then helped you learn enough linear algebra to solve your
problem!) The determinant of a 1 × 1 matrix A = [a] is defined to be det(A) = a.

The determinant of the matrix A =

[
a b
c d

]
is defined to be det(A) = ad − bc.

We pause for a change of notation. A competing, and equally popular, notation for
the determinant uses the pipes that we use for absolute value, so |A| represents the
determinant of A. Now back to business. It turns out that A is invertible if and only
if |A| 6= 0. We could continue in this fashion, ending up with a characterization of the
determinant as a sum of signed diagonal products from A, but there is an equivalent
(and easier) way that is recursive in nature. Given an n×n matrix A, let Mij denote
the (n − 1) × (n − 1) matrix obtained by deleting row i and column j of A. The
i, j-minor of A, also called the minor of aij, is |Mij|, the determinant of Mij. The
associated cofactor Aij is defined by Aij = (−1)i+j|Mij|, a signed minor. Here is how
we use it: given the n × n matrix A, we find A using the cofactor expansion |A| =
a11A11+a12A12+· · ·+a1nA1n, equivalent to |A| = a11M11−a12M12+· · ·+(−1)na1nA1n.
See pp.90–95.

The preceding definition used row 1 of A, but it turns out that the determinant
can be computed in this fashion using any row, or for that matter any column, of
A. Some basic properties of the determinant are mentioned at the end of section 2.1,
and are listed here. Let A be any square matrix. Then

1. |A| = |AT |.

2. if A is triangular, then |A| = Πn
i=1aii, the product of the diagonal entries of A.

3. if A has a line (a row or a column) of zeros, then |A| = 0.

4. if A has two identical rows or two identical columns, then |A| = 0.

Exercises Section 2.1: 3, 6, 9.

2.1.1 Properties of the Determinant

As forecast by the 1 × 1 case and 2 × 2 cases mentioned above, we have a theorem
that tells us that a square matrix A is singular if and only if the determinant of A is
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0. Perhaps the more remarkable and useful property of the determinant is given in
the following theorem, which is proven on page 103 in the text.

THEOREM: If A and B are n× n matrices, then

|AB| = |A||B|.

Exercises Section 2.2: 1, 4, 7.

3.2 Extra problems for Chapters 1 and 2

1. Which of the following equations is linear?

(a) x− 2xy = 6

(b) 11x− 26y + z − cos s = et

(c) 8x + 6y − 47z = 5

(d) 5x2 − 3 = 0

2. Find the Row Echelon form of the matrix corresponding to the following linear
system, and use this form and back substitution to find the solution of the

system.


x1 − x2 + x3 = 6
4x1 + 2x2 − x3 = 0
5x1 + x2 + x3 = 12.

3. Solve each of the following systems, if possible, by substitution.

(a)

{
3x2 = 6

3x1 + 3x2 = 1

(b)


x1 + 2x2 + x3 = 2

3x1 + 8x2 + x3 = 12
−x1 + 2x2 − 5x3 = 2

(c)


x1 + 2x2 + x3 = 2

3x1 + 8x2 + x3 = 12
−x1 + 2x2 − 3x3 = 2

4. Solve each of the solvable systems from (3), by applying Gaussian elimination.
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5. Perform Gaussian elimination on the augmented matrix for each of the following
systems. If any solution involves free variables, introduce parameters as needed.
Describe the general solution to each system.

(a)

{
x1 + 2x2 + x3 = 1

x2 + x3 = 1

(b)


x1 + x2 + x3 + x4 + x5 = 5
x1 + x5 = 3
x1 − x2 = 3

(c)


−x1 + 2x2 − x3 = −4
4x1 − 6x2 − x3 = 7
3x1 + 4x2 + 2x3 = 15

6. Let x =

[
1
2

]
, y =

[
−2

1

]
, and z =

[
2
−2

]
. Compute the following:

(a) x + y, y + z, and x + z.

(b) x− y and y − x.

(c) 2x− 3y + z.

(d) x · y, x · z, and y · z

7. Repeat (6), this time using x =

 1
2
−1

, y =

 −2
1
0

, and z =

 2
−2

3

.

8. Let A =

[
1 2
0 1

]
, B =

[
1 −2
0 1

]
, and C =

[
3 2
−2 1

]
. Perform the following:

(a) Compute the sum, difference, and product of each pair of matrices.

(b) Compute 2A− 3B + 4C.

(c) Find the transpose of each matrix.

(d) For each pair, verify that the transpose of the product is equal to the
product of the transposes, but taken in reverse order. (e.g., that (AB)T =
BT AT )
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9. Let A =

 1 2 4
0 1 −1
1 1 1

, and B =

 1 −2 −2
0 1 −1
3 2 1

. Repeat the operations from

the preceding exercise for A and B.

10. Let A =

[
1 2 4
0 1 −1

]
, and B =

 1 −2
0 1
3 2

. Find each of the following, or

explain why the indicated operation is not defined.

(a) A + B

(b) A + BT

(c) AB

(d) AT B

11. Let A =

[
2 1
5 3

]
, and B =

[
4 3
7 6

]
.

Find A−1 and B−1, if they exist.

12. Let A =

 1 0 0
1 3 4
2 3 6

. Find A−1 if it exists.

13. Let A =

[
4 3
7 6

]
, and b = (0,−3)T . Find the LU factorization of A, and use

this factorization to solve Ax = b.

14. Let A =

 1 1 0
3 1 4
2 3 5

, and b = (1, 3, 9)T . Find the LU factorization of A, and

use this factorization to solve Ax = b.

15. Let A =

 2 0 0
1 2 4
3 3 6

 , B =

 1 1 0
3 1 4
2 3 5

, and C =

 1 2 3
4 5 −6
−7 8 9

.

Find det(A), det(B), and det(C), using a cofactor expansion.
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3.3 Solutions to Exercises

1. Only (c) is linear.

2. Find the Row Echelon form of the matrix corresponding to the following linear
system, and use this form and back substitution to find the solution of the

system.


x1 − x2 + x3 = 6
4x1 + 2x2 − x3 = 0
5x1 + x2 + x3 = 12.

Solution:


x1 − x2 + x3 = 6
4x1 + 2x2 − x3 = 0
5x1 + x2 + x3 = 12.

 1 −1 1 6
4 2 −1 0
5 1 1 12

 .

Linear System Augmented Matrix


x1 − x2 + x3 = 6

6x2 − 5x3 = −24
5x1 + x2 + x3 = 12.

 1 −1 1 6
0 6 −5 −24
5 1 1 12

 .

Add (−4) times first
equation to second

Add (−4) times first
row to second.


x1 − x2 + x3 = 6

6x2 − 5x3 = −24
6x2 − 4x3 = −18.

 1 −1 1 6
0 6 −5 −24
0 6 −4 −18

 .

Add (−5) times first
equation to third

Add (−5) times first
row to third.


x1 − x2 + x3 = 6

6x2 − 5x3 = −24
x3 = 6.

 1 −1 1 6
0 6 −5 −24
0 0 1 6

 .

Add (−1) times second
equation to third.

Add (−1) times sec-
ond row to third.

The solution can now be calculated by back-substitution: The third equation
gives x3 = 6. Substitution into the second gives x2 = 1. Substitution of both
into the first gives x1 = 1.

3. We are to solve each system by substitution, if possible.
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(a)

{
3x2 = 6

3x1 + 3x2 = 1

Solution: From the first equation, x2 = 2. Substituting into the second
equation, we have 3x1 + 3(2) = 3x1 + 6 = 1, so 3x1 = −5 and x1 = −5/3.

(b)


x1 + 2x2 + x3 = 2

3x1 + 8x2 + x3 = 12
−x1 + 2x2 − 5x3 = 2

Solution: No solution exists. If one goes through the steps required to
discover a solution, in the end one is faced with an impossibility of the
form 0x2 = 4.

(c)


x1 + 2x2 + x3 = 2

3x1 + 8x2 + x3 = 12
−x1 + 2x2 − 3x3 = 2

Solution: Solving the first equation for x1, we find x1 = 2 − 2x2 − x3.
Substituting this for x1 in the second equation, we have x2 − x3 = 3, or
x2 = 3 + x3, from which we have now have x1 = −4 − 3x3. We can then
eliminate both x1 and x2 from the third equation, arriving at x3 = −4. It
follows that x2 = 3− 4 = −1 and x1 = −4− 3(−4) = 8.

4. We now use Gaussian elimination to solve systems (a) and (c) from the preceding
problem.

(a)

{
3x2 = 6

3x1 + 3x2 = 1

Solution: There is really no work to be done here, since x1 is absent from
the first equation.

(c)


x1 + 2x2 + x3 = 2

3x1 + 8x2 + x3 = 12
−x1 + 2x2 − 3x3 = 2

Solution: Subtracting three times row one from row two, and adding row
one to row three, we obtain a new system:

x1 + 2x2 + x3 = 2
2x2 − 2x3 = 6
4x2 − 2x3 = 4
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Now subtracting twice row two from row three, we have
x1 + 2x2 + x3 = 2

2x2 − 2x3 = 6
2x3 = −8

Backsubstitution gives us x3 = −4, x2 = 1
2
(6−8) = −1, and x1 = 2+2+4 =

8.

5. We are to perform Gaussian elimination on the augmented matrix for each of
the following systems, obtaining the general solution.

(a)

{
x1 + 2x2 + x3 = 1

x2 + x3 = 1

(b)


x1 + x2 + x3 + x4 + x5 = 5
x1 + x5 = 3
x1 − x2 = 3

(c)


−x1 + 2x2 − x3 = −4
4x1 − 6x2 − x3 = 7
3x1 + 4x2 + 2x3 = 15

Solution:

(a) The augmented matrix for system (a) is

A =

[
1 2 1 1
0 1 1 1

]
.

Elimination has no effect, since the matrix is already in row-echelon form.
The free variable is x3, so we let x3 = s and proceed with back-substitution:
x2 = 1 − s, and x1 = 1 − s − 2(1 − s) = −1 + s. The general solution is
then

(x1, x2, x3) = (−1 + s, 1− s, s).

(b) The augmented matrix for system (b) is

A =

 1 1 1 1 1 5
1 0 0 0 1 3
1 −1 0 0 0 3

 .
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Introducing zeros below the pivot in the first column, we have

A =

 1 1 1 1 1 5
0 −1 −1 −1 0 −2
0 −2 −1 −1 −1 −2

 .

Introducing a zero below the pivot in the second column, we have

A =

 1 1 1 1 1 5
0 −1 −1 −1 0 −2
0 0 1 1 −1 2

 ,

and the elimination is complete. Free variables are x4 and x5, so we set
x4 = s and x5 = t, say. It follows that x3 = 2−s+t, x2 = 2−s−(2−s+t) =
−t, and x1 = 5 + t− (2− s + t)− s− t = 3− t. So the general solution is

(x1, x2, x3, x4, x5) = (3− t,−t, 2− s + t, s, t).

(c) The augmented matrix for system (c) is

A =

 −1 2 −1 −4
4 −6 −1 7
3 4 2 15

 .

Introducing zeros below the pivot in the first column, we have

A =

 −1 2 −1 −4
0 2 −5 −9
0 10 −1 3

 .

Introducing a zero below the pivot in the second column, we obtain

A =

 −1 2 −1 −4
0 2 −5 −9
0 0 24 48

 .

There are no free variables, so we continue with backsubstitution, obtaining

(x1, x2, x3) = (3, 1/2, 2).
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6. We are given x =

[
1
2

]
, y =

[
−2

1

]
, and z =

[
2
−2

]
, and must compute the

following:

(a) x + y =

[
−1

3

]
, y + z =

[
0
−1

]
, and x + z =

[
3
0

]
.

(b) x− y =

[
3
1

]
, and y − x =

[
−3
−1

]
.

(c) 2x− 3y + z =

[
10
−1

]
.

(d) The dot products:

x · y = 1 · (−2) + 2 · 1 = −2 + 2 = 0

x · z = 1 · 2 + 2 · (−2) = 2− 4 = −2

y · z = −2 · 2 + 1 · (−2) = −4− 2 = −6

(e)
x · y = 1 · (−2) + 2 · 1 + (−1) · 0 = −2 + 2 + 0 = 0

x · z = 1 · 2 + 2 · (−2) + (−1) · 3 = 2− 4− 3 = −5

y · z = −2 · 2 + 1 · (−2) + 0 · 3 = −4− 2 + 0 = −6

7. We repeat (6), this time using x =

 1
2
−1

, y =

 −2
1
0

, and z =

 2
−2

3

,

obtaining

(a) x + y =

 −1
3
−1

, y + z =

 0
−1

3

, and x + z =

 3
0
2

.

(b) x− y =

 3
1
−1

 and y − x =

 −3
−1

1

.

(c) 2x− 3y + z =

 10
−1

1
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8. We are given

A =

[
1 2
0 1

]
, B =

[
1 −2
0 1

]
, and C =

[
3 2
−2 1

]
,

and are to perform the following:

(a) Compute the sum, difference, and product of each pair of matrices.

(b) Compute 2A− 3B + 4C.

(c) Find the transpose of each matrix.

(d) For each pair, verify that the transpose of the product is equal to the
product of the transposes, but taken in reverse order. (e.g., that (AB)T =
BT AT )

Solution:

(a) i. The sums: A + B =

[
2 0
0 2

]
, A + C =

[
4 4
−2 2

]
, and B + C =

[
4 0
−2 2

]
.

ii. Some differences: A−B =

[
0 4
0 0

]
, B − C =

[
−2 −4

2 0

]

iii. Some products: AB =

[
1 0
0 1

]
, BC =

[
7 0
−2 1

]
, CB =

[
3 −4
−2 5

]
.

(b) 2A− 3B + 4C =

[
11 18
−8 3

]
.

(c) The transposes:

AT =

[
1 0
2 1

]
, BT =

[
1 0
−2 1

]
, and CT =

[
3 −2
2 1

]
.

(d) Using B and C, we get

BT CT =

[
1 0
−2 1

] [
3 −2
2 1

]
=

[
3 −2
−4 5

]
= (CB)T .
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9. We are given A =

 1 2 4
0 1 −1
1 1 1

, and B =

 1 −2 −2
0 1 −1
3 2 1

, and are to repeat

operations (a), (c), and (d) from the preceding exercise, using A and B.

Solution:

(a) A+B =

 2 0 2
0 2 −2
4 3 2

, A−B =

 0 4 6
0 0 0
−2 −1 0

, B−A =

 0 −4 −6
0 0 0
2 1 0

,

AB =

 13 8 0
−3 −1 −2

4 1 −2

, and BA =

 −1 −2 4
−1 0 −2

4 9 11

.

(c) AT =

 1 0 1
2 1 1
4 −1 1

.

(d) BT AT =

 13 −3 4
8 −1 1
0 −2 −2

 = (AB)T .

10. Let A =

[
1 2 4
0 1 −1

]
, and B =

 1 −2
0 1
3 2

. Find each of the following, or

explain why the indicated operation is not defined.

(a) A + B is undefined, since the dimensions of the matrices do not agree.

(b) A + BT =

[
2 2 7
−2 2 1

]
.

(c) AB =

[
13 8
−3 −1

]
.

(d) AT B is undefined, since the number of columns in AT is not equal to the
number of rows in B.

11. Given A =

[
2 1
5 3

]
, and B =

[
4 3
7 6

]
, we must find A−1 and B−1 if they

exist.
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Solution: Both are invertible. Following are the steps for finding A−1; the
same procedure applied to B will produce B−1.

We start with the matrix

[
A I

]
=

[
2 1 1 0
5 3 0 1

]
.

After the initial elimination step, we have the matrix

[
2 1 1 0
0 1/2 −5/2 1

]
.

Multiplying row two by 2 and subtracting from row one, we have

[
2 0 6 −2
0 1 −5 2

]
.

Finally dividing row one by 2, we have

[
1 0 3 −1
0 1 −5 2

]
, revealing A−1 =

[
3 −1
−5 2

]
.

12. Let A =

 1 0 0
1 3 4
2 3 6

. Find A−1 if it exists.

Solution: As in the preceding problem, both matrices are invertible and, as
before, we construct A−1.

Our starting point is

[
A I

]
=

 1 0 0 1 0 0
1 3 4 0 1 0
2 3 6 0 0 1

 .

Introducing zeros below the pivot in column one, we have

 1 0 0 1 0 0
0 3 4 −1 1 0
0 3 6 −2 0 1

 .
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Introducing a zero below the pivot in column two leads to

 1 0 0 1 0 0
0 3 4 −1 1 0
0 0 2 −1 −1 1

 .

Subtracting row three from row two to put a zero above the pivot in column
three, we have  1 0 0 1 0 0

0 3 0 1 3 −2
0 0 2 −1 −1 1

 .

Finally, dividing row three by 2 and row two by 3, we obtain

 1 0 0 1 0 0
0 1 0 1/3 1 −2/3
0 0 1 −1/2 −1/2 1/2

 ,

from which we know that

A−1 =

 1 0 0
1/3 1 −2/3
−1/2 −1/2 1/2

 .

13. Let A =

[
4 3
7 6

]
, and b = (0,−3)T . Find the LU factorization of A, and use

this factorization to solve Ax = b.

Solution: The multiplier used in reducing A =

[
4 3
7 6

]
to the upper triangular

form U =

[
4 3
0 3/4

]
is m21 = 7/4. It follows that L =

[
1 0

7/4 1

]
. We now

use the decomposition to solve the indicated system: solving Ly = b, we have
y = (0,−3)T . Solving Ux = y, we find x = (3,−4)T .
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14. Let A =

 1 1 0
3 1 4
2 3 5

, and b = (1, 3, 9)T . Find the LU factorization of A, and

use this factorization to solve Ax = b.

Solution: The multipliers used in reducing A =

 1 1 0
3 1 4
2 3 5

 to the upper-

triangular form U =

 1 1 0
0 −2 4
0 0 7

 are m21 = 3, m31 = 2, and m32 = −1/2, so

L =

 1 0 0
3 1 0
2 −1/2 1

. Solving Ly = b, we have y = (1, 0, 7)T . Solving Ux = y,

we obtain x = (−1, 2, 1)T .

15. Given A =

 2 0 0
1 2 4
3 3 6

 , B =

 1 1 0
3 1 4
2 3 5

, and C =

 1 2 3
4 5 −6
−7 8 9

, we must

find det(A), det(B), and det(C), using cofactor expansions.

Solution: Expanding along row one to exploit the 0’s, we find

det(A) = 2 det

[
2 4
3 6

]
= 2(12− 12) = 0.

Either row one or column three would be best for B; using row one, we have

det(B) = det

[
1 4
3 5

]
− det

[
3 4
2 5

]
= −7− 7 = −14.

There being no 0’s in C, there are no shortcuts. Using row one, we find

det(C) = det

[
5 −6
8 9

]
− 2 det

[
4 −6
−7 9

]
+ 3 det

[
4 5
−7 8

]
= 306.

19


	Systems of Linear Equations
	Equivalent Systems
	Elementary Row Operations

	Row Echelon Form
	Gaussian Elimination
	Overdetermined and underdetermined Systems

	Matrix Algebra
	Elementary Matrices
	Partitioned Matrices
	The Determinant
	Properties of the Determinant

	 Extra problems for Chapters 1 and 2
	Solutions to Exercises

