
Systems of Linear Equations

0.1 Definitions

Recall that if A ∈ Rm×n and B ∈ Rm×p, then the augmented matrix [A | B] ∈ Rm×n+p is the
matrix [A B], that is the matrix whose first n columns are the columns of A, and whose last p
columns are the columns of B. Typically we consider B = ∈ Rm×1 ' Rm, a column vector.

We also recall that a matrix A ∈ Rm×n is said to be in reduced row echelon form if, counting
from the topmost row to the bottom-most,

1. any row containing a nonzero entry precedes any row in which all the entries are zero (if any)

2. the first nonzero entry in each row is the only nonzero entry in its column

3. the first nonzero entry in each row is 1 and it occurs in a column to the right of the first
nonzero entry in the preceding row

Example 0.1 The following matrices are not in reduced echelon form because they all fail some
part of 3 (the first one also fails 2):1 1 0

0 1 0
1 0 1

 0 1 0 2
1 0 0 1
0 0 1 1

 (
2 0 0
0 1 0

)
A matrix that is in reduced row echelon form is:1 0 1 0

0 1 0 0
0 0 0 1

 �

A system of m linear equations in n unknowns is a set of m equations, numbered from 1 to m
going down, each in n variables xi which are multiplied by coefficients aij ∈ F , whose sum equals
some bj ∈ R:

(S)


a11x1 + a12x2+ · · ·+ a1nxn = b1

a21x1 + a22x2+ · · ·+ a2nxn = b2

...

am1x1 + am2x2+ · · ·+ amnxn = bm

If we condense this to matrix notation by writing x = (x1, . . . , xn), b = (b1, . . . , bm) and A ∈ Rm×n,
the coefficient matrix of the system, the matrix whose elements are the coefficients aij of the
variables in (S), then we can write (S) as

(S) Ax = b

noting, of course, that b and x are to be treated as column vectors here by associating Rn with
Rn×1. If b = 0 the system (S) is said to be homogeneous, while if b 6= 0 it is said to be
nonhomogeneous. Every nonhomogeneous system Ax = b has an associated or corresponding
homogeneous system Ax = 0. Furthermore, each system Ax = b, homogeneous or not, has an
associated or corresponding augmented matrix is the [A | b] ∈ Rm×n+1.

A solution to a system of linear equations Ax = b is an n-tuple s = (s1, . . . , sn) ∈ Rn satisfying
As = b. The solution set of Ax = b is denoted here by K. A system is either consistent, by which
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we mean K 6= ∅, or inconsistent, by which we mean K = ∅. Two systems of linear equations are
called equivalent if they have the same solution set. For example the systems Ax = b and Bx = c,
where [B | c] = rref([A | b]) are equivalent (we prove this below).

0.2 Preliminaries

Remark 0.2 Note that we here use a different (and more standard) definition of rank of a
matrix, namely we define rankA to be the dimension of the image space of A, rankA := dim(imA).
We will see below that this definition is equivalent to the one in Bretscher’s Linear Algebra With
Applications (namely, the number of leading 1s in rref(A)). �

Theorem 0.3 If A ∈ Rm×n, P ∈ Rm×m and Q ∈ Rn×n, with P and Q invertible, then

(1) rank(AQ) = rank(A)

(2) rank(PA) = rank(A)

(3) rank(PAQ) = rank(A)

Proof: (1) If Q is invertible then the associated linear map TQ is invertible, and so bijective, so
that imTQ = TQ(Rn) = Rn. Consequently

im(TAQ) = im(TA ◦ TQ) = TA
(
im(TQ)

)
= TA(Rn) = im(TA)

so that
rank(AQ) = dim

(
im(TAQ)

)
= dim

(
im(TA)

)
= rank(A)

(2) Again, since TP is invertible, and hence bijective, because P is, we must have

dim
(
im(TP ◦ TA))

)
= dim(im(TA))

Thus,

rank(AQ) = dim
(
im(TAQ)

)
= dim

(
im(TP ◦ TA)

)
= dim

(
im(TP ◦ TA)

)
= dim(im(TA)) = rank(A)

(3) This is just a combination of (1) and (2): rank(PAQ) = rank(AQ) = rank(A). �

Corollary 0.4 Elementary row and column operations on a matrix are rank-preserving.

Proof: If B is obtained from A by an elementary row operation, there exists an elementary matrix
E such that B = EA. Since elementary matrices are invertible, the previous theorem implies
rank(B) = rank(EA) = rank(A). A similar argument applies to column operations. �

Theorem 0.5 A linear transformation T ∈ L(Rn,Rm) is injective iff ker(T ) = {0}.

Proof: If T is injective and x ∈ ker(T ), then T (x) = 0 = T (0), so that x = 0, whence ker(T ) = {0}.
Conversely, if ker(T ) = {0} and T (x) = T (y), then,

0 = T (x)− T (y) = T (x− y) =⇒ x− y = 0

or x = y, and so T is injective. �
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Theorem 0.6 A linear transformation T ∈ L(Rn,Rm) is injective iff it carries linearly independent
sets into linearly independent sets.

Proof: If T is injective, then kerT = {0}, and if v1, . . . ,vk ∈ Rn are linearly independent, then for
all a1, . . . , ak ∈ R we have a1v1 + · · ·+ akvk = 0 =⇒ a1 = · · · = ak = 0. Consequently, if

a1T (v1) + · · ·+ akT (vk) = 0

then, since a1T (v1)+ · · ·+akT (vk) = T (a1v1 + · · ·+akvk), we must have a1v1 + · · ·+akvk ∈ kerT ,
or a1v1 + · · ·+ akvk = 0, and so

a1 = · · · = ak = 0

whence T (v1), . . . , T (vn) ∈ Rm are linearly independent. Conversely, if T carries linearly independent
sets into linearly independent sets, let β = {v1, . . . ,vn} be a basis for Rn and suppose T (u) = T (v)
for some u,v ∈ Rn. Since u = a1v1 + · · · + anvn and v = b1v1 + · · · + bnvn for unique ai, bi ∈ R,
we have

0 = T (u)− T (v) = T (u− v) = T
(
(a1 − b1)v1 + · · ·+ (an − bn)vn

)
= (a1 − b1)T (v1) + · · ·+ (an − bn)T (vn)

so that, by the linear independece of T (v1), . . . , T (vn), we have ai − bi = 0 for all i, and so ai = bi
for all i, and so u = v by the uniqueness of expressions of vectors as linear combinations of basis
vectors. Thus, T (u) = T (v) =⇒ u = v, which shows that T is injective. �

0.3 Important Results

Theorem 0.7 The solution set K of any system Ax = b of m linear equations in n unknowns is
an affine space, namely a coset of ker(TA) represented by a particular solution s ∈ Rn:

K = s + ker(TA) (0.1)

Proof: If s,w ∈ K, then
A(s−w) = As−Aw = b− b = 0

so that s−w ∈ ker(TA). Now, let k = s−w ∈ ker(TA). Then,

w = s + k ∈ s + ker(TA)

Hence K ⊆ s + ker(TA). To show the converse inclusion, suppose w ∈ s + ker(TA). Then w = s + k
for some k ∈ ker(TA). But then

Aw = A(s + k) = As +Ak = b + 0 = b

so w ∈ K, and s + ker(TA) ⊆ K. Thus, K = s + ker(TA). �

Theorem 0.8 Let Ax = b be a system of n linear equations in n unknowns. The system has
exactly one solution, A−1b, iff A is invertible.

Proof: If A is invertible, substituting A−1b into the equation gives

A(A−1b) = (AA−1)b = Inb = b

so it is a solution. If s is any other solution, then As = b, and consequently s = A−1b, so the
solution is unique. Conversely, if the system has exactly one solution s, then by the previous
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theorem K = s + ker(TA) = {s}, so ker(TA) = {0}, and TA is injective. But it is also onto, because
TA ∈ L(Rn,Rn) takes linearly independent sets into linearly independent sets: explicitly, it takes
a basis β = {v1, . . . ,vn} to a basis TA(β) = {TA(v1), . . . , TA(vn)} (because if T (β) is linearly
independent, it is a basis by virtue of having n elements). Because it is a basis, TA(β) spans Rn, so
that if v ∈ Rn, there are a1, . . . , an ∈ R such that

v = a1TA(v1) + · · ·+ anTA(vn) = TA(a1v1 + · · ·+ anvn)

Letting u = a1v1 + · · ·+ anvnRn shows that TA(u) = v, so TA, and therefore A, is surjective, and
consequently invertible. �

Theorem 0.9 A system of linear equations Ax = b is consistent iff rankA = rank[A|b].

Proof: Obviously Ax = b is consistent iff b ∈ imTA. But in this case

imTA = span(a1, . . . ,an) = span(a1, . . . ,an,b) = imT[A|b]

where ai are the columns of A. Therefore, Ax = b is consistent iff

rankA = dim
(
imTA

)
= dim

(
imT(A|b)

)
= rank

(
[A|b]

)
�

Corollary 0.10 If Ax = b is a system of m linear equations in n unknowns and it’s augmented
matrix [A|b] is transformed into a reduced row echelon matrix [A′|b′] by a finite sequence of elemen-
tary row operations, then

(1) Ax = b is inconsistent iff rank(A′) 6= rank[A′|b′] iff [A′|b′] contains a row in which the only
nonzero entry lies in the last column, the b′ column.

(2) Ax = b is consistent iff [A′|b′] contains no row in which the only nonzero entry lies in the last
column.

Proof: If rankA′ 6= rank[A′|b′], then rank(A′) < rank[A′|b′], since we could consider A′ as equal
to [A′|0], and if this matrix has r linearly independent rows, or rank r, so does A′. Whence if
rank[A′|b′] 6= rank[A′|0] = rankA′, it is because b′ contains some nonzero element in one of the
bottom n − r slots corresponding to the zero rows of A′. Hence [A′|b′] contains a row in which
the only nonzero entry lies in the last column. Thus, by the last theorem, since rank is preserved
under multiplication by elementary matrices (Corollary 0.4), we have Ax = b is inconsistent iff
rankA 6= rank[A|b] iff rankA′ 6= rank[A′|b′] iff [A′|b′] contains a row in which the only nonzero
entry lies in the last column. Conversely, if [A′|b′] contains a row in which the only nonzero entry
lies in the last column, then rank[A′|b′]) > rank[A′|0] = rankA′.

The second point follows from the previous theorem, Corollary 0.4, and 1 of this theorem: Ax = b
is consistent iff rankA = rankA′ = rank[A′|b′] = rank[A|b] iff [A′|b′] contains no row in which the
only nonzero entry lies in the last column. �

Theorem 0.11 Let Ax = b be a system of m linear equations in n unknowns. If B ∈ Rm×m is
invertible, then the system (BA)x = Bb is equivalent to Ax = b.

Proof: If K is the solution set for Ax = b and K ′ is the solution set for (BA)x = Bb, then

w ∈ K ⇐⇒ Aw = b = (B−1B)b

⇐⇒ (BA)w = Bb

⇐⇒ w ∈ K ′

so K = K ′. �
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Corollary 0.12 If Ax = b is a system of m linear equation in n unknowns, then A′x = b′

is equivalent to Ax = b if [A′|b′] is obtained from [A|b] by a finite number of elementary row
operations.

Proof: If [A′|b′] is obtained from [A|b] by a finite number of elementary row operations, which
may be executed by left-multiplying [A|b] by elementary m × m matrices E1, . . . , Ep, then let
B = EpEp−1 · · ·E1, which is invertible, so that [A′|b′] = B[A|b] = [BA|Bb]. Hence, since A′ = BA
and b′ = Bb, A′x = b′ is equivalent to Ax = b by the previous theorem. �

Remark 0.13 (Gaussian Elimination) As a result of this corollary, we now know that Gaussian
elimination transforms any system of linear equations Ax = b into its equivalent reduced row
echelon form A′x = b′. In the forward pass the augmented matrix is transformed into an upper
triangular matrix in which the first nonzero entry of each row is 1, and it occurs in a column to the
right of the first nonzero entry of each preceding row. This is achieved by a finite number type 3 and
2 row operations/elementary matrix multiplications, since there are finitely many rows in [A|b]. In
the backward pass or back substitution the upper triangular matrix is transformed into reduced
row echelon form by making the first nonzero entry of each row the only nonzero entry of its column.
This is also achieved by type 3 and 2 row operations/elementary matrix multiplications. Hence, by
the previous corollary, we can always find m×m invertible matrices B such that by multiplying the
augmented matrix by it we produce an equivalent system which is in row echelon form.

By Theorem 0.10 through Corollary 0.12 we know that Gaussian elimination will tell us whether a
system Ax = b does or does not have a solution, namely if and only if the reduced row echelon form
of the augmented matrix [A′|b′] contains no row in which the only nonzero entry lies in the last
column. The next theorem tells us what to do next in order to obtain a particular solution s and,
when A is not invertible, a basis for the solution set K = s + ker(TA). �

Theorem 0.14 Let Ax = b be a consistent system of m linear equations in n unknowns, that is
let rankA = rank[A|b], and let the reduced row echelon form [A′|b′] of the augmented matrix [A|b]
have r ≤ m nonzero rows. Then,

(1) rankA′ = r

(2) If we divide into two classes the variables appearing in the reduced row echelon form A′x = b′ of
the system, the outer variables or dependent variables, consisting of the r variables x1 =
xi1 , . . . , xir appearing as the leftmost in one of the equations, and the inner variables or free
variables consisting of the other xj, and then parametrize the inner variables xj1 , . . . , xjn−r

by setting xj1 = t1, . . . , xjn−r = tn−r for t1, . . . , tn−r ∈ R, then, solving for the outer variables
in terms of the inner variables and putting the resulting values of the xi in terms of t1, . . . , tn−r
back into the equation for x results in a general solution of the form

x = s = s0 + t1u1 + · · ·+ tn−run−r

Here, the constant vector s0 is a particular solution of the system, i.e. s0 ∈ K, and the
set {u1, . . . ,un−r} is a basis for ker(TA), the solution set to the corresponding homogeneous
system. The procedure is illustrated below (cf. also Example 0.17):

a11 · · · a1n
...

. . .
...

am1 · · · amn


x1...
xn

 =

b1...
bn


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Gaussian
elimination−−−−−−−→



1 a′12 . . . . . . . . . . . . . . . . . . . . a′1n
...

...
0 · · · 0 1 a′r,n−r+1 · · · a′rn
0 · · · 0 0 0 0 0
...

...
0 · · · 0 0 0 0 0




x1
x2
...
xn

 =



b′1
...
b′r
0
...
0


outer variables
in terms of

inner variables−−−−−−−−−−→


x1 = b′1 − a′12x2 − · · · − a′1nxn
xi2 = b′2 − a′2i2xi2 − · · · − a

′
1nxn

...

xir = b′r − a′r,n−r+1xn−r+1 − · · · − a′rnxrn

parametrizing
the inner variables
and rearranging−−−−−−−−−−−−→



x1
...
xj1

...
xir
...

xjn−r


=



b′1 + u11t1 + · · ·+ u1,n−rtn−r
...
t1
...

b′r + ur1t1 + · · ·+ ur,n−rtn−r
...

tn−r


the last of which may be written as a linear combination of 1, t1, . . . , tn−r and condensed to

x = s = s0 + t1u1 + · · ·+ tn−run−r

Proof: (1) Since [A′|b′] is in reduced row echelon form, it must have r nonzero rows by the definition
of reduced row echelon form, and they are clearly linearly independent, whence r = rank[A′|b′] =
rankA′ = r. (2) By our methods of getting s we know that any such s, for any values of t1, . . . , tn−r,
is a solution of the system A′x = b′, and therefore to the equivalent original system Ax = b:

K = s0 + span(u1, . . . ,un−r)

In particular, if we set t1 = · · · = tn−r = 0, we see that s0 is a particular solution, i.e. s0 ∈ K. But
by Theorem 0.7 we know that K = s0 + kerTA, whence

kerTA = −s0 +K

= span(u1, . . . ,un−r)

However, because rankA = r, we must have

dim(kerTA) = n− rankTA = n− rankA = n− r

Therefore, we have that {u1, . . . ,un−r} is a basis for kerTA. �

Theorem 0.15 If A ∈ Rn×n has rank r > 0 and B = rref(A), then

(1) The number of nonzero rows in B is r.

(2) For each i = 1, . . . , r, there is a column bji of B such that bji = ei.

(3) The columns of A numbered j1, . . . , jr, corresponding to the bji in (2), are linearly independent.

(4) For all k = 1, . . . , n, if column k of B is the linear combination

d1e1 + · · ·+ drer
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then column k of A is the linear combination

d1aji + · · ·+ draji

where the aji are the linearly independent columns given in (3).

Proof: (1) By Corollary 0.4 rank(A) = r =⇒ rank(B) = r, and because B is in reduced row
echelon form, no nonzero row of B can be a linear combination of the others, which means B has
exactly r nonzero rows. (2) If r ≥ 1, the vectors e1, . . . , er must occur among the columns of B
by the definition of reduced row echelon form, and these we label bji . (3) Note that if there are
c1, . . . , cr ∈ R such that

c1aj1 + · · · crajr = 0

since B is obtained from A by a finite sequence of elementary row operations, there exists an
invertible m×m matrix C = EpEp−1 · · ·E1 such that CA = B, whence

C(c1aj1 + · · · crajr ) = c1Caj1 + · · · crCajr

= c1bj1 + · · · crbjr

= c1e1 + · · · crer

= 0

so we must have c1 = · · · = cr = 0, and aji , . . . ,aji are linearly independent. (4) Note that since B
has only r nonzero rows, every column of B is of the form

d1i
...
dri
0
...
0


for d1i, . . . , dri ∈ F , so for those columns of B that look like d1ie1 + · · ·+ drier, the corresponding
columns of A must be

C−1(d1ie1 + · · ·+ drier) = d1iC
−1e1 + · · ·+ driC

−1er

= d1iC
−1b1i + · · ·+ driC

−1bri

= d1ia1i + · · ·+ driari

�

Corollary 0.16 The reduced row echelon form of a matrix is unique.

Proof: This follows directly from part (4) of the previous theorem, since the dij are determined
by the columns of A, and every column aji of A is in the span of {aj1 , . . . ,ajr}, which is a lin-
early independent set. Consequently, each column is uniquely expressed as a linear combination of
{aj1 , . . . ,ajr}, whence the dij are unique. Now, since C is invertible, TC is an isomorphism, so that
B = TC(A) also has its columns uniquely expressed as a linear combination of TC(aj1), . . . , TC(ajr ).
Consequently, B is unique. �
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0.4 Examples

Example 0.17 Convert the following system of 4 linear equations in 5 unknowns

2x1 + 3x2 + x3 +4x4−9x5 = 17

x1 + x2 + x3 + x4−3x5 = 6

x1 + x2 + x3 +2x4−5x5 = 8

2x1 + 2x2 + 2x3+3x4−8x5 = 14

by Gaussian elimination into reduced row echelon form, then parametrize the inner variables and
show that the solution set of the system is

K = (3, 1, 0, 2, 0) + kerA

= (3, 1, 0, 2, 0) + span
(
(−2, 1, 1, 0, 0), (2,−1, 0, 2, 1)

)
Solution: We use E1, E2 and E3 to denote generic elementary matrices of type 1, 2 and 3, respectively.

2 3 1 4 −9 17
1 1 1 1 −3 6
1 1 1 2 −3 6
2 2 2 3 −8 14

 E1−−−→


1 1 1 1 −3 6
2 3 1 4 −9 17
1 1 1 2 −3 6
2 2 2 3 −8 14

 (0.2)

row 1: 3×E3−−−−−−−−−→


1 1 1 1 −3 6
0 1 −1 2 −3 5
0 0 0 1 −2 2
0 0 0 1 −2 2

 row 3: E1−−−−−−−→


1 1 1 1 −3 6
0 1 −1 2 −3 5
0 0 0 1 −2 2
0 0 0 0 0 0

 (0.3)

row 3: 2×E3−−−−−−−−−→


1 1 1 0 −1 4
0 1 −1 0 1 1
0 0 0 1 −2 2
0 0 0 0 0 0

 row 1: E3−−−−−−−→


1 0 2 0 −2 3
0 1 −1 0 1 1
0 0 0 1 −2 2
0 0 0 0 0 0

 (0.4)

where (0.2) and (0.3) represent the forward pass, reducing (A|b) to an upper triangular matrix
with the first nonzero entry in each row equal to 1, while the backward pass/back substitution
occurs in (0.4), producing the reduced row echelon form. The equivalent system of linear equations
corresponding to the reduced row echelon matrix is

x1+ 2x3 −2x5= 3

x2− x3 + x5= 1

x4−2x5= 2

Now, to solve such a system, divide the variables into 2 sets, one consisting of those that appear
as leftmost in one of the equations of the system, the other of the rest. In this case, we divide
them into {x1, x2, x4} and {x3, x5}. To each variable in the second set, assign a parametric value
t1, t2, · · · ∈ R. In our case we have x3 = t1 and x5 = t2. Then solve for the variables in the first set
in terms of those in the second set:

x1 = −2x3+2x5+3 =−2t1+2t2 + 3

x2 = x3− x5+1 = t1− t2 + 1

x4 = 2x5+2 = 2t2 + 2
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Thus an arbitrary solution is of the form

x =


x1
x2
x3
x4
x5

 =


−2t1 + 2t2 + 3
t1 − t2 + 1

t1
2t2 + 2
t2

 =


3
1
0
2
0

+ t1


−2

1
1
0
0

+ t2


2
−1

0
2
1


Note that

β =




−2

1
1
0
0

 ,


2
−1

0
2
1


 , s =


3
1
0
2
0


are, respectively, a basis for ker(TA), the homogeneous system, and a particular solution of the
nonhomogeneous system. Of course ker(TA) = span(β), so the solution set for the nonhomogeneous
system is

K = s + ker(TA)

= {(3, 1, 0, 2, 0) + t1(−2, 1, 1, 0, 0) + t2(2,−1, 0, 2, 1) | t1, t2 ∈ R}

For example, choosing t1 = 2 and t2 = 10, we have s = (19,−7, 2, 22, 10) we have
2 3 1 4 −9
1 1 1 1 −3
1 1 1 2 −5
2 2 2 3 −8




19
−7

2
22
10

 =


17
6
8
14


So s is indeed a solution. �

Example 0.18 Show that the first, third and fifth columns of

A =


2 4 6 2 4
1 2 3 1 1
2 4 8 0 0
3 6 7 5 9


are linearly independent.

Solution: We could, of course, check directly, if we already knew that columns 1, 3 and 5 were the
ones we were looking for: ∀a, b, c ∈ R,

a


2
1
2
3

+ b


6
3
8
7

+ c


4
1
0
9

 =


2a+ 6b+ 4c
a+ 3b+ c

2a+ 8b
3a+ 7b+ 9c

 =


0
0
0
0


implies that a = −4b, which implies that −8b+6b = −4c, or b = 2c, −4b+3b = −c, or b = c, whence
c = 2c, so c = 0, whence a = b = 0. But we might have to try

(
5
3

)
= 5!

3!2! = 10 different possible
combinations of columns of A to figure out that the 1, 3, 5 combination is the right one. Instead
of proceeding so haphazardly, we could deduce this more simply by transforming A to reduced row
echelon form and using Theorem 0.15:

2 4 6 2 4
1 2 3 1 1
2 4 8 0 0
3 6 7 5 9

 Gaussian
elimination−−−−−−−→


1 2 0 4 0
0 0 1 −1 0
0 0 0 0 1
0 0 0 0 0


9



which immediately shows that b11 = e1, b32 = e2 and b53 = e3 are our B columns, and hence
a1, a3 and a5 are our linearly independent A columns. Note also that since b2 = 2b1 = 2e1 and
b4 = 4b1−b3 = 4e1−e2, we must have, by part 4 of the theorem, that a2 = 2a1 and a4 = 4a1−a3,
which we of course have. �
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